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Preface

The goal of the book is to present and explain the state of the art of design or
retrofitting concrete buildings for earthquake resistance. To serve this goal, it also
covers behaviour of concrete members under cyclic loading and seismic response of
concrete buildings, as well as their modelling. Its main focus is the European Design
Standard EN1998 – Eurocode 8: Design of structures for earthquake resistance, and
in particular its Parts 1 and 3, dealing with seismic design of new buildings and with
assessment and retrofitting of existing ones, respectively.

The book is addressed to practitioners of seismic design, assessment and
retrofitting, to graduate and advanced undergraduate students in structural earth-
quake engineering and to researchers with interests in the field of earthquake resis-
tant concrete structures. Certain familiarity of the reader with design of structural
concrete and with structural analysis – including seismic analysis and structural
dynamics – is presumed.

The book has been written in the course of my teaching activity for the MSc
Degree in Earthquake Engineering and Engineering Seismology (MEEES), granted
jointly by the Universities of Pavia and Patras and the J. Fourier University of
Grenoble in the framework of the Erasmus Mundus programme of the European
Commission. It has drawn from my involvement in the development of Eurocode
8 as a European Design Standard, and of its Parts 1 and 3 in particular. It has
also drawn from my research at the University of Patras during the past 25 years
and in particular from the joint work with my former doctoral students Dionysis E.
Biskinis, Antonis J. Kosmopoulos and Telemachos B. Panagiotakos and my current
colleague Stathis N. Bousias – as evident from the referencing throughout the book.
I would also like to express my gratitude and appreciation to Eduardo C. Carvalho
and Amr S. Elnashai for their very meticulous review and their comments for the
book.

Patras, Greece Michael N. Fardis
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From the Reviews of the Book

The book is devoted to the seismic design of new buildings as well as to the assess-
ment and retrofit of existing buildings, covering essentially the contents of Parts 1
and 3 of Eurocode 8. It must be stressed that its contents which refers to Assessment
and Retrofit is a very important support tool to the application of Part 3 of Eurocode
8 which deals with Assessment and Retrofitting of Buildings and which in itself is
a quite innovative document.

The book is organised in six chapters dealing sequentially with: the General
Principles of Seismic Design; the Conceptual Design of Concrete Buildings for
Earthquake Resistance; the Behaviour of Concrete Members under Cyclic Loading;
the Analysis and Modelling for Seismic Design; the Detailing and Dimensioning
and finally the Seismic Assessment and Retrofitting.

Summing up, the book is extremely valuable and represents a much updated state
of the art in seismic design of concrete structures not only in Europe but also in other
parts of the world. It is very carefully written with the clear intent to cover all aspects
of seismic design and not leaving behind any aspect relevant for such. It shall be very
useful and an authoritative source for the understanding and application of Eurocode
8 at several different levels, from the ordinary practitioner to the knowledgeable
researcher passing by the software developer.

The book reflects the very solid knowledge of the author in earthquake engineer-
ing and his leading role in the recent developments of Eurocode 8, as well as the
extreme care that was devoted to its planning and writing. No doubt, it shall become
a reference in the field.

Eduardo C. Carvalho
Chairman of CEN/TC250/SC8
Lisbon, Portugal
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x From the Reviews of the Book

The book starts with a Preamble that highlights a most important aspect of design,
which is its interaction with construction, and emphasises the safety aspect of a
well-designed structure that is difficult to build. The introductory notes set the scene
for the subsequent detailed treatment of issues of seismic design of RC structures, a
feature that is lacking in most design-oriented books in the earthquake engineering
field. This leads naturally to Chapter 1, where the general principles of seismic
design of RC structures are presented in a rational framework, which demonstrates
the author’s experience in conceptual and practical seismic design alike. Issues of
single and multiple performance levels and their relationship with seismic hazard
levels are succinctly explained. Covering both US and European practice, with
emphasis on the latter, the author explains capacity design and the criteria used to
establish a hierarchical dissipative and non-dissipative sequence of events. Capacity
design is also applied in this chapter to typical systems, as well as to the flexure-
shear problem.

Chapter 2 addresses conceptual design, guiding the reader through the steps pos-
tulated by the author for the selection of layout and preliminary sizing. The critical
role of conceptual design in facilitating final and detailed design and reducing the
number of iterations required is emphasised. A detailed treatment of regularity is
given and examples are provided to demonstrate the adverse effects of irregularity
on performance. Redundancy, continuity and mass minimisation are other features
discussed in this chapter, with examples and practical guidance. The chapter con-
cludes with examples of poorly conceived buildings that have been damaged in
recent European earthquakes.

A most detailed and exhaustive treatment of the behaviour of RC members and
connections is given in Chapter 3, with a wealth of behaviour-oriented expressions
for deformation and strength. Examples from the literature are quoted and put into
context to provide the reader with a comprehensive set of models for deformation
and strength of members subjected to multi-axial stresses. This chapter is rather
unique amongst recent seismic design books and on its own is worth reading care-
fully.

Another exhaustive treatment of modelling for design and assessment is given
in Chapter 4, which also includes aspects of input motion. Elastic and inelastic
analyses are addressed in detail, and examples and guidance on their applicabil-
ity or otherwise are provided. Exceptionally insightful comments and guidance are
given with regard to the intricate issue of modeling infill walls in frames. Three
detailed examples are given in the closing part of the chapter where the guidance
given throughout the chapter is applied to a test bed 3D frame structure, thus giving
credence to the guidance.

Detailing and dimensioning requirement of Eurocode 8 are addressed in Chapter
5. Two worked examples that will prove invaluable to readers and potential users
of the Eurocode are also given. The worked examples not only address the cases
dealt with, but give clues as to how to apply Eurocode 8, as seen by the researcher
who guided its final stages of development and implementation, to a wider range of
design situations.



From the Reviews of the Book xi

The last main chapter in the book, Chapter 6, deals with retrofitting of RC struc-
tures using Eurocode 8, with very considerable amounts of backup material from
the research literature. The rules described in the chapter are then applied to two
case studies, which are continuation of the “analysis” case studies, thus providing a
thread through the various chapters. This thread will be valuable to readers because
it establishes a clear link between design and analysis for assessment of the design,
as well as retrofitting.

Amr S. Elnashai, FREng
Bill and Elaine Hall Endowed Professor
Director of the Mid-America Earthquake Center
Director of NEES@Illinois Earthquake Simulation Facility
Director of the Council on Global Engineering Initiatives
University of Illinois, Urbana, Illinois, USA
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Preamble

The main activity of today’s civil engineers is the production of structures. This
activity has two phases:

– design, and
– construction – also termed “execution”, as “construction” is also used for civil

engineering works in general.

In the construction phase the civil engineer does not necessarily have the central
role. In design, by contrast, his/her role is not just prime but almost exclusive.

With design being the 1st phase of the production process, many areas of the
broader field of Earthquake Engineering ultimately serve design. For instance:

– a prime goal of Engineering Seismology and Geotechnical Earthquake Engineer-
ing is to determine the ground motion for the seismic design;

– a major role of Structural Dynamics – within the context of Earthquake Engi-
neering – is the calculation of the response of the structure to a given seis-
mic motion, either to verify that performance is satisfactory, or to provide the
basis for the dimensioning of structural elements so that performance is indeed
satisfactory.

There is strong interaction between design and construction of a structure. Design
can be considered to govern production of a structure, as construction imple-
ments design drawings and specifications. However, design is influenced by, or
depends on, construction as well. A structure is designed to be ultimately built;
so the way it will be constructed should be a determining factor for its design.
So, when designing the structure the engineer should have a clear and precise
idea of how his/her design will be implemented with the human resources, equip-
ment and materials available for that particular project. A design that seems excel-
lent on paper but cannot be easily implemented with the available means and
resources may in reality be poor or even unsafe, because bad implementation
means poor quality. This point is very important for earthquake resistant concrete
structures, as:

xiii
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– Seismic performance depends heavily on the detailing of the reinforcement;
– In seismic regions a building’s safety problem may remain hidden for long and

show up only through its catastrophic consequences in the event of a strong
earthquake. By contrast, in structures controlled by non-seismic actions, safety
problems due to poor construction quality may become evident early on (e.g.
upon striking off the formwork and falsework, or after all permanent loads are
applied), before delivering the facility to the users.

The engineer should keep in mind that the earthquake will “see” the structure as it
is built. The intentions of the designer, the assumptions made, the analysis methods
used and the care exercised in its design, matter only to the extent they are indeed
reflected in the as-built structure.

The seismic design process of a new concrete structure comprises four distinct
phases:

(1) Conceptual design: the selection of the type and layout of the lateral-load-
resisting system and of preliminary member sizes.

(2) Analysis: the calculation of the effects of the design actions, including the seis-
mic one, in terms of internal forces and deformations in structural members.

(3) Detailed design: the verification of the adequacy of member dimensions and the
dimensioning of the reinforcement on the basis of calculated action effects.

(4) Preparation of the end product of the design to be applied in the field: material
specifications, construction drawings with detailing of the reinforcement, and
any other information that may be necessary or helpful for the implementation
of the design.

The design of the seismic retrofitting of an existing structure has the same four
phases, but referring specifically to the retrofitting. In this case, however, we have
two preliminary phases:

(–2) Collection of information on the history, geometry, reinforcement, materials,
etc., of the as-built structure, as input for the subsequent phases.

(–1) Analysis and verification of the as-built structure, to confirm that retrofitting is
indeed necessary and identify the deficiencies to be remedied.

The outcome of the design is just that of phase (4) and is often considered as
the “design”. The outcomes of phases (2) and (3) (and of (–2) and (–1) for exist-
ing structures) are just documentation of the “design”. Stage (1) is the designer’s
personal business and is not documented anywhere.

Be it for a new building or for retrofitting an existing one, conceptual design is
of utmost importance for the economy and the seismic performance of the structure.
The choices and decisions made there are entirely based on the experience, judg-
ment and ingenuity of the designer, even on his/her personal design philosophy and
preferences. To some people design is just the conceptual design; all other phases
being considered as “code checking”.
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During all design phases the engineer should use not just the scientific/technical
tools at his/her disposal, but also judgment and experience, to produce a design
that – to the best of his or her knowledge – cost-effectively fulfils the performance
requirements. Experience is very important for the successful design of earthquake-
resistant buildings. It provides ideas from previous, possibly similar, projects and
helps avoiding poor choices, pitfalls or even design errors. Experience is also valu-
able to understand the “idiosyncrasy” of an existing building which is assessed for
possible retrofitting.

The technology for earthquake resistance evolved essentially after 1970. Since
then, scientific knowledge and technology in earthquake engineering and seismic
design codes alike have seen a very rapid, and still ongoing, development. As a
result, structures designed and constructed according to present generation codes
enjoy a much higher safety level against earthquakes than older ones. The higher
level of seismic safety comes at a higher cost (albeit less than proportional to the
added safety). Moreover, the ultimate criterion for the success or not of current
seismic codes and technology will be the performance of structures built with them
in the event of an earthquake. Note that, owing to the short history of exposure
of concrete construction to earthquakes (shorter than the time intervals between
strong earthquakes, even in highly seismic regions) and the continuous evolution
of seismic design codes during that history, we still lack sufficient feedback from
the actual performance of concrete buildings. Finally, the short-term future will
see further advances, as our knowledge and technology for earthquake resistance
is in a state of continuous development. So, although we presently believe that our
current know-how is satisfactory and produces safe structures, most likely in the
medium-term seismic design will be quite different. Developments are expected
mainly towards further rationalisation of seismic design, to achieve the same or bet-
ter performance at lower cost. Empirical and prescriptive approaches will certainly
give way to procedures based on more solid and rational grounds. The main vehicle
for the transfer of such progress to engineering practice will be codes and stan-
dards for earthquake resistant design, notably those of the countries or regions most
advanced in earthquake engineering (in alphabetical order, of the EU, Japan and the
US). Practitioners of seismic design should follow the developments in codes and be
prepared for changes to come. For those active in seismic assessment and retrofitting
of existing buildings as well, certain knowledge of past codes and practice will help
them identify and remedy their problems and deficiencies.

Chapter 2 of the book is devoted to conceptual design of new building struc-
tures for earthquake resistance. Chapter 1 provides an overview of the performance
requirements for new building structures, of the philosophy of current seismic
design codes for new earthquake-resistant buildings and of the main instruments
for its implementation. Chapter 3 covers the behaviour under cyclic loading of the
constituent materials and of concrete members of the type common in buildings, as
well as the quantification of this behaviour. That chapter provides the background
for Chapters 5 and 6. Chapter 4 is devoted to analysis and modelling issues, with
emphasis on the analysis approaches commonly used within the context of codified
seismic design or assessment (phase (2) of the design process). Chapter 5 deals with
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dimensioning and detailing of new building structures for earthquake resistance and
gives the background of some of the rules in Eurocode 8 on the basis of the material
of Chapters 1 and 3. Chapter 6, on assessment and upgrading of the seismic perfor-
mance of existing buildings, builds on Chapters 3 and 4, as well as on the general
performance requirements set out in Chapter 1.

To a certain extent the book develops with reference to the European Stan-
dards for seismic design, assessment and retrofitting of buildings, Parts 1 and 3
of Eurocode 8. Some parts of Chapter 1 and 4 include references to Eurocode 8, but
also to US seismic design standards. Chapters 5 and 6 are linked with Eurocode 8 –
Chapter 5 very closely, but Chapter 6 less so.

In December 2004, Part 1 of Eurocode 8 (CEN 2004a) was published by the
European Committee for Standardisation to become the first in history European
Standard for seismic design of new buildings, complementary to the other EN-
Eurocodes. It was followed in June 2005 by Part 3 of Eurocode 8 (CEN 2005a), for
seismic assessment and retrofitting of existing buildings. The 31 member countries
in CEN have since then published these European Standards as their own National
Standards, together with their National Annexes. These Annexes state the national
choices for the so-called “Nationally Determined Parameters”, devised to provide
the flexibility required for the application of Eurocode 8 in a whole continent with
diverse engineering traditions and seismicity. Until March 2010 national design
standards will be used in parallel with Eurocode 8, but by March 2010 national
design standards that conflict in any aspect with any EN-Eurocode should be with-
drawn.

In the USA seismic design of buildings follows a building design code that
covers also non-structural aspects (architectural, mechanical, electrical, building
equipment, etc.). Seismic design provisions for new buildings were traditionally
developed either by the Building Seismic Safety Council (BSSC) and published as
“NEHRP Recommended Provisions for the Development of Seismic Regulations
for Buildings and Other Structures” (BSSC 2003), or by the Structural Engineers
Association of California (SEAOC) and published as “SEAOC Recommended Lat-
eral Force Requirements” (SEAOC 1999). With some time-lag the NEHRP provi-
sions have traditionally been reflected in (but not fully adopted by) the “National
Building Code”, the “Standard Building Code” and more recently the “Interna-
tional Building Code” (ICC 2006). The SEAOC requirements have been in general
reflected in the “Uniform Building Code”, the last version of which was issued
in 1997 (ICBO 1997). Local Authorities (States, counties, cities) formally adopt
one of the three model codes after adaptation to local traditions/conditions. Recent
years have seen a convergence of the seismic design provisions in the NEHRP
and SEAOC documents, extending also to the main material codes referred to,
or used as source documents by them, such as the ACI 318 code (ACI 2008),
prepared by the American Concrete Institute. Moreover, in 1997 the “Interna-
tional Code Council” was formed and issued in 2000 the “International Building
Code”. Since then, the updated code (ICC 2006) is gradually adopted throughout
the US.
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Chapter 1
General Principles for the Design of Concrete
Buildings for Earthquake Resistance

Chapter 1 presents the requirements posed by modern seismic codes and standards
for the protection of life and property in new building designs and highlights the
means provided for their fulfilment. The requirements and design rules provided in
the European Standard for the seismic design of new buildings – EN 1998-1:2004,
termed also Part 1 of Eurocode 8 – are given certain emphasis and compared to
their US counterparts. These Eurocode 8 rules are elaborated further in Chapter 5
in the context of the process for the detailed design of new concrete buildings for
earthquake resistance.

Chapter 1 gives also an overview of a new thinking towards more comprehen-
sive coverage of the seismic performance needs of owners and occupants over
the lifetime of the building. This thinking is currently penetrating newly emerging
codes and standards for the seismic evaluation and upgrading of existing substan-
dard buildings, including EN 1998-3:2005 (also known as Part 3 of Eurocode 8).
The requirements and rules provided in this latter European Standard for the
seismic assessment and retrofitting of existing buildings are further elaborated in
Chapter 6.

1.1 Seismic Performance Requirements for Concrete Buildings

1.1.1 The Current Situation: Emphasis on Life Safety

Traditionally, introduction and enforcement of structural design codes and standards
has been the responsibility of competent Authorities, with public safety as the over-
riding consideration. Accordingly, traditional seismic design codes or standards for
buildings aim at protecting human life by preventing local or global collapse under
a single level of earthquake. The no-(local-)collapse requirement normally refers
to a rare seismic action, termed “design seismic action”. In most present codes the
“design seismic action” for ordinary structures is conventionally chosen as the one
having a 10% probability to be exceeded in a conventional working life of 50 years,
or 0.2% in a single year. This corresponds to a mean return period of 475 years for
the “design seismic action”.

1M.N. Fardis, Seismic Design, Assessment and Retrofitting of Concrete Buildings,
Geotechnical, Geological, and Earthquake Engineering 8, DOI 10.1007/978-1-4020-9842-0 1,
C© Springer Science+Business Media B.V. 2009
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Within a single-tier design framework, enhanced safety of facilities that are
essential or have large occupancy is normally achieved by modifying the hazard
level (the mean return period) of the “design seismic action”. The seismic action is
multiplied times an “importance factor”, γ I. By definition, γ I = 1.0 for structures of
ordinary importance (buildings of “Importance Class” II in Eurocode 8). For build-
ings whose collapse may have unusually large social or economic consequences
(large occupancy buildings, such as schools or public assembly halls, etc.) or for
facilities housing institutions of cultural importance (e.g., museums), Eurocode 8
recommends a value γ I = 1.2 (buildings of “Importance Class” III in Eurocode 8).
It recommends γ I = 1.4 for buildings which are essential for civil protection dur-
ing the immediate post-earthquake period: hospitals, fire or police stations, power
plants, etc. (categorised as “Importance Class” IV). For buildings of minor impor-
tance for public safety (i.e., belonging in “Importance Class” I, comprising agricul-
tural and similar buildings) Eurocode 8 recommends a value γ I = 0.8.

1.1.2 Performance-Based Requirements

Already in the 1960s the international earthquake engineering community was fully
aware of the property loss that may be caused by frequent seismic events and their
other economic consequences. Recognising that it is not feasible to avoid any dam-
age under very strong earthquakes, the Structural Engineers Association of Califor-
nia (SEAOC) adopted in its 1968 recommendations the following requirements for
seismic design:

“Structures should, in general, be able to:

– Resist a minor level of earthquake ground motion without damage.
– Resist a moderate level of earthquake ground motion without structural damage,

but possibly experience some nonstructural damage.
– Resist a major level of earthquake ground motion having an intensity equal to the

strongest either experienced or forecast for the building site, without collapse,
but possibly with some structural as well as nonstructural damage.”

Major earthquakes that hit developed countries in the second half of the 1980s
and the first half of the 1990s caused relatively few casualties but very large damage
to property and economic losses. In response to this, “Performance-based earth-
quake engineering” emerged in the SEAOC Vision 2000 document and developed
into the single most important idea of recent years for seismic design or retrofitting
of buildings (SEAOC 1995).

“Performance-based engineering” focuses on the ends, notably on the ability of
the engineered facility to fulfil its intended purpose, taking into account the conse-
quences of its failure to meet it. Conventional structural design codes, by contrast,
are process-oriented, emphasising the means, namely the prescriptive, easy to apply,
but often opaque rules that disguise the pursuit of satisfactory performance. These
rules have been developed over time as a convenient means to provide safe-sided,
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yet economical solutions for common combinations of building layout, dimensions
and materials. They leave limited room for the designer to exercise judgement and
creativity and do not provide a rational basis for innovative designs that benefit from
recent advances in technology and structural materials.

“Performance-based earthquake engineering” in particular tries to maximise the
utility from the use of a facility by minimising its expected total cost, including
the short-term cost of the work and the expected value of the loss in future earth-
quakes (in terms of casualties, cost of repair or replacement, loss of use, etc.). One
would like to take into account all possible future seismic events with their annual
probability and carry out a convolution with the corresponding consequences during
the design working life of the facility. However, this is not practical. Therefore, at
present “performance-based earthquake engineering” advocates just replacing the
traditional single-tier design against collapse and its prescriptive rules, with a trans-
parent multi-tier seismic design, meeting more than one discrete “performance lev-
els”, each one under a different seismic event, identified through its annual probabil-
ity of exceedance and termed “seismic hazard level”. Pairing off all “performance
levels” considered for a particular case with the associated “seismic hazard levels”
is termed, in performance-based earthquake engineering, “performance objective”.

Each “performance level” is normally identified with a physical condition of the
facility, well-described together with its possible consequences: likely casualties,
injuries and property loss, continued functionality, cost and feasibility of repair,
expected length of disruption of use, cost of relocation of occupants, etc. Commonly
four “performance levels” are identified:

(i) “Operational”
(ii) “Immediate occupancy”

(iii) “Life-safety” and
(iv) “Near collapse”.

The definition of these “performance levels” is roughly as follows:
“Operational”: The facility has suffered practically no structural or non-structural

damage and can continue serving the original intention of its design with little dis-
ruption of use for repairs. Continuous operation is supported either by undamaged
lifelines or by back-up systems. Any repair that is necessary can take place in future
without disruption of occupancy or use.

“Immediate occupancy”: The facility can return to full use, as soon as utility
systems are back in operation and cleanup is complete. The structure itself is very
lightly damaged: some yielding of reinforcement may have taken place and con-
crete cracking may be visible, but there are no residual drifts or other permanent
structural deformations. The risk to life is negligible. The structure retains fully its
pre-earthquake strength and stiffness. Its ability to withstand future earthquakes,
including aftershocks, is not diminished. Non-structural components and systems
may have minor damage (e.g. distributed cracking in infill walls) that can be easily
and economically repaired at a later stage.

“Life-safety”: The structure, or any parts of it, do not collapse, retaining integrity
and residual load capacity after the earthquake. The structure is significantly
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damaged and may have moderate permanent drifts, but retains its full vertical load-
bearing capacity and sufficient residual lateral strength and stiffness to protect life
even during strong aftershocks. Non-structural components are damaged, but do
not block evacuation routes or cause life-threatening injuries by falling. Sometimes
reparability is economically questionable and demolition may be preferable.

“Near collapse”: The structure is heavily damaged, at the verge of collapse of
several gravity load-carrying elements in a storey, or even of total collapse. It may
have large permanent drifts and retains little residual strength and stiffness against
lateral loads, but its vertical elements can still carry the (quasi-)permanent grav-
ity loads. Most non-structural elements (e.g. infill walls) have collapsed. There is
substantial, but not full, life safety, as falling hazards may cause life-threatening
injury. The building is unsafe for use, as it may collapse in a strong after-
shock. Repair may not be technically feasible and certainly is not economically
sensible.

Sometimes, reference is made to two more performance levels: “Damage onset”,
as a performance level before “Operational” associated with absolutely no structural
or non-structural damage; and “Reparable”, as a performance level between “Imme-
diate occupancy” and “Life-safety”, associated with structural or non-structural
damage that is not only technically, but also economically, reparable.

Different performance criteria are also defined for the verification of structural or
non-structural elements under the various performance levels. Criteria for structural
or non-structural damage are normally expressed in terms of deformation limits. For
example, performance level (i) (“Operational”) may be identified with “yielding” of
structural members, while performance level (iv) (“Near collapse”) is often asso-
ciated with near exhaustion of member “ultimate” deformation, signalling loss of
lateral load capacity. Damage limitation criteria for non-structural cladding or parti-
tions that follow the deformations of the structural frame are normally expressed in
terms of interstorey drift limits. For equipment mounted or supported on the struc-
ture, limits relevant to damage may be expressed in terms of response accelerations
at the support points of the equipment.

The discrete hazard levels normally paired off with the four main performance
levels listed under (i)–(iv) above for the design of ordinary (i.e., standard occupancy)
new buildings, are:

1. a “frequent” earthquake, expected to take place during the conventional working
life of the building, having therefore a mean return period much shorter than 50
years (e.g., around 25 years);

2. an “occasional” earthquake, not expected during the conventional working life
of the building, with a mean return period between 75 and 200 years;

3. a “rare” earthquake, with a mean return period of about 500 years; and
4. a “very rare” or “maximum considered” earthquake, with quoted values of the

mean return period in the order of 1000–2500 years.

According to this idea, the “performance objective” for structures of ordinary
importance is to meet performance level (i) under hazard level (1), (ii) under (2), etc.
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If higher performance is desired, or for critical facilities, an “enhanced objective”
may be selected – e.g. performance level (ii), or even (iii), under hazard level (1), etc.

Note that, depending on the slope of the seismic hazard curve, at any given site
certain aspects of the design may be governed by the fulfilment of one performance
level under the corresponding hazard level. The other performance levels will be
met then automatically at the associated hazard levels. If this applies in general
to all types of buildings at a given geographic location or region, then a four-tier
performance-based seismic design may degenerate there into a fewer-tier (e.g., a
two-tier) one.

Performance-based seismic design serves better the interests and objectives of
owners, by allowing more rational decision-making, with explicit verification of
performance levels related to property loss and operation of the facility under fre-
quent or occasional earthquakes. It may also provide more flexibility in conceptual
design, as collapse prevention under very rare events is explicitly verified, instead
of indirectly designed against by explicit verification only at the “life safety” level
and using capacity design as a safeguard against collapse under much stronger
earthquakes (see Section 1.3). On the other hand, a full-fledged performance-based
design process may be arduous and complex. Besides, there is a liability issue to
be resolved: the designer is protected to a certain extent against liability claims or
other charges for property loss, casualties, etc., in an unforeseeable future event, if
he or she has strictly adhered to all rules of a current-generation prescriptive code,
which is opaque about the intended performance objective. This may not be the
case anymore in a performance-based design context, with explicit and transparent
performance objectives which the owner or the courts may interpret as guaranteed.
For all these reasons, there is still a long way to go before seismic design codes for
new buildings adopt a full-fledged performance-based approach. Such an approach
has been adopted, though, in guidelines and standards for the seismic assessment
and retrofitting of existing buildings, as it is there that the inherent flexibility of the
approach can best bear fruits to accommodate the specific interests, objectives and
means of owners. Moreover, buildings not designed to modern-day seismic codes
normally do not possess structural features serving as safeguards against collapse
under very strong earthquakes (e.g., a layout and a hierarchy of strengths that pre-
vent concentration of deformation demands in a small part of the structural system).
Therefore, older buildings require explicit verification against such an outcome.

1.1.3 Performance-Based Seismic Design, Assessment
or Retrofitting According to Eurocode 8

In Europe performance levels in seismic design, assessment or retrofitting are asso-
ciated to, or identified with, Limit States of the structure. The Limit State concept
appeared in Europe in the 1960s, to define states of unfitness of the structure for its
intended purpose (CEB 1970, Rowe 1970). Limit States concerning the safety of
people or of the structure are termed Ultimate Limit States. Those concerning the
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normal function and use of the structure, the comfort of its occupants, or damage
to property (mainly to finishes and non-structural elements) are called Serviceabil-
ity Limit States. Intermediate Limit States may also be considered (CEB 1988b).
According to the Eurocode “Basis of Structural Design” (CEN 2002) the Limit
States approach is the backbone of structural design for any type of action, including
the seismic one.

Part 1 of Eurocode 8 (CEN 2004a) provides for a two-tier seismic design of new
buildings, with the following explicit performance levels (“Limit States”):

1. No-(local-)collapse, which is considered as the Ultimate Limit State against
which the structure should be designed according to the Eurocode “Basis of
Structural Design” (CEN 2002). It entails protection of life under a rare seismic
action, through prevention of collapse of any structural member and retention of
structural integrity and residual load capacity after the event.

2. Damage limitation, which plays the role of the Serviceability Limit State against
which the structure should be designed according to CEN (2002). The aim is
mitigation of property loss in frequent earthquakes, through limitation of struc-
tural and non-structural damage. After such an earthquake structural elements
are supposed to have no permanent deformation, retain their full strength and
stiffness and need no repair. Non-structural elements may suffer some damage,
which can be easily and economically repaired at a later time.

The no-(local-)collapse performance level is achieved by dimensioning and
detailing structural elements for a combination of strength and ductility that pro-
vides a safety factor (in the order of 1.5–2) against substantial loss of lateral load
resistance.

The damage limitation performance level is achieved by limiting the overall
deformations (lateral displacements) of the building to levels acceptable for the
integrity of all its parts (including non-structural ones). More specifically, inter-
storey drift ratios (defined as the difference between the mean lateral displacements
of adjacent storeys divided by the interstorey height) are limited to the following
values:

(i) 0.5%, if the storey has brittle non-structural elements attached to the structure
(notably, ordinary masonry infills);

(ii) 0.75%, if the storey’s non-structural elements are ductile; or
(iii) 1%; when there are no non-structural elements that follow the deformations of

the structural system.

The two explicit performance levels – (local-)collapse prevention and damage
limitation – are pursued under two different seismic actions. The seismic action
under which (local) collapse should be prevented is the “design seismic action”.
The one for which damage limitation is pursued is called the “damage limitation
seismic action”. Within the Eurocode philosophy of national competence on issues
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of safety and economy, the hazard levels for these two seismic actions are left to
national determination. For structures of ordinary importance, Part 1 of Eurocode 8
recommends:

1. a “design seismic action” having 10% probability of being exceeded in 50 years
(a mean return period of 475 years); and

2. a “damage limitation seismic action” with 10% exceedance probability in 10
years (mean return period: 95 years).

Although not explicit, an additional performance objective in buildings designed
to provide earthquake resistance by dissipating energy is to prevent global collapse
during a very strong and rare earthquake (performance level (iv) in Section 1.1.2
under hazard level (4)). This implicit performance objective is pursued via system-
atic and across-the-board application of capacity design, which imposes a hierar-
chy of strengths that permits full control of the inelastic response mechanism (see
Section 1.3).

Following the example of the US standard for seismic rehabilitation (ASCE
2007) and its draft predecessors, Part 3 of Eurocode 8 for assessment and retrofitting
of buildings (CEN 2005a) has fully adopted the “performance-based” approach. It
provides for three different performance levels (termed Limit States):

1. “Damage Limitation” (DL), corresponding to “Immediate Occupancy”: The
structure has no permanent drifts; its elements have no permanent deformations,
retain fully their strength and stiffness and do not need repair. Members are ver-
ified to remain elastic.

2. “Significant Damage” (SD), corresponding to “Life safety” and to the
(local-)collapse prevention performance level to which new buildings are
designed according to Part 1 of Eurocode 8. The structure is significantly
damaged, may have moderate permanent drifts, but retains some residual lateral
strength and stiffness and its full vertical load-bearing capacity. Repair may be
uneconomic. The verifications should provide a margin against member ultimate
capacities.

3. “Near Collapse” (NC), similar to “Collapse prevention” in the US: The structure
is heavily damaged, may have large permanent drifts, retains little residual lat-
eral strength or stiffness, but vertical elements can still carry the gravity loads.
In the verifications, a member may approach its ultimate force or deformation
capacity.

The “Seismic Hazard” levels for which the three Limit States should be met are
chosen either nationally through the National Annex to this part of Eurocode 8,
or by the owner if the country leaves the choice open. The Eurocode itself gives
no recommendation, but mentions that the performance objective recommended as
suitable for ordinary new buildings is a 225 year earthquake (20% probability of
exceedance in 50 years), a 475 year event (10% probability in 50 years), or a 2475
year one (2% probability of being exceeded in 50 years), for the DL, the SD or
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the NC “Limit State”, respectively. Countries (or the owners, if the country lets
the choice to them) have the authority to decide whether all three Limit States will
be verified, or whether checking one or two of them at the corresponding seismic
hazard level suffices.

1.1.4 Performance-Based Design Aspects of Current US Codes

In the NEHRP provisions (BSSC 2003) seismic design of new buildings is for a
single level of ground motion, namely for two-thirds of the Maximum Considered
Earthquake (MCE). This is the “design seismic action” in the US. The MCE is given
by the USGS Seismic Hazard Maps from the USGS/BSSC 97 project (Frankel et al.
1996, 1997). These maps are also used by almost all recent nationally applicable
US documents. They map the values of the 5%-damped elastic response spectral
acceleration in the acceleration-controlled region, Sas (which is equal to 2.5 times the
effective peak acceleration, EPA) and at a period of 1 s (Sa1, from which the velocity-
controlled spectral region is derived). National and regional maps (at a scale of
1:500.000–1:5.000.000) are given for the MCE, which is defined for this purpose as
1.5 times the characteristic event produced by well known active faults every few
hundred years. Where no major active faults can be identified, the values of Sas and
Sa1 with 2% probability of being exceeded in 50 years (i.e., with mean return period
of 2500 years) is used. Factors are given for the conversion of the values of Sas and
Sa1 over firm rock to other types of ground.

For structures of ordinary importance the Life Safety performance level is
required under the design seismic action of two-thirds of MCE. If this performance
objective is fulfilled, it is deemed that collapse prevention is indirectly achieved
under the 1.5-times stronger MCE and that immediate occupancy is expected under
a frequent event with 50% probability of being exceeded in 50 years (mean return
period of 72 years). Facilities which are essential for post-earthquake recovery or
contain hazardous substances are designed for 1.5-times higher forces (through a
1.5-times smaller force reduction factor), implying Life Safety performance under
the MCE. Such structures are claimed to indirectly achieve the Immediate Occu-
pancy performance level under frequent earthquakes. Structures with increased pub-
lic hazard, owing to large occupancy or limited ability of occupants to evacuate
(medical or daycare facilities, schools, jails), are designed for 25% higher forces
than ordinary ones and believed to fulfill intermediate performance objectives.

The performance objectives achieved by other than ordinary structures through
the SEAOC ’99 recommendations are less clear: they provide just for 25% increased
design forces for essential or hazardous facilities.

Note that the importance of the structure is taken into account only in the per-
formance under the single level of design action considered and does not affect the
design seismic action. This is also evident from the fact that the importance factor
does not enter in the calculation of storey drifts – calculated and checked under the
design seismic action for life protection and not under a more frequent event for
damage limitation.
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1.2 Force-Based Seismic Design

1.2.1 Force-Based Design for Energy-Dissipation and Ductility

For the no-(local-)collapse requirement to be met for the “design seismic action”
the structure does not need to remain elastic under this action. That would have
required a lateral force resistance close to 50% of the building’s weight. Although
technically feasible, this is economically prohibitive. It is also completely unnec-
essary, as the earthquake is a dynamic action and imparts to the structure a certain
total energy input and certain displacement and deformation demands, but not a
demand to sustain specific forces. So, current codes for earthquake-resistant design
allow structures to develop significant inelastic deformations under the design seis-
mic action, provided that the integrity of individual members and of the structure as
a whole is not impaired. The design approach for this is still based on forces, but its
real aim is to impart to the structure capacity for energy dissipation and ductility.

Force-based seismic design is against physical reality. It is the deformation
that causes a structural member to lose its lateral load resistance. It is lateral dis-
placements (and not lateral forces) that cause structures to collapse under their
own weight during the earthquake. However, force-based seismic design is well-
established in current seismic design codes, because:

– structural engineers are familiar with force-based design for other types of actions
(such as gravity and wind loads),

– static equilibrium for a set of prescribed external loads is a robust basis for the
analysis, and

– tools for the direct verification of structures for seismic deformations are not
considered yet as fully developed for practical application.

The last bullet point refers both to nonlinear analysis methods for the calculation
of deformation demands and to the estimation of deformation capacities of structural
members.

For all these reasons, it seems that in the foreseeable future force-based seismic
design for energy dissipation and ductility will not disappear from design codes and
practice.

Force-based seismic design for ductility is based on the inelastic response spec-
trum of a single-degree-of-freedom (SDOF) system with elastic-perfectly plastic
force-displacement curve, F-δ, in monotonic loading. For a fixed value of viscous
damping (the value ζ = 5% is commonly adopted by convention), the inelastic spec-
trum relates:

– the period, T, of the SDOF system;
– the ratio q = Fel/Fy of the peak force, Fel, that would had developed if the

SDOF system were linear-elastic, to the yield force of the system, Fy, (q is
called “behaviour factor” in Europe, while the term “force reduction factor” or
“response modification factor” and the symbol R are used in the US for it) and
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– the maximum displacement demand of the inelastic SDOF system, δmax,
expressed as a ratio to the yield displacement, δy (i.e. as the displacement ductil-
ity factor, μδ = δmax/δy).

Eurocode 8 has adopted the inelastic spectra proposed in (Vidic et al. 1994):

μδ = q, if T ≥ TC (1.1)

μδ = 1 + (q − 1)
TC

T
, q = 1 + (μδ − 1)

T

TC
if T < TC (1.2)

where TC is the “transition” or “corner” period of the elastic spectrum between
the constant spectral pseudo-acceleration and the constant spectral pseudovelocity
ranges (see Fig. 1.1, for inelastic spectra normalised to peak ground acceleration of
1 g, with TC = 0.6 s).

The reduction in force response due to ductility bears certain similarities with
the effect of higher viscous damping on an elastic SDOF system. The underlying
mechanism is similar: energy dissipation; viscous in the case of the elastic SDOF,
of hysteretic nature for the elastic-perfectly plastic one. Equation (1.1), applicable in
the intermediate-to-long period range, expresses Newmark’s well known “equal dis-
placement rule”, i.e. the empirical observation that in the constant spectral pseudo-
velocity range the peak displacement response of the inelastic and of the elastic
SDOF systems are approximately the same. The underlying physical reason is that
inertia tends to keep the mass of a flexible SDOF system at the same absolute posi-
tion while the ground moves underneath, no matter whether the spring of the system
yields or not. Equation (1.2) suggests that a very high ductility is needed to appre-
ciably reduce the peak force in a very stiff system (i.e., one with T << TC): for the
hysteretic energy dissipation to significantly reduce the force response, the system
has to undergo large displacements, which, when divided by the low yield displace-
ment, δy, of the very stiff system are translated to very high ductility demands.

The “behaviour factor” q (as well as the “force reduction” or “response modifica-
tion” factor R) is applied as a global reduction factor of the internal forces that would
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develop in the fictitious representation of the structure as elastic with 5% damping
(equivalently, on the seismic inertia forces that would develop in the hypothetical
elastic structure and induce the seismic internal forces). In this way the seismic
internal forces for which the members of the structure are dimensioned can be cal-
culated through linear elastic analysis. A set of prescriptive rules are used, then, to
provide the structure with the real aim of the design, namely the capacity to with-
stand a peak global displacement at least equal to its global yield displacement times
the displacement ductility factor, μδ, corresponding to the value of q applied for the
reduction of elastic force demands (cf. Eqs. (1.1) and (1.2)). The so designed and
detailed structure is considered to have “ductility” or “energy-dissipation” capac-
ity – a more general term often used in Europe and in Eurocode 8, as ductility dur-
ing cyclic response implies that the members and the structure as a whole dissipate
a major part of the seismic energy input through hysteresis.

1.2.2 Force-Based Dimensioning of Ductile “Dissipative Zones”
and of Other Regions of Members

Not every member or location in a structure is capable of developing ductile
behaviour and hysteretic energy dissipation. Typical force-deformation relations
(e.g., of moment (M) to curvature (φ), or of Force (F) to deflection (δ), etc.) of
“ductile” members, regions or mechanisms of load transfer are as those shown in
Fig. 1.2(a) for shear span ratio Ls/h = 2.5 for monotonic loading or in Fig. 1.2(c) for
cyclic loading. It is such members, regions etc., that are entrusted through “capac-
ity design” for inelastic deformations and energy dissipation. Elements, regions or
mechanisms of force transfer with force-deformation behaviour as shown for Ls/h =
1.9 in Fig. 1.2(a) for monotonic loading or in Fig. 1.2(b) for cyclic loading are “brit-
tle” (or “non-ductile”). They are the ones shielded through “capacity design” from
the inelastic action they are incapable of.

Once it yields, a ductile element, etc., can undergo large (sometimes limitless)
inelastic deformations at no additional resistance. In concrete, this type of behaviour
is characteristic of pure flexure (i.e. without axial load) and of flexural deforma-
tions (curvatures, chord rotations, etc.), resembling the behaviour of hinges that
allow limitless rotation under zero moment. For this reason regions exhibiting after
yielding the behaviour depicted in Fig. 1.2(c) are termed “plastic hinges”. They
are finite length regions of prismatic concrete members (beams, columns, slender
walls) where phenomena like wide cracking, spalling of concrete and yielding and
buckling of longitudinal bars are concentrated and where the behaviour accompa-
nying or signaling ultimate conditions (fracture of longitudinal bars, disintegration
of concrete, etc.) take place.

The black-and-white distinction of members as “ductile” and “brittle” is conve-
nient. However, the behaviour of the different types of concrete members covers a
very broad range from absolute “brittleness” to limitless “ductility”. A convenient
measure of “ductility” is the available value of the displacement ductility factor of
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(a)

(b)

(c)

Fig. 1.2 Force-displacement curves for typical: (a) ductile behaviour for shear span ratio Ls/h =
2.5 to semi-brittle for Ls/h = 1.9 in monotonic loading (adapted from Garstka 1993); (b), brittle
behaviour in cyclic loading (Bousias et al. 2007a); (c) ductile behaviour in cyclic loading (Bousias
et al. 2007b)
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the member, μδ (defined as the ratio of its ultimate deflection to the deflection at
the corner of a bilinear approximation of the member’s force-deflection curve up
to ultimate deformation (“yield” deflection)). A conventional limit μδ = 2.5 often
distinguishes ductile from brittle behaviour.

To limit occurrence of inelastic deformations only to those members, regions and
mechanisms capable of ductile behaviour and hysteretic energy dissipation, while
the rest of the structure stays in the elastic range, seismic design codes use a spe-
cial instrument of seismic design called “Capacity design” and described in detail
in Section 1.3. With this instrument a hierarchy of strengths between adjacent struc-
tural members or regions, and between different mechanisms of load transfer in
the same member is achieved, so that members, regions and mechanisms capable
of ductile behaviour and hysteretic energy dissipation are the first ones to develop
inelastic deformations. More important, they do so in a way that precludes forever
the development of inelastic deformations in any member, region or mechanism
deemed incapable of ductile behaviour and hysteretic energy dissipation. Among
all current seismic design codes, Eurocode 8 makes the most systematic and exten-
sive use of capacity design to control the inelastic response mechanism (see Section
1.3 for details). Eurocode 8 calls the regions of members which are entrusted for
hysteretic energy dissipation “dissipative zones”. These regions are designed and
detailed to provide the required ductility and energy-dissipation capacity. In con-
crete, an equivalent term is a “plastic hinge” region or zone, as concrete members
can develop hysteretic energy dissipation and ductility only in flexure.

Before designing and detailing a “dissipative zone” for the necessary ductility
and energy dissipation capacity, the designer should first dimension it for a force
resistance, Rd, at least equal to the action effect, Ed, computed from the elastic anal-
ysis for the design seismic action plus the concurrent gravity loads:

Ed ≤ Rd (1.3)

The value of Ed in Eq. (1.3) is due to the “design seismic action” (as defined
in Sections 1.1.1, 1.1.3 and 1.1.4) and to the quasi-permanent value of the other
actions expected to act concurrently. The Eurocode “Basis of Structural Design”
(CEN 2002) calls this combination of actions “seismic design situation” (this is
the reason for subscript “d” in Ed) and defines the quasi-permanent value of the
other actions as the nominal value of permanent loads plus the arbitrary-point-in-
time expected value (“quasi-permanent”) of gravity loads due to imposed (i.e., live)
loads or snow. Normally Ed is calculated through linear analysis. Then the value of
Ed may be found by superposition of the seismic action effects from an analysis for
the seismic action alone, to the action effects from the analysis for the other actions
in the seismic design situation. Second-order effects should be taken into account in
the calculation of Ed.

All regions and mechanisms not designated as “dissipative zones” are designed
to provide a design value of force resistance, Rd, at least equal to an action effect,
Ed, obtained not from the analysis but through “capacity design”, as explained in
detail in Section 1.3.
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The value of force resistance in Eq. (1.3) incorporates one or more safety fac-
tors that reduce the nominal value of resistance (i.e., the one calculated using
the nominal dimensions of the member and the nominal properties of the mate-
rials). In the Eurocodes this is called design value of resistance (hence subscript
“d” in Rd). For concrete members the Eurocodes (CEN 2002, 2004b) compute
the value of Rd using design values of material strengths: the characteristic or
nominal values, fk (i.e., the nominal yield stress of the reinforcement, fyk, the
characteristic 28-day cylindrical compressive strength of concrete, fck), divided
by the corresponding partial factors γM for materials. As the γMs are safety ele-
ments, they are Nationally Determined Parameters with values specified in the
National Annexes to the Eurocodes. Eurocode 8 itself does not recommend the val-
ues of γM to be used for seismic design. It just mentions in notes the following
options:

1. To use the same values of γM as in design against monotonic, non-seismic
actions (e.g. for the “persistent and transient design situation” in CEN (2002), i.e.
the combination of factored permanent actions and factored imposed actions –
i.e. live loads – or wind). This option is very convenient for the designer, as
he/she may then dimension the dissipative zone to provide a design value of force
resistance, Rd, at least equal to the largest among the two action effect due to the
“persistent and transient design situation” and that in the “seismic design situa-
tion”. As for all Nationally Determined Parameters, values of γM are specified
in the National Annex, in this case that to Eurocode 2. Eurocode 2 itself (CEN
2004b) recommends in a note the following values of γM for the “persistent
and transient design situation”: γ s = 1.15 for the strength of the reinforcement,
γ c = 1.5 for any strength property of concrete.

2. To use the values γM = 1 applicable for design against accidental actions. This is
sensible for regions of low to very low seismicity, where knowledge of historical
seismicity is not sufficient to support statistical association of the “design seis-
mic action” with a probability of being exceeded in 50 years (or a mean return
period). In such cases the “design seismic action” may be conventionally chosen
based more on judgement than on a probabilistic hazard analysis. It may have
less than 10% probability of being exceeded in 50 years (i.e., mean return period
longer than 475 years) and qualify for characterisation as an accidental action.
In that case dissipative zones will be dimensioned separately for the action
effect due to the persistent and transient design situation, computing the design
value of force resistance, Rd, in Eq. (1.3) with γM > 1, and separately for the
action effect of the “seismic design situation”, using γM = 1 in the calculation
of Rd.

Note that the more safe-sided approach 1 above implicitly accounts for some
reduction in force resistance due to inelastic cyclic loading (low cycle fatigue). If
the actual reduction is large and the value of Rd against monotonic, non-seismic
actions is grossly inadequate, a special rule, applicable for inelastic cyclic loading,
should be provided by the seismic design code.
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1.3 Control of Inelastic Seismic Response Through
Capacity Design

1.3.1 The Rationale of Capacity Design

As pointed out in Section 1.2, the horizontal displacement at the point of applica-
tion of the resultant lateral force due to the design seismic action is known in good
approximation, if the fundamental period, T, of the SDOF system is given. More-
over, the maximum energy to be converted to potential (i.e. deformation) energy is
also approximately known: the maximum kinetic energy during the response, to be
converted to potential energy during the following quarter-cycle, is roughly equal
to one-half the total mass times the square of the spectral pseudovelocity, Sv, which
for T ≥ TC (cf Eq. (1.1)) is roughly independent of the value of T.

The seismic design of the building determines how the (roughly) given peak
global displacement and peak kinetic energy are distributed to the various elements
of the building. To distribute them just to those elements best suited to withstand
these demands, current seismic design codes use “capacity design” as the main
instrument. In the detailed design phase “capacity design” works with and on the
strengths of individual elements to ensure that all-along the load path of inertia
forces, from the masses to the foundation, the strength of the structural system is
governed by the ductile elements. Although capacity design is used during detailed
design, its effectiveness depends strongly on the layout and sizing chosen early on,
during conceptual design.

The elements to which the peak global displacement and deformation energy
demands are channeled by capacity design are selected on the basis of the following
criteria:

1. The elements’ “ductility”, i.e., their capacity to develop large inelastic defor-
mations and dissipate energy under cyclic loading, without substantial loss of
force-resistance.

2. The importance of the element for the stability of other elements and for the
integrity of the whole. Vertical elements are more important than horizontal ones
and their importance increases from the roof to the foundation, as their failure
may precipitate loss of support for all overlying elements.

3. The accessibility of the element and the difficulty to inspect and repair any
damage.

On the basis of the criteria above, a hierarchy of the various elements and regions
of the structure can be established, determining the order in which they are allowed
to enter the inelastic range during the seismic response. “Capacity design” is used,
then, to ensure that this order is indeed respected. As we will see in more detail later
in this section, “Capacity design” works as follows:

Once the elements or regions which are more important for the system, or
more difficult to inspect/repair, or inherently less “ductile” are identified, “capac-
ity design” determines their required force resistance on the basis of the available
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force capacities of neighbouring elements or regions which have been ranked as less
important, easier to inspect/repair, or inherently more “ductile”. The required force
resistances of the former elements or regions are determined, so that the latter ones
exhaust their force resistances (i.e. yield) before the former and in a way that shields
them from yielding. “Capacity design” is based on equilibrium alone, resembling in
this respect the static method of plastic design, which gives a lower-bound type of
solution.

1.3.2 The Importance of a Stiff and Strong Vertical Spine
in a Building

In structures which have horizontal elements at various levels, forming “storeys”
(as in multistorey buildings), the spreading of the inelastic deformation demands
throughout the structure implies that inelastic action develops in every single storey.
For this to be kinematically possible in a concrete building, the beam-column nodes
along any column (or any vertical element, in general) should stay on the same line
during the seismic response. This implies that vertical elements should:

– stay in the elastic range throughout their height, from the base to the roof, and
– rotate at the base, either by developing a plastic hinge just above the connection

to the foundation system, or by rigid-body rotation of their individual foundation
element with respect to the ground.

Under these conditions, large horizontal displacements of the storeys are kine-
matically possible only if plastic hinges form at both ends of every single horizontal
member in the system. Such a pattern of plastic hinges and deformations corre-
sponds to the widest possible spreading of the global displacement demand and
energy dissipation throughout the entire structural system. It gives, therefore, the
smallest possible local deformation and energy dissipation demand on individual
members or locations.

In the building of Fig. 1.3(b)–(e) rotations take place at plastic hinges at both
beam ends, as well as at plastic hinges at the base of the vertical elements (in
Fig. 1.3(b) and (d)) or at the interface between the foundation element and the
ground (in Fig. 1.3(c) and (e)). In all these cases, if the intended pattern of dis-
tributed plastic hinges forms simultaneously throughout the structure, the maximum
chord rotation demand at beam ends or at the base of vertical elements1 is about
equal to the roof displacement, δ, divided by the total building height, Htot (i.e. to
the average drift ratio of the building, δ/Htot). Moreover, the demand value of the
chord rotation ductility factor at member ends (i.e. the peak chord rotation demand

1The chord rotation at a member end is the angle between the normal to the member section there
and the chord connecting the two member ends, see Fig. 1.4. If a plastic hinge forms at an end, the
plastic part of the chord rotation there is about equal to the plastic hinge rotation.
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Fig. 1.3 Plastic mechanisms in frame and wall systems: (a) soft-storey mechanism in weak col-
umn/strong beam frame; (b), (c) beam-sway mechanisms in strong column/weak beam frame; (d),
(e) beam-sway mechanisms in wall system

Fig. 1.4 Definition of chord
rotation at member ends
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during the response, divided by the chord rotation at that end at yielding of the ele-
ment there) is roughly equal to the demand values of the top displacement ductility
factor, μδ.2 According to Eqs. (1.1) and (1.2), μδ is about equal to q and assumes
relatively low values, well within the capacities of concrete members with appro-
priately detailed end regions. So, the seismic design of buildings that develop the
“beam-sway” mechanisms of Fig. 1.3(b)–(e) is very cost-effective, in the sense that
fairly high q-factor values can be relatively easily achieved.

The other extreme is shown in Fig. 1.3(a), where all inelastic deformations take
place in a single storey. This is kinematically possible only if all vertical elements in
the storey develop plastic hinges at both ends and in opposite bending (i.e. with the
same sense of action of bending moments at the two ends). If such a “soft-storey”
or “storey-sway” mechanism develops, the chord rotation demand at the ends of
the vertical elements of the “soft-storey” are about equal to the roof displacement
demand, δ, divided by the height of the soft-storey, hi. For given value of δ such
rotation demands are about equal to those developing in a “beam-sway” mechanism
times Htot/hi. By the same token the chord rotation ductility ratio demand in the
soft-storey columns is about equal to Htot/hi times the global displacement ductility
factor, μδ, derived from the q-factor value used in the design according to Eqs. (1.1)
and (1.2). The chord rotation capacities required to meet these demands in medium-
or high-rise buildings with Htot >> hi are not reliably attainable, even with special
detailing for very high ductility and energy dissipation capacity. Therefore, it is
not feasible to design and detail a building other than a low-rise one or for low-
seismicity to develop a “soft-storey” or “storey-sway” mechanism of the type of
Fig. 1.3(a).

The best way to spread the global inelastic deformation and energy dissipation
demand to the entire structural system and prevent its concentration to a “soft-
storey” is by providing a strong and stiff spine consisting of vertical elements that
are forced by design to stay elastic above their base. This is achieved by overde-
signing these vertical elements relative to the horizontal ones and/or to the internal
force demands from the analysis, without any overdesign of the horizontal elements
and of the region of the vertical elements at their connection to the foundation. Sec-
tions 1.3.4 and 1.3.5 describe how this is pursued through “capacity design” of the
columns or walls, respectively.

So far the importance of strong vertical elements for spreading the total defor-
mation and energy dissipation demand to the entire system has been emphasised.
Capacity-designing the vertical elements to be strong enough to achieve this end
is consistent with the concept of “capacity design” as enforcement of an inelas-
tic response mechanism that does not entail plastic hinging in vertical elements, as
these elements are:

2In reality plastic hinges form sequentially, starting at the lower part of the building and never
extending throughout their full intended pattern. So the maximum chord rotation and chord rota-
tion ductility factor at any member end will be about double the ideal values of δ/Htot and μδ,
respectively.
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1. inherently less “ductile” than the beams, due to the adverse effect of axial com-
pression on ductility;

2. more important than the beams, as far as stability and integrity of the whole is
concerned.

Modern seismic design codes, such as Eurocode 8, promote development of
beam-sway mechanisms in multi-storey buildings thanks to a stiff and strong verti-
cal spine. This is pursued through:

– choices in the structural layout, and
– rules for the dimensioning of vertical members, so that they stay elastic above

the base during the response.

More specifically for concrete buildings:

a) Wall systems (or wall-equivalent dual systems according to the definition in
Eurocode 8 given in Section 1.4.3.1) are promoted and their walls are (capacity-)
designed in flexure and shear to remain elastic above the base.

b) In frame systems and in frame-equivalent dual systems (see Section 1.4.3.1 for
the definition of such systems in Eurocode 8) strong columns are directly pro-
moted, through the capacity design of columns in flexure described in Section
1.3.4, so that plastic hinging in columns is prevented. Moreover, in codes that
adopt a two-tier seismic design, such as Eurocode 8, strong columns are indi-
rectly promoted by strict interstorey drift limits for the damage limitation seis-
mic action. Unless the columns are large, frame systems cannot easily meet the
interstorey drift limits of Eurocode 8 – especially as the cracked stiffness of con-
crete members is used in the analysis.

1.3.3 Overview of Capacity-Design-Based Seismic
Design Procedure

In force-based seismic design using linear analysis with the q-factor, the general
seismic design procedure for control of the inelastic response through capacity
design is the following:

– Inherently ductile mechanisms of force transfer in “dissipative zones” are dimen-
sioned so that their design resistance, Rd, and the design value of the correspond-
ing action effect from the analysis for the combination of the design seismic
action and the concurrent gravity actions, Ed, satisfy Eq. (1.3). In concrete build-
ings, this phase is normally limited to dimensioning of the end sections of beams
in flexure and of the base section of vertical elements (at the connection to the
foundation).

– Non-ductile mechanisms of force transfer within or outside the dissipative zones
are dimensioned to remain elastic until and beyond yielding of the ductile
mechanism(s) of the dissipative zones, through overdesign with respect to the
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corresponding action effects from the analysis, Ed. This overdesign is normally
accomplished through “capacity design”, where the already dimensioned duc-
tile mechanisms of force transfer are assumed to develop overstrength capacities,
γ RdRd, and the action effects in the non-ductile mechanisms of force transfer are
computed from equilibrium alone.

– Dissipative zones are detailed to provide the deformation and ductility capacity
that is consistent with the demands placed on them by the design of the structure
for the chosen q-factor value.

– The foundation to the ground is capacity-designed on the basis of the overstrength
of ductile mechanisms of force transfer in dissipative zones of the superstruc-
ture. Foundation elements are normally capacity-designed as well to stay elastic
beyond yielding in dissipative zones of the superstructure. The designer may also
use the option to dimension and detail them for energy dissipation and ductility
as in the superstructure, despite the difficulty to repair them.

1.3.4 Capacity Design of Columns in Flexure

The objective of current seismic design codes is to force plastic hinges out of the
columns of frame systems and into the beams, so that a beam-sway mechanism
develops and a soft-storey is prevented. To this end, at beam-column nodes columns
are (capacity-)designed to be stronger than the beams, with an overstrength factor
of γ Rd applied on the design values of the moment resistances of beams:

ΣMRc ≥ γRdΣMRb (1.4)

In Eq. (1.4) MRc or MRb denote the moment resistances of columns or beams,
respectively. The summation at the left-hand-side extends over the column sections
above and below the joint, while the one at the right-hand-side is over all beam
ends framing into the joint (Fig. 1.5). Eurocode 8 adopts γ Rd = 1.3 for the over-
strength factor, while US codes (BSSC 2003, SEAOC 1999, ICBO 1997, ACI 2008)
use γ Rd = 1.2.

column 1 column 1

beam 1 beam 2 beam 1 beam 2

column 2 column 2

Fig. 1.5 Beam and column moment resistances at a joint, for the implementation of the “Capacity-
Design” rule, Eq. (1.4)
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Equation (1.4) is verified separately in each one of the two main horizontal direc-
tions of the building in plan. For a beam framing into a joint at an angle α to the
horizontal direction in which Eq. (1.4) is checked, its MRb-value enters Eq. (1.4)
multiplied times cosα. Equation (1.4) is checked in each horizontal direction, first
with both column moment resistances acting on the joint in the positive (clockwise)
sense about the normal to that horizontal direction (the direction of the frame) and
then in the negative (counterclockwise) sense. Beam moment resistances are always
taken to act on the joint in the opposite sense with respect to the column capacities
(Fig. 1.5).

Equation (1.4) should normally be checked at the centre of the joint (at the theo-
retical node at the intersection of the beam and column centrelines), because equi-
librium of moments on the joint refers to that point. This would entail transferring
the moment resistances from the faces of the joint to the theoretical node: by multi-
plying the sum of the column moment resistances times (1 + hb/Hcl) and that of the
beams times (1 + hc/Lcl), where hb, hc denote the cross-sectional depth of the beam
and the column, respectively, in the vertical plane within which Eq. (1.4) is checked,
and Lcl, Hcl are the average clear span of the beams on either side of the joint, or the
average clear storey height above and below the joint, respectively. Both Eurocode
8 and the US codes allow using instead in Eq. (1.4) as MRc and MRb the moment
resistance of the columns and the beams at the face of the joint, respectively. This
simplification is normally on the safe side, because in general we have hb/Hcl ≥
hc/Lcl.

US codes require that the nominal values of MRb and MRc (those resulting from
the characteristic or nominal values of material strengths, fck, fyk, instead of the
design values, fcd, fyd) be used in Eq. (1.4). For simplification, Eurocode 8 allows
using instead the design values of the member moment resistances, MRd,b and MRd,c

for MRb and MRc, respectively. Note that, if the values of material partial factors,
γM, applicable for non-seismic actions are adopted also for seismic design (option
1 in Section 1.2), the difference between MRd and the value of MR for nominal
material strengths is larger in the columns than for beams. So, compared to the
use of MRc and MRb for nominal strengths on both sides of Eq. (1.4), the Eurocode 8
approach gives more safe-sided results for the columns (however, less so than the US
approach).

With these differences and the higher value of γ Rd (1.3 versus 1.2), the appli-
cation of Eq. (1.4) in Eurocode 8 seems to be more safe-sided than in US codes.
However, this difference may be overshadowed by how the code accounts for the
contribution of slab bars parallel to the beam to the value of MRb in negative (hog-
ging) bending. There is ample experimental and field evidence that, when the beam
is driven past flexural yielding in negative bending and into strain hardening, such
reinforcing bars in the slab are fully activated as tension reinforcement of the beam,
even when they are at a significant distance from the web. For T-beams (ACI 2008)
specifies the total width of the slab effective in tension as 25% of the span, but
not larger than 16 times the slab thickness, hf, plus the web width. For L-beams
(ACI 2008) considers that the width of the slab beyond the web which is effective
in tension is one-twelfth of the span, but not more than 6hf. Eurocode 8 specifies
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Fig. 1.6 Width of the slab effective as tension flange of beams at the support on a column,
according to Eurocode 8 (a, b: at exterior column; c, d: at interior column)

as effective in tension a much smaller slab width from the side of the column into
which the beam frames, as shown in Fig. 1.6:

• at joints with interior columns within the plane of the frame where Eq. (1.4) is
checked:
– 4hf, if a transverse beam of similar size frames into the joint on the side in

question, or
– 2hf, if there is no such transverse beam;

• at the two exterior columns within the plane of the frame where Eq. (1.4) is
checked:
– 2hf, if a transverse beam of similar size frames into the joint on the side in

question, or
– zero, if there is no such transverse beam.

These effective slab widths are specified in Eurocode 8 for the ULS dimensioning
of beams at the supports to columns against the negative (hogging) bending moment
from the analysis for the design seismic action combined with the concurrent gravity
loads. Slab bars which are parallel to the beam and well anchored within the joint or
beyond may count as top beam reinforcement, to reduce the tension reinforcement
to be placed within the width of the web. In that context, the effective in tension
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width of the slab on each side of the web has been chosen in Eurocode 8 lower than
the values of about 25% of the beam span suggested by field and experimental evi-
dence, to be safe-sided for the dimensioning of beam top bars. However, this leads
to underestimation of MRd,b for negative bending and hence is on the unsafe side as
far as prevention of column hinging through fulfillment of Eq. (1.4) is concerned
(see e.g., (Panagiotakos and Fardis 1998)).

Yielding in opposite bending and plastic hinging at both the top and bottom sec-
tions of a concrete wall in a storey is extremely unlikely, even for walls with min-
imum dimensions (e.g. just 0.2 m by 0.8 m). So, when walls provide most of the
lateral force resistance (i.e., in wall systems and in wall-equivalent dual systems
according to the Eurocode 8 classification of systems, see Section 1.4.3.1) in a hor-
izontal direction of the building, they can normally be trusted for the prevention of
a soft-storey mechanism in that direction. So, Eurocode 8 exempts the columns of
wall systems or wall-equivalent dual systems from fulfilling Eq. (1.4) in that hor-
izontal direction. Besides, Eurocode 8 does not require meeting Eq. (1.4) in the
following cases of columns of frame systems or of frame-equivalent dual systems
(see Section 1.4.3.1 for the definition of these systems):

– Around the joints of the top floor. As a matter of fact, it does not make any
difference for the plastic mechanism whether the plastic hinge forms at the top of
the top storey column or at the ends of the top floor beams. Moreover, columns
of the top floor have low axial load, hence good ductility, and are less critical for
the stability of the whole than the columns of lower floors. After all, it is difficult
to satisfy Eq. (1.4) there, as only one column contributes to the left-hand-side.

– In two-storey buildings, provided that in none of the ground storey columns the
axial load in any of the combinations of the design seismic action with the simul-
taneous gravity loads exceeds 30% of the cross-sectional area times the design
value of the concrete compressive strength, fcd. Columns with such a low axial
load ratio have good ductility and develop low 2nd-order (P-Δ) effects. So, if
a soft-storey mechanism develops at the ground storey of a two-storey building
these columns can withstand a displacement ductility demand of about twice the
displacement ductility factor, μδ, corresponding to the value of q used in design.

– One-out-of-four columns of plane frames with columns of similar size. The
designer may choose to skip fulfilment of Eq. (1.4) at an interior column rather
than at an exterior one, as only one beam frames into exterior joints and it is
easier to satisfy Eq. (1.4) there.

At all column ends where Eq. (1.4) is not checked owing to the exemptions above
(including the columns of wall systems or wall-equivalent dual ones), as well as
at the base of columns where a plastic hinge will form anyway, the Eurocode 8
detailing rules provide a column ductility supply sufficient for development of a
plastic hinge there.

US standards require meeting Eq. (1.4) at every column of frames of the high
ductility class, termed “Special Moment Frames”. If Eq. (1.4) is not satisfied at a
single level of a column of such a frame, the contribution of that column to the
frame’s lateral strength and stiffness is neglected and the column is dimensioned
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for gravity loads alone. However, all the requirements for minimum longitudinal
and transverse reinforcement of “Special Moment Frames” should be fulfilled all
along that column, to sustain the ductility demands imposed on the column by the
lateral-force-resisting system, whose lateral displacements it shares.

Fulfillment of Eq. (1.4) just ensures that the column cross-sections above and
below the joint will not yield at the same time under uniaxial bending moments
having the same sense of action on the joint. Note that, as vertical reinforcement
of a column continues into the storey above and covers the column sections both
above and below the joint, these sections have about the same moment resistance if
they have the same size. Then MRc ≈ 0.5γ RdΣMRb. However, the bending moments
that develop above and below the joint during the dynamic response, may have
quite different magnitude ME1 �= ME2. Therefore, the largest of them, e.g. ME1,
may possibly reach the corresponding moment resistance, MRc1 ≈ 0.5γ RdΣMRb,
and cause column yielding. If this happens simultaneously at both top and bottom
of all columns in a storey, then a “soft-storey” may develop there momentarily. If Eq.
(1.4) is fulfilled, this event will be of very short duration. Although this possibility
cannot be ruled out, the inelastic deformations it induces to the storey columns will
not be of such magnitude to jeopardise the stability of the whole (Panagiotakos and
Fardis 1998).

In closing this general presentation of capacity design of columns in flexure, it is
worth noting, again, that Eq. (1.4) is based on equilibrium and the “static method”
of plastic design. The relative stiffness of members is not considered, although its
impact on the effectiveness of Eq. (1.4) may sometimes be important. More specifi-
cally, as the effective stiffness of concrete members is roughly proportional to their
moment resistance, columns whose strength is increased relative to the beams to
satisfy Eq. (1.4) in all likelihood will also be stiffer than the beams. They will tend
to behave then more as vertical cantilevers – i.e. as walls – rather than as columns
of a frame. Wall-like columns may develop bending moments with the same sign
(i.e. opposite sense of action on the joint) above and below a joint (cf. the bending
moment of diagram typical of walls in Fig. 1.7). Then one of the column sections
above or below the joint works with the beams against the other section (instead
of with it, against the beams) and might force it to yield. Even in such an unlikely
event, a “soft-storey” will not develop, because it requires simultaneous yielding at
the top and bottom of the vertical elements of the same storey, which is not physi-
cally possible if the bending moment diagram has the same sign within the storey,
as in Fig. 1.7. Therefore, although the collateral effects of Eq. (1.4) on member stiff-
ness may render Eq. (1.4) meaningless, the end result is the same: no soft-storey can
physically develop.

1.3.5 Design of Ductile Walls in Flexure

What essentially distinguishes walls from columns is that walls have much larger
stiffness than the beams they may be connected to. As a result, the beams work with
the walls mainly as part of the horizontal diaphragms transferring lateral forces to
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the walls, rather than as horizontal elements of a frame. Therefore bending moment
diagrams that develop during the seismic response in the walls resemble that of a
vertical cantilever under horizontal loading (see Fig. 1.7). Notably, the sign of bend-
ing moment does not change within a storey (with the possible exception of one or
more storeys near the top), while moments decrease considerably from the base to
the top of the wall (much more than shear forces do). Moreover, the bending moment
at the wall section right above a floor level is normally larger than just below it. As
these two sections are crossed by the same vertical bars and an increase in axial
compression increases the wall moment resistance, a plastic hinge can conceivably
form only at one of these two sections, namely above the floor level. Multiple plastic
hinging along the height of the wall may well develop, if the flexural resistance of
wall sections at floor levels and at the base (i.e. at the connection to the foundation)
are tailored to the elastic seismic moment demands. Even then, a soft-storey mecha-
nism cannot form, as it requires plastic hinging in opposite bending at two different
locations along the height of the wall.

To ensure that a wall works as a strong and stiff vertical spine, mobilising all
beams into inelastic action and minimising local rotation and ductility demands
for given global displacement demand, Eurocode 8 takes measures to localise wall
inelastic deformations at its base. A so-designed wall is called “ductile wall”. It is
designed and detailed to dissipate energy in a flexural plastic hinge only at the base
and remain elastic throughout the rest of its height, in order to promote – or even
enforce – a beam-sway mechanism. For a flexural plastic hinge with high ductil-
ity and dissipation capacity to develop at its base, a “ductile wall” should be fixed
there to prevent relative rotation of the base with respect to the rest of the structural
system. Besides, just above its base a ductile wall should be free of openings or
large perforations that might jeopardise the ductility of the plastic hinge. To force
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the wall to stay elastic above the plastic hinge region, Eurocode 8 (but not US stan-
dards) requires dimensioning in bending of the rest of the wall height for a linear
envelope of the positive and negative wall moments from the analysis for the design
seismic action (Fig. 1.7). The envelope intends to cover also a potential increase in
bending moments above the base due to higher mode inelastic response after devel-
opment of the plastic hinge at the base. The rest of the wall does not need to be
detailed for high flexural ductility and the design of the wall may be simpler and
possibly more economical. Moreover, the rest of the wall above the plastic hinge at
the base may be dimensioned in shear disregarding the degradation of cyclic shear
resistance in regions that have already yielded in flexure (cf. Section 3.2.4).

US standards (BSSC 2003, SEAOC 1999, ICBO 1997, ACI 2008) do not
require designing a wall above the base for flexural overstrength with respect to
the demands from the analysis. They rely only on the wall large stiffness and on
the fulfilment of Eq. (1.4) by the columns of the system for the prevention of a
soft-storey mechanism.

Section 5.6 describes an alternative to “ductile walls”, termed “(systems of) large
lightly reinforced walls”, provided by Eurocode 8 alone among all international
seismic design codes. In them flexural overstrength over the seismic demands of
the analysis is intentionally avoided anywhere along the height of the wall. This
promotes development of plastic hinges in the wall at as many floor levels above
the base as physically possible. In this way a given global displacement demand is
spread to rotation demands at several locations up the height of the wall. The inelas-
tic deformation demands that need to be resisted by a single location, e.g., at the wall
base, are then reduced, facilitating therefore detailing of that location for ductility.

1.3.6 Capacity Design of Members Against Pre-emptive
Shear Failure

1.3.6.1 The Principle

Among the two constituents materials of RC members, reinforcing steel is inher-
ently ductile – and as a matter of fact only in tension, as bars in compression may
buckle, shedding their compressive force and risking fracture. Concrete is brittle,
unless its lateral expansion is well restrained by confinement.

Flexure is the only mechanism of force transfer that allows using to advan-
tage and reliably the fundamental ductility of tension reinforcement and effectively
enhancing the ductility of concrete and of the compression steel through lateral
restraint. Even under cyclic loading, flexure creates stresses and strains in a single
and well-defined direction (parallel to the member axis) and therefore lends itself to
the effective use of the reinforcing bars, both to take up directly the tension, as well
as to restrain concrete and compression steel (against buckling) transverse to their
compressive stresses.

An inelastic stress field dominated by shear is two-dimensional. It induces prin-
cipal stresses and strains in any inclined direction (especially for cyclic loading)
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and does not lend itself to effective inelastic action in the reinforcement for the
control of the extent of cracking (which, if not effectively controlled, may extend
into the compression zone and completely destroy it) and for confinement of con-
crete. Moreover, after tensile yielding of the transverse bars shear deformations are
associated with slippage along wide-open inclined cracks and dissipate very little
energy. Last but not least, large reversals of the shear force may accumulate inelastic
strains in the same transverse bars crossing both sets of diagonal cracks, leading to
uncontrolled crack opening. So, unlike steel members where shear is a ductile force
transfer mechanism (as the ductility of steel is always available along the rotating
direction of principal strains), in concrete shear is considered brittle and is con-
strained by design in the elastic range of behaviour. Energy dissipation and cyclic
ductility is entrusted only to flexure, in the “plastic hinges” that develop at mem-
ber ends where seismic bending moments attain their maximum values. The plastic
hinge regions are then detailed for the inelastic deformation demands expected to
develop there under the design seismic action.

In concrete members the mechanisms of force transfer by shear or by flexure
act in series, as both of them have to transfer the same force and ultimate strength is
controlled by the weakest of the two mechanisms. So, the shear force transfer mech-
anism can be constrained to the elastic range through “capacity design”. Namely, by
dimensioning a concrete member in shear not for the force demand from the analy-
sis but for the maximum shear force that may physically develop in it, as controlled
by attainment of the force resistance in flexure. The maximum value of the shear
force is computed by:

– expressing (through equilibrium) the shear force in terms of the bending moments
at the nearest sections where plastic hinges may form, and

– setting these bending moments equal to the corresponding moment resistances.

Because the bending moment in a plastic hinge cannot physically exceed its
moment capacity – including the effect of strain hardening – the so-computed shear
force is the maximum possible. Once dimensioned for this design force, a mem-
ber will remain elastic in shear until and after development of plastic hinges at the
sections that affect the value of the shear force.

1.3.6.2 Capacity Design Shear of Beams

The basic concept behind capacity design of beams is presented with reference to
Fig. 1.8. If the sense of internal forces at beam ends in that figure is considered as
positive, equilibrium of moments about one end gives the value of the moment at
the other end:

V1 = Vg+ψq,1 + M2 + M1

Lcl
(1.5)

V2 = Vg+ψq,2 − M1 + M2

Lcl
(1.6)
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where Vg + ψq,1 and Vg + ψq,2 are moments of the transverse load acting between the
two ends with respect to 2 or 1, respectively, divided by the clear span of the beam,
Lcl (i.e., they are the reactions to this load when the beam is simply supported).

The maximum value of V1 develops when the sum M2 + M1 is maximum, i.e.
when both M1 and M2 attain their maximum possible positive value. When M2 and
M1 attain their absolutely maximum possible negative values V2 reaches its maxi-
mum possible value.

If the beam frames at both ends into stronger columns that satisfy there Eq. (1.4)
with γ Rd = 1 the maximum possible positive values of M1 and M2 are equal to
the corresponding moment resistances. For convenience, these capacities may be
taken equal to their design values, MRd, times an overstrength factor, γ Rd ≥ 1.0.
Accordingly, in Eq. (1.5) we may take M2 = γ RdM+

Rd,b2, M1 = γ RdM−
Rd,b1, while

in Eq. (1.6) we have M1 = –γ RdM+
Rd,b1, M2 = –γ RdM−

Rd,b2. This gives finally the
maximum possible (“capacity design”) shear forces at the two ends:

VCD,1 = Vg+ψq,1 + γRd
M−

Rd,b1 + M+
Rd,b2

lcl
(1.7)

VCD,2 = Vg+ψq,2 + γRd
M+

Rd,b1 + M−
Rd,b2

lcl
(1.8)

Strong beams framing into weak columns (i.e. not satisfying Eq. (1.4) with
γ Rd = 1) are unlikely to develop first plastic hinges at the ends, before the columns
do. Assuming that at end i (= 1 or 2) of the beam in question the beam moment is
negative and the sum of beam design moment resistances around the joint exceeds
that of the columns in the sense associated with negative beam moment at that end
(i.e. if (ΣMRd,b)i– > (ΣMRd,c)i–, where subscripts denote the end of the beam and
the sign of beam moment there), M−

Rd,bi in Eq. (1.6) should be replaced with the
beam moment at hinging of the column both above and below the joint at end i .
Assuming that the moment input from the yielding columns to the elastic beams is
shared by the two beams framing into the joint in proportion to their own moment
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resistance, the beam moment at end i at the time the columns yield can be assumed
equal to the design value of the moment resistance of the beam at that end, M−

Rd,bi,
times [ΣMRd,c/ΣMRd,b]i, where ΣMRd,b refers to the sections of the beam across the
joint at end i and ΣMRd,c to those of the column above and below it. Similarly for
the positive sense of bending of the beam at end i. So, a rational generalisation of
Eqs. (1.7) and (1.8) for the design value of the maximum shear at a section x in the
part of the beam closer to end i is (see Fig. 1.9):

max Vi,d (x) =
γRd

[
M−

Rd,bi min

(
1;

ΣMRd,c

ΣMRd,b

)
i

+ M+
Rd,bj min

(
1;

ΣMRd,c

ΣMRd,b

)
j

]

Lcl

+ Vg+ψq,o(x)
(1.9a)

In Eq. (1.9a) j denotes the other end of the beam (i.e. if i = 1, then j = 2).
All moments and shears in Eq. (1.9a) have positive sign. The sense of action of
(ΣMRd,b)i on the joint is the same as that of MRd,bi, while that of (ΣMRd,c)i is oppo-
site. Vg + ψq,o(x) is the shear force at cross-section x due to the quasi-permanent grav-
ity loads, g + ψq, concurrent with the design seismic action, with the beam consid-
ered as simply supported (index: o). The value of Vg + ψq,o(x) may be conveniently
computed (especially if the loads g + ψq are not uniformly distributed along the
length of the beam) from the results of the analysis of the structure for the grav-
ity load g + ψq alone: Vg + ψq,o(x) may be taken equal to the shear force Vg + ψq(x)
at cross-section x in the full structure, corrected for the shear force (Mg + ψq,1–
Mg + ψq,2)/Lcl due to the bending moments Mg + ψq,1 and Mg + ψq,2 at the end
sections 1 and 2 of the beam in the full structure.

Eurocode 8 adopts Eq. (1.9a) for the capacity design shear of beams, with factor
γ Rd accounting for possible overstrength due to steel strain hardening and taken
equal to γ Rd = 1.2 for beams of Ductility Class High and to γ Rd = 1 for those
of Ductility Class Medium (see Section 1.4.2.1 for the definition of these Ductility
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Fig. 1.9 Derivation of the capacity-design shear force in beams according to Eurocode 8
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Classes). US codes (BSSC 2003, SEAOC 1999, ICBO 1997, ACI 2008) discount
the possibility of column hinging and compute the first term of Eq. (1.9a) with the
terms min(. . .) taken equal to 1.0. They use γ Rd = 1/0.9 = 1.11 for the beams of
“Intermediate Moment Frames” and γ Rd = 1.25/0.9 = 1.39 for those of “Special
Moment Frames”. For “Intermediate Moment Frames” they allow capping the 1st
term in Eq. (1.9a) at twice the shear force at x due to the design seismic action from
linear analysis, VE(x).

With Vg + ψq,o(x) taken positive at sections x in the part of the beam closer to end
i, the minimum shear in that section is:

min Vi,d (x) = −
γRd

[
M+

Rd,bi min

(
1;

ΣMRd,c

ΣMRd,b

)
i

+ M−
Rd,bj min

(
1;

ΣMRd,c

ΣMRd,b

)
j

]

Lcl

+ Vg+ψq,o(x)
(1.9b)

The moments and shears at the right-hand-side of Eq. (1.9b) being positive, its
outcome may be positive or negative. If it is positive, the shear at section x will not
change sense of action at any time during the seismic response. If it is negative, the
shear force does change sense. As described in Section 5.5.2, the ratio:

ζi = min Vi,d(xi )

max Vi,d(xi )
(1.10)

is used by Eurocode 8 as a measure of the reversal of the shear force at end i, for the
dimensioning of the shear reinforcement of beams in buildings of the High Ductility
Class (similarly at end j).

The values of ΣMRd,ci and ΣMRd,cj to be used in Eqs. (1.9) should be the ones
giving the largest absolute value of the capacity design shear in Eq. (1.9a) and
the algebraically minimum value of the ζ -ratio in Eq. (1.10). These are the max-
imum values of ΣMRd,ci and ΣMRd,cj within the range of fluctuation of the col-
umn axial load from the analysis for the combination of quasi-permanent grav-
ity loads and of the design seismic action. More detailed guidance is given in
Section 5.7.3.5.

A positive plastic hinge may develop not at end j of the beam but elsewhere
along its span, namely at the point where the available moment resistance in positive
bending is first exhausted by the demand seismic moment under the combination of
(a) the quasi-permanent gravity loads, g + ψq, and (b) the seismic action that causes
beam or column yielding – whichever occurs first – around the joint at end i of the
beam. Although the distance between these two likely plastic hinge locations is less
than the clear span Lcl of the beam, a lower shear force will normally result then
near end i of the beam than the value from Eq. (1.9a).
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1.3.6.3 Capacity-Design Shear of Columns

The simplest way to derive the capacity design shear of a column is to assume
that its ends, 1 and 2, both develop plastic hinges in opposite bending (+ or –)
and compute the resulting shear force from equilibrium. Normally no intermediate
transverse loads act on columns. So, the capacity design shear is constant throughout
the column height and equal to:

V −
C D = γRd

M−
Rd,c1 + M+

Rd,c2

Hcl
(1.11a)

V +
C D = γRd

M+
Rd,c1 + M−

Rd,c2

Hcl
(1.11b)

Factor γ Rd in Eqs. (1.11) accounts again for possible overstrength due to steel
strain hardening; Hcl is the clear height of the column within the plane of bending
(in general equal to the distance between the top of the beam or slab at the base of
the column and the soffit of the beam at the top).

Normally the column shear capacity is independent of the direction of the shear
force. Then only the maximum of the shear forces V–

CD and V +
CD in Eqs. (1.11)

matters. Moreover, usually the column cross-section is symmetric and M +
Rd,ci and

M–
Rd,ci at end i (= 1, 2) are equal. Then Eqs. (1.11a) and (1.11b) give the same

outcome.
As shown in Fig. 1.10, a column may not develop plastic hinges at end i (i = 1,

2), if plastic hinges develop there first in the beams framing into the same joint at
end i (as is normally the case in columns fulfilling Eq. (1.4)). If that happens, the
sum of column moments above and below the joint is equal to the total moment
resistance of the beam across that joint, ΣMRd,b. It may be assumed that this sum
is shared by the two column sections above and below the joint in proportion to
their own moment resistance. Then, the bending moment at end section i (i = 1, 2)
of the column may be taken equal to the design value of the moment resistance of
the column at that end, MRd,ci, times (ΣMRd,b/ΣMRd,c)i, where ΣMRd,b refers to the
sections of the beam on opposite sides of the joint at end i and ΣMRd,c to the sections
of the column above and below it. The sense of action of ΣMRd,c on the joint is the
same as that of MRd,ci, while that of ΣMRd,b is opposite. So, a rational generalisation
of Eqs. (1.11) for the design value of the maximum shear of the column is:

VC D,c =
γRd

[
MRd,c1 min

(
1;

ΣMRd,b

ΣMRd,c

)
1

+ MRd,c2 min

(
1;

ΣMRd,b

ΣMRd,c

)
2

]
Hcl

(1.12)

Equation (1.12) is the form of capacity design shear of columns adopted in
Eurocode 8, with factor γ Rd taken equal to γ Rd = 1.3 for columns of buildings
of Ductility Class High and to γ Rd = 1.1 for those of Ductility Class Medium (see
Section 1.4.2.1 for the definition of these Ductility Classes).
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ACI (2008) adopts a format similar to Eq. (1.12) for columns of “Special Moment
Frames”:

VC D = γRd

[
min(MRd,c;

min(ΣMRd,c,ΣMRd,b)

Σ |MEc| |MEc|
]

1

+
[
min(MRd,c;

min(ΣMRd,c,ΣMRd,b)

Σ |MEc| |MEc|
]

2

Hcl
(1.13)

In Eq. (1.13) the moment input from the yielding elements around the joint at
end i (= 1, 2) is shared by the two columns framing into that joint in proportion to
their end moments from the analysis for the design seismic action, MEc; factor γ Rd

is taken equal to γ Rd = 1.25/0.7 = 1.79. For the columns of “Intermediate Moment
RC Frames” (ACI 2008) does not take into account the possibility of beam hinging
and uses the simpler version, Eqs. (1.11) with γ Rd = 1/0.7 = 1.43. It also caps the
value of the capacity design shear to twice the shear force due to the design seismic
action from linear analysis, VE.
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The values of MRd,c1 and MRd,c2 to be used in Eqs. (1.11), (1.12) and (1.13)
should be the most adverse ones within the range of fluctuation of the column axial
force under the combination of quasi-permanent gravity loads and the design seis-
mic action. If the dependence of the column shear capacity on axial force is taken
into account (in fact shear capacity increases with increasing axial compression),
more than one possible axial force values should be considered for the calculation
of MRd,ci (i = 1, 2) in Eqs. (1.11), (1.12) and (1.13), in search of the most critical
condition for the shear verification of the column and the dimensioning of its trans-
verse reinforcement. If the shear capacity of the column is taken independent of its
axial force, then the values of MRd,c1 and MRd,c2 should be the maximum ones within
the range of fluctuation of the column axial load from the analysis for the combi-
nation of the design seismic action and the concurrent gravity loads. More detailed
guidance is provided in Section 5.7.3.5.

1.3.6.4 Capacity-Design Shear of “Ductile Walls”

US standards do not require designing walls for overstrength in shear relative to the
demands from the analysis or over the seismic action that induces plastic hinging. In
Eurocode 8, by contrast, “ductile walls” are designed to develop a plastic hinge only
at the base section and to stay elastic throughout the rest of their height. The value of
the moment resistance at the base section of the wall, MRdo, and equilibrium alone
are not sufficient for the derivation of the maximum seismic shears that can develop
at various levels of the wall. The reason is that, unlike in the members of Figs. 1.8,
1.9 and 1.10, the (horizontal) forces applied on the wall from the floors are not
constant but change during the seismic response. In the face of this difficulty, a first
assumption made is that, if MRdo exceeds the bending moment at the base from the
elastic analysis for the design seismic action, MEdo, seismic shears at any level of the
wall exceed those from the same elastic analysis in proportion to (MRdo/MEdo). So,
the shear force from the elastic analysis for the design seismic action, V′

Ed, should be
multiplied by a capacity-design magnification factor ε proportional to MRdo/MEdo.

ε = VEd

V ′
Ed

= γRd

(
MRdo

MEdo

)
≤ q (1.14)

Factor γ Rd in Eq. (1.14) is meant to capture the overstrength at the base over the
design value of the moment resistance there, MRdo, e.g. owing to strain hardening of
the vertical steel.

Section 1.3.5, dealing with flexural design of ductile walls, has already men-
tioned the possibility of higher mode response after formation of a plastic hinge at
the base, i.e., of the response of a structure with little rotational restraint at plas-
tic hinges that have already formed and are loading along the ascending post-yield
branch of their moment-rotation relation. This response may increase also the wall
shear forces at the base and higher up, to values well beyond those correspond-
ing to plastic hinging at the base according to the predictions of elastic analysis.
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The taller and more slender the wall, the more pronounced are such effects, being
almost absent in “squat” walls.

To cover both capacity design in shear, expressed by Eq. (1.14), as well as any
inelastic higher mode effects, Eurocode 8 has adopted the following expression for
walls with ratio of height to horizontal dimension, hw/lw > 2 (“slender” walls) of
Ductility Class High:

ε = VEd

V ′
Ed

=
√(

γRd
MRdo

MEdo

)2

+ 0.1

(
q

Sa (TC )

Sa (T1)

)2

≤ q (1.15)

where:

– the overstrength factor γ Rd is taken equal to γ Rd = 1.2;
– Sa(T1) is the value of the elastic spectral acceleration at the period of the funda-

mental mode in the horizontal direction closest to that of the wall shear force3

(see Eqs. (4.2) in Section 4.2.1.2), and
– Sa(TC) is the spectral acceleration at the corner period, TC, of the elastic spectrum.

The 2nd term under the square root of Eq. (1.15) has been proposed in Eibl and
Keintzel (1988) and Keintzel (1990) to capture the increase of shear forces over the
elastic overstrength value represented by the 1st term, owing to higher mode effects
in the elastic and the inelastic regime of the response. In modes higher than the first
one the ratio of shear force to the bending moment at the base exceeds the corre-
sponding value at the fundamental mode, which is considered to be primarily (if not
exclusively) reflected by the results of the elastic analysis. The longer the period
T1 of the fundamental mode with respect to the corner period, TC, of the elastic
spectrum (e.g., for flexible frame-wall systems on stiff soil), the higher is the value
of ε, reflecting the more significant influence of higher modes on shears. Note that
the correction factor in Eq. (1.15) has been proposed in Eibl and Keintzel (1988)
and Keintzel (1990) just for the shear force results of the “lateral force” (equivalent
static) procedure of elastic analysis for the design seismic action. “Modal response
spectrum” elastic analysis fully captures the effects of higher modes on elastic seis-
mic shears, but fails to do so for the inelastic ones, after formation of a plastic hinge
at the base.

The 1st term under the square root of Eq. (1.15) assumes a different value for
different individual walls of the building (even for coupled ones), but the 2nd term
is the same for all walls in the building, regardless of size and contribution to lateral
force resistance. Note also that, by including the behaviour factor q, this 2nd term
removes part of the reduction of the elastic response spectrum by q, reflecting the
smaller influence of inelasticity on the higher mode response of wall structures.

3Strictly speaking, T1 is the period of the mode with the largest modal mass in the direction closest
to that of the wall shear force.



1.3 Control of Inelastic Seismic Response Through Capacity Design 35

VE from
analysis

VE magnified

EC8 design envelope

by ε

Vwall,base

Vwall,top > Vwall,base  

/2

2
3 Hw

1
3

Hw
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Equation (1.15) gives safe-sided results, especially when used together with the
further increase of shear forces imposed by Eurocode 8 over the upper two-thirds
of the height of walls in frame-wall structural systems (see last paragraph of this
section and Fig. 1.11).

In walls with ratio of height to horizontal dimension, hw/lw ≤ 2 (“squat” walls)
of Ductility Class High Eurocode 8 uses just Eq. (1.14) with γ Rd = 1.2.

Note that, if the axial force in the wall from the analysis for the design seismic
action is high (as, e.g., in slender walls near the corner of high-rise buildings, or
in piers of coupled walls), the difference between the algebraically maximum and
minimum axial force of the wall in the various combinations of the design seismic
action with the concurrent acting gravity loads will be large. The vertical reinforce-
ment at the base of the wall will be governed by the combination of the bending
moment from the analysis, MEdo, with the algebraically minimum axial force there
(for compression taken as positive), while, under the algebraically maximum axial
force the moment resistance, MRdo, will be much larger than MEdo. Then the value
of ε from Eqs. (1.14) and (1.15) may be so high, that the verification of the wall in
shear (especially against failure by diagonal compression) may be unfeasible. This
may be particularly the case for the piers of coupled walls.

For simplicity, in walls of buildings of Ductility Class Medium Eurocode 8
adopts the following shear magnification factor:

ε = VEd

V ′
Ed

= 1.5 (1.16)

Compared with Eq. (1.15), Eq. (1.16) is much easier to use and gives more eco-
nomical wall designs in shear. However, this simplicity and economy may be at the
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detriment of performance, as Eq. (1.16) provides a very low safety margin (if any at
all) against flexural overstrength at the base and inelastic higher mode effects.

In walls of Ductility Class High the value of ε from Eqs. (1.14) and (1.15) does
not need to be taken greater than the value of the q-factor, so that the final design
shear, VEd, does not exceed the value qV′

Ed corresponding to fully elastic response.
Of course, ε may not be taken less than the value of 1.5 specified for Ductility Class
Medium.

Higher mode effects on inelastic shears are larger at the upper storeys of the wall,
and indeed more so in frame-wall structural systems. The frames of such systems
restrain the walls in the upper storeys, so that the shear forces at the top storey of
the walls obtained from the “lateral force procedure” of elastic analysis are opposite
to the total applied seismic shear, turning to positive one or two storeys below the
top. Multiplication of these very low storey shears by the factor ε of Eqs. (1.14),
(1.15) and (1.16) will not bring their magnitude anywhere close to the relatively high
values that may develop there owing to higher modes (cf. dotted curves representing
the shear forces from the analysis and their magnified by ε version in Fig. 1.11).
Eurocode 8 deals with this question by requiring the minimum design shear at the
top of ductile walls of frame-wall systems be at least equal to half the magnified
shear at the base, increasing linearly to the magnified value of the shear, εV′

Ed, at
one third of the wall height from the base (Fig. 1.11).

1.4 The Options of Strength or Ductility
in Earthquake-Resistant Design

1.4.1 Ductility as an Alternative to Strength

Equations (1.1) and (1.2) show that design seismic forces are about inversely pro-
portional to the demand value of the global displacement ductility factor, μδ. So,
there is an apparent economic advantage in increasing the available global ductility,
to reduce the internal forces for which structural members are dimensioned. Besides
the economic one, there are a number of other advantages of ductility as a substitute
for strength in earthquake-resistant design:

– If the lateral force resistance of the structure is reduced by dividing the elastic
lateral force demands by a high q-factor value, verification of the foundation soil,
which by necessity is based on strength rather than on deformation capacity, is
much easier.

– A cap on the magnitude of lateral forces that can develop in the structure reduces
response accelerations and protects better the contents of the building (includ-
ing valuable equipment and artefacts), as well as non-structural parts which are
sensitive to acceleration (e.g. infill panels in the out-of-plane direction). Note
that non-structural elements that are sensitive to deformations (such as infill pan-
els in the in-plane direction) are not adversely affected by inelastic action in



1.4 The Options of Strength or Ductility in Earthquake-Resistant Design 37

the structural system. The reason is that, according to the “equal displacement
rule” expressed by Eq. (1.1) and applying in good approximation for most build-
ings, lateral displacements and interstorey drifts are equal to those in the elastic
structure.

– A structure with ample ductility supply is more resilient to earthquakes much
stronger than the design seismic action and less sensitive to the details of the
ground motion (i.e., to its frequency content and duration). So, in view of the
large uncertainty associated with the extreme earthquake demand in the lifetime
of a building, such a structure can be considered as a better earthquake-resistant
design. Moreover, it can put its robustness into use against other actions of acci-
dental nature, such as extreme natural or man-made hazards, for which structures
are normally not designed.

There are also strong arguments in favour of less ductility and dissipation capac-
ity and more lateral force resistance in seismic design:

– A RC structure that uses its high ductility in a strong earthquake will survive
the event, but with large residual deformations, i.e., with significant structural
damage, often difficult to repair. In the light of performance-based design and
of protection of property as one of its prime motivations, the higher the lateral
strength of a structure, the smaller will be the structural damage, not only during
more frequent, moderate earthquakes, but also due to the design seismic action
and beyond.

– From the construction point of view, detailing of members for ductility normally
entails fixing the reinforcement in the form of cages of closely-spaced ties engag-
ing practically every single longitudinal bar, and placing and compacting con-
crete within and through such cages. So, it is sometimes doubtful that the desired
quality of the end product is achieved, even when workmanship is of high level
and on-site supervision strict. By contrast, detailing of members just for strength
is much easier and simpler.

– Many buildings designed for earthquake resistance possess anyway significant
lateral strength, thanks to their force-based design against non-seismic actions.
So, they may have significant resistance to earthquake forces, without even been
designed for them. Examples include: low-to-medium-rise buildings in low-to-
moderate seismicity regions, with gravity loads controlling their design; tall,
flexible buildings dominated by wind, etc. In such cases it makes sense to ben-
efit from the available margin of lateral strength, in order to avoid complex and
expensive detailing of members for ductility.

– Often the layout of the structural system is unusually complex and irregular and
falls outside the framework of the ordinary structural layouts mainly addressed
by seismic design standards. In that case the designer may feel more confident
for his/her design if he/she narrows the distance between the results of the linear
elastic analysis used for dimensioning the members – and the nonlinear seismic
response to the design seismic action. This can be achieved through a lower value
of the behaviour factor q, implying lower global and local ductility demands.
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If the global ductility demand is reduced at the expense of increased lateral
strength, application of capacity design may be drastically relaxed, or even omit-
ted. Capacity design rules for columns in bending and beams or columns in shear
aim at avoiding overstrength in the ductile modes of behaviour and member fail-
ure – e.g., of beams in flexure – with respect to the more brittle ones, notably of
all elements in shear. Such overstrengths may occur if the resistance of the more
ductile modes is controlled by gravity loads or by minimum reinforcement, while
that of more brittle ones is governed by the design seismic action. In structures of
low ductility design seismic internal forces are in the order of about two-thirds of
those resulting from purely elastic response to the design ground motion. For so
high design seismic forces, it is expected that the seismic action will control dimen-
sioning of every single member against all failure modes and there will not be any
undesirable overstrengths. Accordingly, capacity design requirements can be waived
to simplify the entire design process. Moreover, member ductility demands associ-
ated with the low global displacement ductility factor of low ductility structures, are
relatively low, even though inelastic deformation demands may not be uniformly
distributed throughout the system. Such low local ductility demands can be easily
accommodated with detailing for non-earthquake resistant members, which is easier
to design for and implement in-situ. So, the selection of a higher or lower ductility
level for a structure has very important implications on the design and construc-
tion effort. A designer who opts for higher ductility, should have at his/her disposal
more advanced design tools along with the experience and expertise necessary for
their use, as well as confidence in the construction crews for the implementation of
demanding member detailing.

1.4.2 The Trade-Off Between Strength and Ductility – Ductility
Classification in Seismic Design Codes

Most modern seismic codes provide more than one combinations of strength and
ductility. Some of them let the designer choose the strength-ductility combination,
depending on the particular features of the project. Others specify which combi-
nation is appropriate, depending on the seismicity of the site, the importance and
occupancy of the building and other design parameters.

European or US standards provide a few “discrete” strength-ductility combi-
nations, each one with its own well-defined rules for member dimensioning and
detailing. They are, therefore, most convenient for computational implementation
and routine application, although they limit significantly the choices available to the
designer.

1.4.2.1 Eurocode 8

Eurocode 8 allows trading ductility for strength through the provision of three alter-
native Ductility Classes (DCs):
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– Ductility Class Low (DC L),
– Ductility Class Medium (DC M), or
– Ductility High (DC H).

Buildings of DC L are not designed for any ductility but only for strength. Except
certain minimum conditions for the ductility of reinforcing steel, such buildings
have to follow only the dimensioning and detailing rules specified in Eurocode 2
(CEN 2004b) for non-seismic actions. They are designed against the earthquake
exactly as against other lateral actions, e.g. wind. Although they are expected to
respond elastically to the combination of its design seismic action with the concur-
rent gravity loads, they are entitled to a behaviour factor value of q = 1.5 (instead
of q = 1.0), attributed only to member overstrength over the seismic internal forces
they are dimensioned for. The sources of overstrength are:

– The systematic difference between the expected strength of steel or in-situ con-
crete from the corresponding design values: the mean strength is considered to
exceed normally the characteristic value by 8 MPa for concrete, or by about 15%
for reinforcing steel. Moreover, in dimensioning the characteristic strengths are
divided by the partial factors for materials to arrive at their design values.

– The fact that often the reinforcement is controlled by non-seismic actions and/or
minimum reinforcement requirements, etc.

– The use of the same reinforcement at the two cross-sections of a beam or column
across a joint, as determined by the maximum required steel area at these two
sections.

– The rounding-up of the number and/or diameter of reinforcing bars.

In regions of moderate or high seismicity DC L buildings are, in general, not cost-
effective. Moreover, as they do not have any engineered ductility, they may not have
a reliable safety margin against an earthquake significantly stronger than the design
seismic action. So, they are not considered as suitable for such regions. Eurocode
8 itself recommends using DC L only for “low seismicity cases”, for which it is
expected to be more economic and easier to apply. It is up to National Authorities,
however, to follow this recommendation or not. The definition of what is a “low
seismicity case” has also been left to National Authorities. Eurocode 8 recommends
that a “low seismicity case” be one where the design ground acceleration on rock,
ag, (including the importance factor of the building, γ I), does not exceed 0.08 g, or
that at the ground surface the site, agS is not more than 0.1 g (see Section 4.2.1 for
the definitions of ag and S).

Design of buildings for DC L is allowed by Eurocode 8 in cases beyond those of
“low seismicity” when in the horizontal direction considered the value of the seismic
design base shear (at the level of the foundation or of the top of a rigid basement)
calculated with a behaviour factor of q = 1.5 is less than the base shear due to the
design wind action, or any other lateral action for which the building is designed
using linear elastic analysis.
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Design for strength alone without engineered ductility is an extreme, only for
special cases. Within the fundamental case of seismic design, namely that of design
for ductility and energy dissipation, Eurocode 8 normally gives the option to design
for more strength and less ductility or vice-versa, by choosing between Ductility
Class Medium (DC M) or High (DC H).

Buildings of DC M or H have q-factors higher than the value of 1.5 considered
available thanks to overstrength alone. DC H buildings are entitled higher values
of q than DC M ones (see Section 1.4.3.1). They also have to meet more stringent
detailing requirements for members (see Tables 5.1, 5.2 and 5.3) and provide higher
safety margins in capacity design in shear (see Sections 1.3.6.2 and 1.3.6.3 for the
differences in the γ Rd values for the capacity design shear force of DC M and DC
H beams or columns, and Section 1.3.6.4 for differences in the shear magnification
factor ε for ductile walls). Fardis and Panagiotakos (1997a) have reported on the
detailed design of 26 concrete buildings – frame or frame-wall systems – accord-
ing to the pre-standard version of Eurocode 8 and (Panagiotakos and Fardis 2003,
2004) on the design of nine regular RC frame buildings to the EN-Eurocode 8. The
conclusion of both studies was that, although the total quantity of steel and con-
crete is essentially independent of the Ductility Class adopted for the design, the
higher the DC, the larger is the share of transverse reinforcement and of the rein-
forcement of vertical members in the total quantity of steel. Moreover, DC M and
DC H are roughly equivalent in terms of achieved performance under the design
seismic action. DC M is slightly easier to design for and implement in-situ and may
provide better performance in moderate earthquakes. DC H seems to provide larger
safety margins than DC M against local or global collapse under earthquakes (much)
stronger than the design seismic action. In high seismicity regions DC H may hold
some economic advantage. Its use there will be facilitated by the existing tradition
and expertise in seismic design and on-site implementation of complex detailing for
ductility.

Eurocode 8 itself does not link selection between the two higher ductility classes
to seismicity of the site or importance of the structure, nor puts any limit to their
application. It is up to countries to choose for the various parts of its territory and
types of construction therein, or – preferably – to leave the choice to the designer,
depending on the particular design project.

1.4.2.2 US Standards

US standards (BSSC 2003, ICC 2006) specify the combination of strength and
ductility depending on the seismicity of the site, the type of occupancy and the
importance of the building. To this end, they introduce “Seismic Design Categories”
A–F. A building is classified as A, if the (effective) peak ground acceleration (EPA)
and the 5%-damped elastic spectral acceleration at 1 s period, Sa1, are both below
0.067 g. The next threshold level for EPA or Sa1 is 0.133 g, below which a build-
ing is classified as B – or C if it houses an essential or hazardous facility. The next
threshold level is 0.2 g, below which a building is classified as C – or D for essen-
tial or hazardous facilities. For EPA or Sa1 above 0.2 g of a building is classified
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as D. If the value of Sa1 for the MCE (Maximum Considered Earthquake) over firm
rock exceeds 0.75 g, a building is classified as F if it houses essential or hazardous
facilities, or as E otherwise.

Buildings of “Seismic Design Category” A are only required to have a complete
tied-together lateral load resisting system designed for a lateral force of 1% of total
weight. “Seismic Design Category” B buildings may just be designed for the seis-
mic internal forces from linear analysis without special detailing, i.e., as “Ordinary
Moment Frames” (ACI 2008). “Seismic Design Category” C buildings are subject
to mild detailing requirements; concrete frames – but not walls – should satisfy the
(ACI 2008) requirements for “Intermediate Moment Frames”. Buildings in “Seis-
mic Design Categories” D, E or F should be detailed for high ductility, with “Special
Moment Frames” or walls of “special” ductility, entitled to larger force reduction or
response modification factors, R, than “Intermediate Moment Frames”.

According to ACI (2008), “Ordinary Moment Frames” are not subject to ductility
requirements. “Special Moment Frames” have very good global ductility, thanks to
the application of capacity design of columns in bending (see Section 1.3.4) and of
beams and columns in shear (see Section 1.3.6). They also have high local ductility,
thanks to the application of stringent detailing rules for the longitudinal and trans-
verse reinforcement of all types of members. “Intermediate Moment Frames” do not
have to satisfy the capacity design rule of columns in bending, Eq. (1.4), may follow
less demanding capacity design of beams and columns in shear (see Section 1.3.6.2)
and are subject to less stringent requirements for the longitudinal reinforcement of
beams and the transverse bars of columns.

1.4.3 Behaviour Factor q of Concrete Buildings Designed
for Energy Dissipation

For building structures designed for energy dissipation and ductility, the value of the
behaviour factor q, by which the elastic spectrum used in linear analysis is divided,
depends:

– on the ductility class selected for the design,
– on the type of lateral-force-resisting-system, and
– (in Eurocode 8) on the regularity of the structural system in elevation.

The value of the q-factor is linked, indirectly (through the ductility classifica-
tion) or directly (as in Eurocode 8, see Chapter 5), to the local ductility demands in
members and hence to the corresponding detailing requirements.

1.4.3.1 Eurocode 8

The overstrength of materials and elements is presumed to correspond to a q-
factor value of 1.5, which is assigned to DC L buildings without any association to
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ductility. This value is also incorporated in the q-factors of buildings of DC M or
H. Besides, overstrength of the structural system due to redundancy is explicitly
included in the q-factor, through a multiplicative factor αu/α1. This is the ratio of
the seismic action that causes development of a full plastic mechanism, to the seis-
mic action at formation of the first plastic hinge in the system – both in the presence
of the gravity loads considered concurrent with the design seismic action. If α1 is
taken as a multiplicative factor on seismic action effects from the elastic analysis
for the design seismic action, its value may be computed as the lowest value of the
ratio (MRd–MV)/ME over all member ends in the structure. MRd in this case is the
design value of the moment capacity at the member end; ME and MV are the bend-
ing moments there from the elastic analysis for the design seismic action and for
the concurrent gravity loads, respectively. The value of αu may be found as the ratio
of the base shear at development of a full plastic mechanism according to a nonlin-
ear static (“pushover”) analysis (with the gravity loads concurrent with the seismic
action maintained constant in the course of the analysis, while lateral forces mono-
tonically increase, according to Section 4.6.1), to the base shear due to the design
seismic action (Fig. 1.12). For consistency with the calculation of α1, the moment
capacities at member ends in the pushover analysis should be the design values,
MRd. If the mean values of moment capacities are used instead, as customary in
pushover analysis, the same values should also be used for the calculation of α1.

In most cases the designer will not consider worth doing iterations of pushover
analyses and design based on elastic analysis, just for the sake of computing the
ratio αu/α1 for the q-factor. For this reason, Eurocode 8 provides default values of
this ratio. For buildings regular in plan, the default values are:

– αu/α1 = 1.0 for wall systems with just two uncoupled walls per horizontal direc-
tion;

– αu/α1 = 1.1 for:

• one-storey systems and frame-equivalent dual (i.e., frame-wall) ones, and
• wall systems with more than two uncoupled walls in the horizontal direction

considered.

Fig. 1.12 Definition of
factors αu and α1 on the basis
of base shear v top
displacement diagram from
pushover analysis
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– αu/α1 = 1.2 for:

• one-bay multi-storey frame systems and frame-equivalent dual ones,
• wall-equivalent dual systems, and
• coupled wall systems.

– αu/α1 = 1.3 for multi-storey multi-bay frames or frame-equivalent dual systems.

In buildings which are irregular in plan according to the classification criteria of
Eurocode 8 presented in Sections 2.1.5 and 2.1.6, the default value of αu/α1 is the
average of:

– 1.0, and
– the default values given above for buildings regular in plan.

Values higher than the default ones may be used for αu/α1, up to a maximum of
1.5, provided that the higher value is confirmed through a pushover analysis, after
design with the resulting q-factor.

The various types of structural systems that appear in the definition of the above
default values of αu/α1 are defined in Eurocode 8 as follows:

In a “frame system” or in a “wall system” the seismic base shear taken, accord-
ing to the analysis, by frames of beams and columns, or by walls, respectively,
designed and detailed for earthquake resistance is at least 65% of the total. In-
between “frame” and “wall” systems are the “dual systems”. These are classified
as “wall-equivalent dual” or as “frame-equivalent dual”, if the fraction of the base
shear resisted by walls is more, or less, than 50%, respectively. A wall system is
considered as a “coupled wall system”, if more than 50% of the total wall resistance
is provided by coupled walls. According to Eurocode 8, two walls are considered as
coupled, if they are connected together (normally at each floor level) through reg-
ularly spaced beams that meet special ductility conditions (”coupling beams”) and
this coupling reduces by at least 25% the sum of the bending moments at the base
of the individual walls (the “piers”), compared to that of the two “piers” working
separately.

For concrete buildings which are characterised as regular in elevation according
to criteria 1–6 in Section 2.1.7, Eurocode 8 specifies the values of the q-factor given
in Table 1.1.

Table 1.1 Basic value, qo, of behaviour factor for heightwise regular concrete buildings in
Eurocode 8

Lateral-load resisting structural system DC M DC H

Inverted pendulum system 1.5 2
Torsionally flexible structural system 2 3
Uncoupled wall system, not belonging in one of the two categories above 3 4αu/α1

Any structural system other than those above 3αu/α1 4.5αu/α1
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“Inverted pendulum systems” are defined as those with at least 50% of their total
mass in the upper third of the height, or with energy dissipation at the base of a
single element. One-storey frame systems with all columns connected at the top (via
beams) in both horizontal directions and maximum value of normalised axial load
νd in the combination(s) of the design seismic action with the concurrent gravity
loads not greater than 0.3 are excluded. “Inverted pendulum systems” are entitled
very low q-factors (the q-factor for those of DC M does not exceed the value of
1.5 available thanks to overstrength alone, without design for ductility), because
of concerns for potentially large P-Δ effects or overturning moments and reduced
redundancy. However, inverted pendulum buildings seem unduly penalised, in view
of the q-factors of 3.5 assigned by Eurocode 8 to bridges with concrete (single-)piers
and more than 50% of the mass at the level of the deck. To alleviate this penalty,
Eurocode 8 permits increasing the value of qo for inverted pendulum systems that
are shown capable of energy dissipation in their potential plastic hinges higher than
normal for their chosen Ductility Class.

A system is defined in Eurocode 8 as “torsionally flexible”, if at any floor the
radius of gyration of the floor mass exceeds the torsional radius in one or both of the
two main directions of the building in plan. As emphasised in Section 2.1.6, such
systems are sensitive to torsional response about a vertical axis.

The values of q in Table 1.1 are called basic values, qo, of the q-factor. They
are the ones linked to ductility demands and member detailing (see Chapter 5). For
the calculation of the seismic action effects from linear analysis, the value of q is
reduced with respect to qo in the following cases:

– In buildings which are irregular in elevation according to the classification criteria
of Eurocode 8 presented in Section 2.1.7, the q-factor value is reduced by 20%.

– In wall, wall-equivalent dual or “torsionally flexible” systems, the value of q is
the basic value qo (reduced by 20% if there is irregularity in elevation), multiplied
by a factor equal to (1 + αo)/3, but with values between 0.5 and 1, where αo is the
(mean) aspect ratio of the walls in the system (sum of wall heights, hwi, divided
by the sum of wall cross-sectional lengths, lwi). This factor reflects the adverse
effect of a low shear span ratio on the ductility of walls. It is less than 1 if αo

is less than 2, which corresponds to a mean shear span ratio of the walls in the
system less than 1.33 (squat, typically non-ductile walls).

The above reductions of q notwithstanding, DC M and H buildings are entitled to
a final q-factor value of 1.5, considered to be always available owing to overstrength
alone.

A building that is not characterised as an “inverted pendulum” or a “torsion-
ally flexible system” can have different q-factors in the two main horizontal direc-
tions, depending on the structural system and its vertical regularity classification in
these two directions, but not due to ductility class, which is the same for the entire
building.
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1.4.3.2 US Standards

The force reduction or response modification factor R depends on the structural
system and its ductility. The force reduction factors R specified by US standards
(BSSC 2003, SEAOC 1999, ICBO 1997, ACI 2008) are considered to be composed
of the following factors:

– One factor due to system ductility, equal to the ratio of the total lateral force
for elastic response, to the actual lateral force resistance at full yielding of the
system.

– Another factor due to overstrength, denoted by Ωo, and equal to the ratio of the
actual resistance at full yielding to the prescribed design forces. This factor is
the counterpart of the product 1.5αu/α1 representing overstrength of materials,
elements and the structural system in Eurocode 8.

The NEHRP provisions (BSSC 2003) setΩo = 3 in frames andΩo = 2.5 in those
dual systems where the frame provides at least 25% of the lateral force resistance
and in systems that carry gravity loads through a space frame and lateral loads via
concrete walls (“building frame systems”). Inverted pendulum systems have Ωo =
2.0. The overstrength factorΩo is also used to calculate the design shear force using
an alternative to capacity-design, namely asΩo times the value from linear analysis.
This amounts to calculating the seismic moments from the composite R factor and
the seismic shears from the part of the R factor which is due to system ductility
alone. In (SEAOC 1999) Ωo = 2.8, except in inverted pendulum systems, where
Ωo = 2.0.

The composite R factor depends on the structural system. Values quoted below
for concrete buildings are according to BSSC (2003), with the (SEAOC 1999) values
given in parenthesis:

– The highest value of R = 8 (8.5) is for “Special Moment Frames”.
– “Intermediate Moment Frames” have R = 5 (5.5).
– “Ordinary Moment Frames” have R = 3, due to overstrength alone (R = Ωo).
– Systems where gravity loads are taken by a 3D frame (“building frame”) and the

full lateral resistance is provided by concrete walls have R = 6 (5.5) if the walls
are of “special” ductility, or R = 5 if they are of “ordinary”.

– Systems where gravity loads are taken by walls (“bearing walls”) and the full
lateral resistance is provided by the same or other concrete walls have R = 5
(4.5) for walls of “special” ductility or R = 4, for “ordinary”.

– Dual systems where “Special Moment Frames” provide at least 25% of the lateral
force resistance (with the rest provided by walls) have R = 8 (8.5) if the walls are
of “special” ductility (coupled walls included), or R = 6 if they are of “ordinary”.

– Dual systems where “Intermediate Moment Frames” provide at least 25% of the
lateral force resistance (the rest being provided by walls) have R = 6.5 (6.5) for
walls of “special” ductility (coupled walls included) or R = 5.5 for “ordinary”.

– Inverted pendulum systems have R = 2.5 (2.2) if their columns are of “special”
ductility, or R = 1.25 if the columns are “ordinary”.
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Recent efforts to rationalize the R factor of US codes through system ductil-
ity and overstrength notwithstanding, the R values are still based on performance
in past earthquakes and economic considerations. The R-factor values above were
developed mostly on the basis of past performance of frames with multiple bays and
with all their connections moment resisting. For reasons of economy and functional-
ity, recent years have seen wider application of frames with fewer bays, supporting
large floor areas. To counter the reduced redundancy of such systems, in buildings
of “Seismic Design Category” D, E or F the R factor is reduced by a redundancy
factor ρ, taking values between 1.0 and 1.3 (BSSC 2003) or 1.5 (SEAOC 1999). In
(SEAOC 1999) ρ is the largest calculated in all storeys within the lower two-thirds
of the building. Its value increases with increasing floor area and with the maxi-
mum (over all storeys for a given horizontal direction) fraction, rmax, of a storey
shear resisted by a single component (see Section 2.1.9 and Eqs. (2.3) and (2.4)
for details). In dual systems with at least 25% of the lateral force resisted by the
frame (SEAOC 1999) reduces the so-computed ρ-value by 20%. In (BSSC 2003) ρ
is equal to 1.0, unless any storey where the storey shear exceeds 35% of the base
shear depends on a single wall or pier of a coupled wall (including their connection
to the rest of the lateral load resisting system) or on (both ends of) a single beam,
for more than one-third of the storey’s shear resistance or for the storey’s torsional
regularity (with a regular storey defined as one where the interstorey displacement
at any point on the perimeter does not exceed by 40% or more the average in the
storey). In these other cases ρ is taken equal to 1.3 (BSSC 2003).



Chapter 2
Conceptual Design of Concrete Buildings
for Earthquake Resistance

Like Chapter 5, this chapter is devoted exclusively to the seismic design of new
buildings. It emphasises the importance of the layout of the structural system for the
building’s seismic performance and highlights the principles to be followed and the
pitfalls to be avoided during the initial stage of the design process, notably during
conceptual design. Examples of unsatisfactory performance of concrete buildings
with poor structural layout are amply given.

The three main types of structural systems used in concrete buildings for lateral-
load resistance:

– frames of beams and columns,
– structural walls, and
– their combination in a “dual” system

are presented, along with their advantages and disadvantages and with guidance for
the preliminary sizing of the components of these systems during conceptual design.

The importance of the layout of the foundation system for the seismic perfor-
mance and the design of the superstructure is emphasised, the pros and cons of the
available options of shallow foundation systems are highlighted and general rules
for the seismic design of the foundation system are presented.

As in Chapter 1, certain emphasis is given to the relevant provisions of the Euro-
pean Standard for the seismic design of new buildings (CEN 2004a), with their US
counterparts presented also for comparison.

2.1 Principles and Rules for the Conceptual Design
of Building Structures

2.1.1 The Importance of Conceptual Design
for Earthquake Resistance

Unlike the two other main phases of design, namely analysis and detailed design,
which are now fully governed by the use of the computer, conceptual design has not
been penetrated yet by computers, and in all likelihood it never will. So, conceptual

47M.N. Fardis, Seismic Design, Assessment and Retrofitting of Concrete Buildings,
Geotechnical, Geological, and Earthquake Engineering 8, DOI 10.1007/978-1-4020-9842-0 2,
C© Springer Science+Business Media B.V. 2009



48 2 Conceptual Design of Concrete Buildings for Earthquake Resistance

design is the phase where the designer can make best use of his/her creativity, imag-
ination, resourcefulness, capability for innovation and experience, without any com-
petition from the new “master” of the design office, the computer.

In conceptual design of a structure:

– the structural materials are chosen,
– the type and layout of the structural system is selected,
– preliminary sizing of structural members – at least of important ones – takes

place, and
– the method of construction is (implicitly or explicitly) specified.

In this phase of the design process, the structural engineer uses judgement and
creativity and profits from his/her experience to examine alternative options and
assess their cost-effectiveness for the fulfillment of the structure’s performance
requirements for:

– safety,
– serviceability, and
– durability

within the limits of the design constraints posed by:

– the architectural layout and functionality considerations,
– site and soil conditions,
– the available budget,
– considerations of construction time and scheduling,
– the available materials, workmanship and equipment,
– etc., including special requirements of the owner.

If the building is to be earthquake-resistant, then the choice of structural layout
and structural materials in conceptual design should aim at reducing the uncertainty
of its seismic response, promoting its satisfactory seismic performance and facili-
tating its eventual detailed design in a cost-effective way.

The governing consideration in the conceptual design of structures not controlled
by the seismic action is the maximisation of their cost-effectiveness, within the lim-
itations posed by the performance requirements and the design constraints. Safety is
seldom an overriding concern in the conceptual design of non-earthquake-resistant
structures, as it is essentially ensured by the subsequent design phases, notably by
the application of State-of-the-Art analysis methods and member dimensioning and
detailing in accordance with design codes. By contrast, if the design is governed
by earthquake resistance, the structural layout is the key factor that determines the
seismic performance or vulnerability of the building. Damage in strong earthquakes
shows that, all other design conditions being the same (design code, computational
methods and tools, professional skill and design effort), irregular and geometri-
cally complex structures perform on average worse than simple and regular ones.
So earthquake resistance should be a compelling consideration in the conceptual
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design from the very beginning. The designer should never configure first the struc-
tural system for resistance to gravity loads and then try to add features for earthquake
resistance as a follow up.

It is impossible (or prohibitively expensive) to fully make up for inappropriate
conceptual design choices during the subsequent design stages, e.g. through sophis-
ticated analysis, extraordinary attention to detailing, larger member sizes and more
reinforcement, etc. Faulty decisions made at the conceptual design stage can be cor-
rected later only by revisiting and reversing them. Otherwise, the subsequent design
stages can only mitigate the adverse consequences of these decisions, always at a
high cost and at the expense of seismic performance. So, the designer would better
make sure that his/her first steps during design are in the right direction.

It is normally hard to achieve a proper structural layout, if the structural
designer’s task starts after the architectural design is finished. A good conceptual
design can more easily be achieved if the structural engineer communicates and
interacts with the architect from the early stages of architectural design. Sometimes
a minor and painless change in the architectural layout greatly facilitates the task of
the structural designer.

In the Preamble conceptual design of earthquake-resistant buildings has been set
within the context of the overall structural design for earthquake resistance. Its con-
nection to the subsequent phases of the design procedure was pointed out. Chapter
1 emphasised that control of the inelastic seismic response is a prime aim of the
design for earthquake resistance and that capacity design is the major instrument
of detailed design for the achievement of that aim. In this connection, Chapter 2
focuses on what the designer should pursue or avoid beforehand, in the conceptual
design phase, to enhance the effectiveness of capacity design and of other codified
design rules aiming at controlling the inelastic seismic response.

The rules of current seismic design codes have been developed mainly for fairly
simple and regular structural layouts. The more complex and irregular the struc-
tural layout, the further is the structure from the limits of applicability of present
day design methods and codes. In particular, a simple and regular structural lay-
out reduces the deviation of the actual and strongly inelastic response to the design
seismic action from the presumed response calculated by simplified elastic analy-
sis and used as the basis of member dimensioning. It is reminded in this respect
that in current force-based codified seismic design the design seismic action is –
about – q-times stronger than that causing purely elastic response. So it induces
significant inelastic deformations in most, if not all, structural members. The per-
formance of the structure under the design seismic action will be satisfactory, if the
deformation capacity of these members – as determined by their detailing – exceeds
the corresponding inelastic deformation demands. These demands are not explicitly
computed during the design process. They are assumed instead to be – roughly –
proportional to those elastically computed under the design seismic action reduced
by the q-factor (the proportionality constant being equal to q). This assumption is
not far from reality, provided that the structural layout is fairly simple and regular,
as has been presumed during the development of present-day seismic design codes.
If it isn’t, the global response may be completely different from what is predicted by
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elastic analysis, with inelastic deformation demands possibly concentrated in certain
elements or parts of the structure and leading to local failures. So, if the designer
wishes to design a cost-effective earthquake-resistant structure profiting from the
relatively high q-factor values allowed by codes – in the order of 5 or more – then
he/she should select a simple and clear structural system. Otherwise, he/she would
better opt for a lower value of q, so that the seismic response under the design earth-
quake is within the elastic range and within the limits of applicability of elastic
analysis.

Note that the widespread use of reliable computer codes for the elastic analy-
sis of structures in 3D has made some designers overconfident of their ability to
produce a safe seismic design, even for very complex and irregular structural lay-
outs. Such confidence is warranted only for well-defined loadings (e.g., for gravity
loads) and provided that the designer has the experience and skills necessary for the
construction of a mathematical model representing well the complexities of the real
structure.

2.1.2 Fundamental Attributes of a Good Structural Layout

By-and-large conceptual design is subjective and personal. It significantly depends
on the designer’s experience, creativity and judgment. There are, however, certain
fundamental principles to be taken into account in order to arrive at a structural
concept that is considered sound for earthquake resistance. Accordingly, important
features of a good layout of a building structure are:

– Clarity of the lateral-load-resisting system.
– Simplicity and uniformity.
– Symmetry and regularity in plan.
– Large torsional stiffness about the vertical.
– Heightwise regularity of geometry, mass and lateral stiffness.
– Regularity of lateral resistance in elevation.
– Redundancy of the lateral-load-resisting system.
– Continuity of the force paths, without local concentrations of force or deforma-

tion demands.
– Effective horizontal connection of vertical elements at all floor levels.
– Minimal total mass.
– Minimal adverse effects of elements not considered as part of the lateral-load

resisting system and of masonry infills in particular.

These features are elaborated in the following Sections 2.1.3–2.1.13.

2.1.3 Clear Lateral-Load-Resisting System

The structural system resisting the seismic action should be crystal clear, not only to
whom that chose it but to any competent designer as well. For a concrete building,
a clear lateral-load-resisting system is one consisting of certain plane frames and/or
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structural walls arranged in two orthogonal horizontal directions. Any single plane
frame should be continuous from one side of the building plan to the opposite, with-
out interruptions (i.e. with beams connecting adjacent columns of the frame at all
floors) or offsets, or indirect supports of some beams on others. Note that indirectly
supported beams are much less effective as frame members and introduce significant
uncertainty regarding interaction with the supporting beam through torsion.

The cross-sectional shape and dimensions of walls should be consistent with
their modelling and dimensioning as prismatic members. Complex composite cross-
sections and openings – staggered or not – in the wall should be avoided.

The layout of the structural system that supports the gravity loads is usually dic-
tated by architectural design. Sometimes this layout does not lend itself to building
a clear system for earthquake resistance (for instance, when the arrangement of
columns in plan is very irregular). In such cases the system supporting the gravity
loads should have low lateral stiffness: e.g., with small column sections, or without
beams between irregularly arranged columns (as in a flat slab). A clear lateral-load-
resisting system should be provided instead, having lateral stiffness and resistance
sufficient to resist 100% of the design seismic action. Such a system may con-
sist of certain appropriately arranged structural walls. Strong perimeter frames is
another option.1 The designer may use to advantage the facility of primary versus
secondary elements provided by modern seismic design codes (including Eurocode
8, as highlighted in Section 4.12), to resist the full seismic action by a proper lateral-
force resisting system, without relying at all on structural members or combinations
thereof that are not appropriate for earthquake resistance.

The expected inelastic response mechanism, i.e. the location of plastic hinges,
should also be crystal clear. Plastic hinges should be limited to the ends of beams
and to the lower-most cross-section of vertical elements.2 The rules of modern seis-
mic codes for capacity design of columns at their connections with the beams (see
Section 1.3.4) and of walls in all sections above the base (see Section 1.3.5) are
meant to ensure that plastic hinges will indeed form in beams. Nevertheless, the
designer should not rely too much on the mechanistic application of these rules:
he/she should promote formation of plastic hinges at the desired locations by avoid-
ing (significant) reduction of the cross-sectional dimensions of vertical elements
from one storey to the next and by selecting from the very beginning large col-
umn sizes. It is reminded that certain design codes (including Eurocode 8) allow
plastic hinging above the base of certain columns: e.g. in columns of dual systems
dominated by the structural walls, or in a few interior columns of multiple-column
frames. Such columns and the location of plastic hinges in them should be clearly
identified in the conceptual design phase.

1The beams of such frames may be hard to dimension and detail for the large alternating shear
forces that may develop from the combination of the low shear forces due to gravity and the large
shears due to the seismic action.
2If the flexural capacity of tie-beams or foundation beams is small with respect to that of the
vertical element they are connected to, plastic hinges may develop in them, and – depending on the
resistance of the foundation soil against rotation – may prevent plastic hinging at the base of the
vertical element.
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2.1.4 Simplicity and Uniformity in the Geometry
of the Lateral-Load-Resisting System

Simplicity and uniformity goes hand-in-hand with clarity (see Section 2.1.3) and
regularity (see Sections 2.1.5 and 2.1.7). If, in each one of the two orthogonal princi-
pal horizontal directions, the lateral-load-resisting system consists of a few identical
and regularly arranged structural walls, then seismic force and deformation demands
at every storey will be uniformly distributed to all walls, without undue concen-
tration of deformation demands to a single location or wall and consequent early
failure. Lateral-load-resisting systems consisting of identical and regularly spaced
plane frames, with all bays having the same length and member cross-sections, will
also have uniformly distributed seismic demands. As a matter of fact, if the two exte-
rior columns of such a frame have about half the effective cross-sectional stiffness
and moment resistance of the interior columns, seismic demands (bending moments
and chord rotations) will be the same at all beam ends of a storey. Note that such
a choice is consistent with the requirement on the moment resistances of exterior
columns to exceed that of a single beam according to Section 1.3.4 and Eq. (1.4),
instead of that of two beams as for interior columns.

The price to pay for complete uniformity is reduced (or no) redundancy. Plas-
tic hinges will develop almost simultaneously wherever they are expected to form.
The system will have limited overstrength after formation of the first plastic hinge
and little opportunity to redistribute forces from certain locations to others. This is
against the aims advanced in Section 2.1.9.

2.1.5 Symmetry and Regularity in Plan

One of the Eurocode 8 (CEN 2004a) criteria for building regularity in plan is approx-
imate symmetry of lateral stiffness and mass with respect to two orthogonal hori-
zontal axes.

If at every storey the structural system and the mass distribution in plan are fully
symmetric with respect to two orthogonal horizontal axes, then the response to the
translational horizontal components of the seismic action will not involve torsion
about a vertical axis. A rotational component of the ground motion about such an
axis, possibly arising from differences of the translational component between oppo-
site sides of the building foundation, may induce, though, such a torsional response.

The more torsional the response, the larger is the difference in seismic displace-
ments between opposite sides of the building and the larger the local deformation
demands on the side that develops the larger displacement (called “flexible side”).
Unless sufficiently designed against these larger seismic demands, the side of the
building experiencing them may yield earlier than the opposite (“stiff”) side. The
resulting reduction of the instantaneous effective stiffness of the “flexible side” may
exacerbate the imbalance in stiffness and increase further the torsional response,
possibly leading to early failure of certain elements of the “flexible” side. Figure 2.1
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Fig. 2.1 Collapse of a building due to torsional response about a stiff shaft at the corner, Athens
(1999) earthquake

shows the example of a 3-storey building (plus penthouse) that had lateral stiffness
and resistance concentrated near one of the corners owing to a staircase and elevator
shaft. The rest of the floor had a large open area. The response to the 1999 Athens
earthquake was strongly torsional about the “stiff” and “strong” corner. The verti-
cal elements on the other sides (the “flexible” ones) experienced large deformation
demands and failed.

The lack of symmetry in plan is often measured in terms of the “static eccentric-
ity” between the “centre of mass” of a storey (centroid of overlying masses, denoted
by CM) and the “centre of rigidity” (CR) or the “centre of resistance” (CV). The
“centre of rigidity” is important during the elastic response, while the “centre of
resistance” may become important when the building responds well in the inelastic
range.

A useful guide for what constitutes an acceptable magnitude of the “static”
eccentricity, e, derives from one of the Eurocode 8 (CEN 2004a) criteria for reg-
ularity in plan. According to that criterion, for a building to be considered as regular
in plan, the “static” eccentricity, e, between the floor centre of mass and the storey
centre of lateral stiffness should not exceed 30% of the torsional radius, r, of the
corresponding storey in each of the two orthogonal horizontal directions, X and Y,
of near-symmetry:

ex ≤ 0.3 rx ; ey ≤ 0.3 ry (2.1)

The “torsional radius” rx in Eq. (2.1) is defined as the square root of the ratio of:

– the torsional stiffness of the storey with respect to the centre of lateral stiffness,
to

– the storey lateral stiffness in the Y direction (orthogonal to X)

For ry the storey lateral stiffness in the X direction (orthogonal to Y) is used in
the denominator.

The centre of lateral rigidity (CR) is defined as the point in plan through which
application to the elastic structure of lateral forces produces only translation of the
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individual floors, without twisting of any floor. It can be determined from separate
analyses in the two orthogonal horizontal directions of the building, with all nodal
displacements at each floor constrained to be the same in the direction of the applied
lateral loads and zero in the orthogonal direction. Then the centre of lateral rigidity
is determined at each floor as in (Cheung and Tso 1986, Tso 1990), namely as the
point of application of the resultant of the forces applied on the floor in the direction
of the applied lateral loads by the members above and below. Conversely, any set of
storey torques (i.e. of moments with respect to the vertical axis, Z) produces only
rotation of the floors about the vertical axis that passes through the centre of lateral
stiffness, without translation of that point in X and Y at any floor. If such a point
exists and is independent of the heightwise distribution of the storey lateral forces,
the torsional radius is unique and well-defined. It can be computed by applying to
the building separately:

– a set of storey torques, Ti, and
– a set of storey forces in the horizontal direction of interest but through the

(unique) centre of lateral stiffness, with magnitudes proportional to those of the
corresponding storey torques: Fi = Ti/c, and an arbitrary choice of the lever of
arm, c.

The torsional stiffness is then defined as the ratio of:

– the storey torsional moment (sum of all storey torques applied above and at storey
i), to

– the corresponding storey twist with respect to the base of the building.

Similarly, the lateral stiffness is defined as the ratio of:

– the storey shear, to
– the corresponding horizontal displacement of the storey with respect to the base.

If the centre of lateral rigidity is independent of the heightwise distribution of
the storey lateral forces, the so-computed value of r is also invariant and unique,
irrespective of the heightwise pattern of the storey torques, Ti, and of the storey
forces, Fi = Ti/c.

Unfortunately, the centre of lateral rigidity, CR, as defined above, and the tor-
sional radius, r, are unique and independent of the lateral loading only in single-
storey buildings. In buildings with more storeys the centre of lateral rigidity depends
on the distribution of lateral loading with height. This is especially so if the structural
system consists of sub-systems that develop different patterns of storey horizontal
displacements under the same set of storey forces.3 Neglecting the dependence of
CR on the heightwise distribution of lateral loading, this distribution is commonly
chosen the same as that of (equivalent) lateral forces in the lateral force method of
analysis (i.e. proportional to the product of storey mass, mi, times its elevation from

3As pointed out in Section 2.2.3, under lateral loading frames exhibit a shear-beam-type of lateral
displacements, while walls behave more like vertical cantilevers.
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the base, zi, see Section 4.3.3). Even then, in buildings that are strongly irregular in
elevation and/or have a dual (frame-wall) structural system, the planwise location
of the storey CR may not vary smoothly along the height of the building. It may
be very different at adjacent storeys and sometimes even fall outside the perimeter
of the framing plan (Kosmopoulos and Fardis 2008). Section 2.4.2 (and Fig. 2.22)
exemplifies erratic variations of the storey CR, denoted there as CR-effective.

A convenient approximation of the centre of lateral rigidity may be obtained as
follows. A first analysis of the elastic structure is carried out under a set of storey
torques proportional to the product of storey mass, mi, times elevation from the base,
zi (as for the storey lateral forces, Fi, in the lateral force method of analysis).The
centre of twist (CT) of each floor due to these storey torques Ti is geometrically
determined. The (horizontal projection of the) centre of twist at elevation z from the
base about equal to 80% of the total building height, H, from this analysis may be
taken as the centre of lateral stiffness of the building, because a set of horizontal
forces, Fi, proportional to mizi and applied at floor levels through that point pro-
duces translation of the individual storeys with minimum (in a least-squares sense)
twist about the vertical. Once the centre of twist at z = 0.8H due to these storey
torques is determined, another elastic analysis is carried out for each one of the two
orthogonal horizontal directions, this time under a set of storey horizontal forces,
Fi, in that direction, numerically equal to Ti of the first analysis and applied to the
storey masses. Then, for the calculation of the torsional radius, r:

– the torsional stiffness at the numerator is computed as the ratio of the total applied
torque,

∑
i

Ti = ∑
i

Fi , to the resulting rotation θ0.8H at z=0.8H from the 1st

elastic analysis, and
– the lateral stiffness in the denominator is computed as the ratio of total applied

shear,
∑

i
Fi , to the displacement δ0.8H at z=0.8H in the horizontal direction of

the forces Fi, from the 2nd elastic analysis.

For length units taken as for the unit ratio of
∑

i
Ti = ∑

i
Fi , r is equal to

r = √
(δ0.8H/θ0.8H).

Section 4.10.5.2 and Fig. 4.14 exemplify the centre of twist (CT) in a heightwise
regular building consisting of sub-systems that develop similar patterns of storey
horizontal displacements under storey horizontal forces Fi proportional to mizi. In
that case CT is close to the centre of lateral rigidity determined rigorously as out-
lined above and denoted in Fig. 4.14 as CR-effective. In that case, as well as in the
heightwise strongly irregular buildings of Sections 2.4.2 (Fig. 2.22) and 4.10.5.3
(Fig. 4.19), composed of sub-systems with dissimilar patterns of storey horizontal
displacements under storey forces Fi proportional to mizi (walls and frames), point
CT varies smoothly from storey to storey, although the rigorous centre of rigidity,
CR-effective, does not.

For single-storey buildings, where the centre of lateral rigidity, CR, and the tor-
sional radius are independent of the loading pattern, they may be established in
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approximation from the moments of inertia of the cross-sections of the vertical ele-
ments, neglecting the effect of beams, as:

xCR =
∑(

x E Iy
)

∑(
E Iy

) ; yCR =
∑

(yE Ix )∑
(E Ix )

(2.2)

rx =
√∑[

(x − xCR)2 E Iy + (y − yCR)2 E Ix
]

∑(
E Iy

) ;

ry =
√∑[

(x − xCR)2 E Iy + (y − yCR)2 E Ix
]

∑
(E Ix )

(2.3)

In Eqs. (2.2) and (2.3) EIy and EIx denote the section rigidities for bending within
a vertical plane parallel to horizontal directions X or Y, respectively (i.e. about an
axis parallel to axis Y or X, respectively).

Equations (2.2) and (2.3) may be used to determine the centre of lateral rigidity
and the torsional radius also in multi-storey buildings, provided that their structural
system consists of sub-systems that develop similar patterns of storey horizontal
displacements under storey horizontal forces Fi proportional to mizi: namely only
moment frames (exhibiting a shear-beam type of horizontal displacement pattern),
or only walls (deflecting like vertical cantilevers). For wall systems, in which shear
deformations are also significant in addition to the flexural ones, an equivalent rigid-
ity of the section should be used in Eqs. (2.2) and (2.3). Unlike the general and more
accurate methods outlined in the previous paragraphs, which yield a single pair of
rx and ry for the entire building, whenever the cross-section of vertical elements
changes from storey to storey the approximation of Eqs. (2.2) and (2.3) gives differ-
ent pairs of rx and ry at different storeys.

US codes base the definition of irregularity in plan on the planwise-variation
of floor displacements from the analysis, due to the torsional component of the
response:

– A building is considered as “irregular in plan”, if, at any point of a floor, the floor
displacement exceeds by 20% or more the mean floor displacement.

– The building is considered as “extremely irregular in plan” if, at any point of a
floor, the displacement exceeds by 40% or more the mean floor displacement.

These criteria are not useful for conceptual design, as they require carrying out
full-fledged elastic analyses. By contrast, the Eurocode 8 (CEN 2004a) criteria, Eqs.
(2.1), used together with the approximation in Eqs. (2.2) and (2.3), can be easily
checked at the conceptual design stage.

In buildings with masses and structural system perfectly symmetric in plan, the
centres of mass, rigidity and resistance coincide. If such coincidence is not due to
full actual symmetry of the structural system and of the masses but to other – “coin-
cidental” – reasons, it may be “accidentally” disturbed if the actual distributions of
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mass and/or stiffness or resistance of the members deviate from the ones considered
in the design calculations. Seismic design codes postulate an “accidental eccentric-
ity” of the storey masses in plan from their nominal location, to be combined with
the systematic “static” eccentricity in the most adverse way. For example, Eurocode
8 (CEN 2004a) and US codes, normally set the accidental eccentricity at 5% of the
parallel building dimension in plan (see Section 4.8). If the “static” eccentricity is
large, the effect of the “accidental eccentricity” on the calculated seismic response
is minor.

In most cases in practice full symmetry in plan of the structural system and of the
masses is not feasible. Fortunately, the elastic analysis in 3D which is required by
modern seismic design codes for asymmetric and irregular in plan buildings captures
sufficiently the inelastic torsional seismic response (Kosmopoulos and Fardis 2007)
and provides a reliable basis for seismic design against its effects.

If the building plan is far from rectangular, then the seismic response may not be
sufficiently predictable, even though the storey centres of mass may coincide with
those of rigidity and/or resistance. Eurocode 8 (CEN 2004a) sets another criterion
for the building to be considered as regular in plan, besides Eq. (2.1) above and
Eq. (2.4) in Section 2.1.6: that the outline of the structure in plan (as defined by the
outermost vertical elements) has a compact layout, delimited by a convex polygonal
line. Any single re-entrant corner of the perimeter should not leave an area between
the perimeter and the convex polygonal line enveloping it which is more than 5%
of the area inside the outline.4 L-, C-, H-, I- or X-shaped plans should respect this
condition, for the structure to be considered as regular in plan according to Eurocode
8 (CEN 2004a).

In seismic design practice floor diaphragms are commonly assumed to be rigid.
If this assumption is far from real, an element of uncertainty of the response is intro-
duced. Floors with T-, U-, H-, or L-shaped plan may not behave as rigid diaphragms
but deform within their horizontal plane, allowing flexible wings of the building to
oscillate separately. Moreover, significant in-plane tension may develop at re-entrant
corners of non-rectangular diaphragms, causing early cracking and tensile failure of
the diaphragm there and reducing its effectiveness in tying at floor levels the vertical
members into an integral system (see also Section 2.1.11). Sections 2.4.2 and 2.4.4
present two real cases of multi-storey buildings with L-shaped floor plan, where the
weakness of the floor diaphragm contributed to the collapse of one of the two wings
of the building.

If the building plan consists of more than one (approximately) rectangular parts
with significant plan dimensions, the problems and uncertainties associated with
the shape of the diaphragm may be avoided if the building is separated into two
or more independent structural systems of rectangular plan (e.g. in two such parts
for buildings with L- or T- shaped plan, or in three for U-, H- or Z- shaped plans,

4For a rectangular plan with a single re-entrant corner or edge recess, the limit is equivalent to,
e.g., a recess of 20% of the outer floor dimension in one direction and of 25% of that in the other.
If there are four such re-entrant corners or edge recesses, the limit is equivalent, to, e.g., a recess
of 25% of the outer floor dimension in both directions.
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etc.). The (seismic) joint between individual independent structural systems should
be sufficiently wide to prevent pounding under the design seismic action, or, in the
event that such pounding occurs, limit its consequences. The seismic joint may be
filled, locally or fully, with a soft non-structural material. Eurocode 8 (CEN 2004a)
prescribes the necessary width of the seismic joint as outlined below:

The maximum horizontal displacements of both independent structural units at
right angles to the joint between them are calculated as follows for the design seis-
mic action. If the analysis uses the design response spectrum (i.e. the elastic spec-
trum with 5% damping, divided by the behaviour factor q), then the floor displace-
ment due to the design seismic action is taken as that from the analysis times the
behaviour factor q adopted in the horizontal direction at right angles to the joint. If
the analysis is nonlinear, the floor displacements are determined directly from the
analysis for the design seismic action. Unless the analysis is of the response-history
type, it only gives the peak values of floor displacements during the response. To
account for non-concurrence of these peaks, the width of the seismic joint is taken
as the square root of the sum of the squares (SRSS) of the peak horizontal displace-
ments of the two units at the corresponding level. Eurocode 8 allows reducing the
so-calculated width of the joint by 30%, if at every storey the floors of the two adja-
cent independent structural units overlap in elevation, so that there is no danger of
one ramming vertical elements of the other within their clear height.

2.1.6 Torsional Stiffness About a Vertical Axis

If the building has a natural mode that is purely or primarily torsional about the
vertical and has natural period longer than the lowest (purely or predominantly)
translational mode, then accidental reasons may trigger twisting about the vertical,
with transfer of vibration energy from the response in the lowest translational mode
to the torsional one. The torsional response may induce significant and unforeseen
horizontal displacements along the perimeter of the building, possibly driving some
of the elements there to ultimate deformation.

Such situations should be prevented by proper conceptual design, notably by
selecting a structural system whose predominantly torsional natural period is (much)
shorter than the lowest translational period is each one of two orthogonal horizontal
directions.

The relevant Eurocode 8 criterion for regularity in plan (supplementing those
given in Section 2.1.5) is: The torsional radius of the storey in each of the two
orthogonal horizontal directions, X and Y, of near-symmetry is not less than the
radius of gyration of the floor mass:

rx ≥ ls ; ry ≥ ls (2.4)

The radius of gyration of the floor mass in plan, ls, is defined as the square root
of the ratio of:
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– the polar moment of inertia in plan of the overlying masses with respect to the
centre of mass of the floor, to

– the total overlying mass.

If the mass is uniformly distributed over the area of rectangular floors with
dimensions l and b (including the floor area outside the outline of the vertical ele-
ments of the structural system), then ls =

√
(l2 + b2)/12.

Fulfilment of Eq. (2.4) ensures that the period of the fundamental (primarily)
translational mode in each of the two horizontal directions, X and Y, is not shorter
than that of the lowest (primarily) torsional mode about the vertical axis Z. It pre-
vents also strong coupling of the torsional and translational response, which is con-
sidered as uncontrollable and potentially very dangerous. As a matter of fact, as ls is
defined with respect to the centre of mass of the floor in plan, the “torsional radii” rx

and ry that should be used in Eq. (2.4) for the desirable ranking of the three modes
to be ensured are those with respect to the storey centre of mass, rmx and rmy. These
are related to the “torsional radii” rx, ry with respect to the storey centre of lateral
stiffness as: rmx =

√
rx

2 + ex
2, rmy = √

ry
2 + ey

2.
If the elements of the lateral-load-resisting system are distributed in plan as uni-

formly as the mass, then Eq. (2.4) is satisfied at the margin. To meet Eq. (2.4), impor-
tant lateral-load-resisting elements close to the centre in plan (e.g., strong walls
around a service core housing elevators, stairways, vertical piping, etc.), should
be balanced with perimeter elements (walls or frames) at least twice as stiff as
those at the centre. Structural walls near the middle of all four sides of the plan,
as in Fig. 2.2(a), is a recommended means to achieve this goal. If placed near
the corners – where their effectiveness against torsional response may be signif-
icantly enhanced by giving them an L-shaped cross-section as in Fig. 2.2(b) –
the walls restrain the shrinkage and may cause cracking of the floors. Moreover,
it is difficult to provide fixity of corner walls at the foundation. Just three large
walls at the perimeter as in Fig. 2.2(c) may be effective from the point of view
of torsional stiffness about the vertical, but are less redundant against yielding
or failure of just one wall. If the early-yielding wall is one of the two parallel
ones, torsional stiffness may be significantly reduced. If it is the single wall in
its direction, the lateral stiffness and strength in that direction may decrease very
much.

(a) (b) (c)

Fig. 2.2 Arrangement of walls in plan: (a) preferable; (b) restraining the floors and difficult to
provide foundation at the corners; (c) vulnerable in case of failure of an individual wall
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2.1.7 Geometry, Mass and Lateral Stiffness Regular in Elevation

If the storey mass, or the horizontal dimensions, or the storey lateral stiffness of
the building change significantly from storey to storey, then the shape of the fun-
damental mode in the two orthogonal horizontal directions may significantly differ
from the heightwise linear one underlying the distribution of lateral forces to the
individual floors postulated by most seismic design codes in the framework of the
“equivalent static” or “lateral force” method of linear seismic analysis. So, most
seismic design codes, including Eurocode 8 (CEN 2004a), do not allow using this
procedure for heightwise irregular buildings.

Examples of significant heightwise variation of storey lateral stiffness are the
following:

– A significant reduction in the cross-section (or even an interruption) of one or
more important vertical elements from one storey to the next.

– A storey height significantly shorter than in the rest of the building (e.g., a “ser-
vice” storey).

– A floor not extending throughout the building plan at a certain level (e.g., at a
mezzanine).

– A storey significantly taller than the others (e.g., the ground storey, if the street
level use, for retail, parking, etc. is completely different from the standard storeys
above).

Figure 2.3 shows collapses of the upper floors in buildings with significant set-
backs and Fig. 2.4 collapses at intermediate floors where the stiffness or strength of
vertical elements was abruptly reduced.

Concentration of inelastic deformation demands at the level(s) where a drastic
change in mass, geometry or storey stiffness takes place cannot be prevented solely
through the choice of the method for linear analysis. Extreme irregularities in ele-
vation, such as an increase in plan dimensions from the ground to the roof, or a
large reduction in the cross-section (or even interruption) of important vertical ele-
ments from the upper storeys to the lower ones, should be avoided early on at the

Fig. 2.3 Collapse of upper storeys with reduced plan dimensions (left): Kalamata (GR) 1986;
(right): Kocaeli (TR) 1999
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Fig. 2.4 Middle-storey collapses due to abrupt changes in stiffness or resistance of vertical ele-
ments (Kobe 1995)

conceptual design stage, as their adverse consequences cannot meaningfully be pre-
vented in subsequent stages of the design.

Very good guidance for the conceptual design of regular in elevation buildings
are the relevant code criteria. Particularly useful are the criteria of Eurocode 8 (CEN
2004a), as they are qualitative and hence easy to apply at the conceptual design
stage. According to them, a building is characterised as regular in elevation, if it
meets all of the following criteria:

1. The storey mass and lateral stiffness are either constant in all storeys, or decrease
gradually and smoothly from the base to the roof.

2. All lateral-load-resisting sub-systems (frames, walls, etc.) continue from the
foundation to the top of the corresponding part of the building.

3. Individual setbacks of each side of the building do not exceed 10% of the parallel
dimension of the storey below (see Fig. 2.5).

4. If setbacks are not symmetric at opposite sides of the building, the total setback
of the roof at each side with respect to the base does not exceed 30% of the
parallel dimension at the building base (Fig. 2.5).

5. If there is a single setback within the lowest 15% of the total height of the build-
ing, it does not exceed 50% of the parallel dimension at the base of the building.
In that particular case, there should be no over-reliance on the enlargement of
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Fig. 2.5 Eurocode 8 criteria for regularity in elevation of buildings with setbacks

the structure plan at the base (the “podium”) for the transfer to the ground of
the seismic shears that develop in the overlying tower. These shears should be
transferred mainly through the continuation of the framing of the tower to the
ground; the “podium” should transfer to the ground mainly its own seismic shear
(see Fig. 2.5).

6. In frame buildings, there is no abrupt variation of the overstrength of individual
storeys, including the contribution of masonry infills to the storey shear strength,
(see Section 2.1.13.3) with respect to the design storey shear. If the lateral-load-
resisting system meets criteria no. 1 and 2 above, the storey overstrength criterion
may be considered as fulfilled, unless there are abrupt variations of infills from
storey to storey. In that latter case the storey shear force capacity will need to
be determined. Normally, it may be computed by summing up over all vertical
elements the ratio of moment capacity at the storey bottom to the corresponding
shear span (half of clear storey height for columns, or about half the distance
from the storey bottom to the top of the building for walls) and the shear strength
of all infill walls (about equal to the minimum horizontal section area of the
wall, times the shear strength of bed joints). However, the moment resistance of
vertical elements is not known at the time the designer needs to characterise the
building as regular in elevation or not. At that stage it may be presumed that the
subsequent detailed design of the vertical elements of the lateral-load-resisting
system will provide them with a total storey force resistance equal to the design
seismic shear in the corresponding horizontal direction. Then, the value of η
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in a storey with reduced infills, given by Eq. (2.7) in Section 2.1.13.3, may be
conveniently used for the characterisation of the frame building as regular or not
in elevation on the basis of the storey overstrength. If it does not exceed 1.1, the
storey overstrength in the building may be considered as regular in elevation.

Criterion 1 refers to the storey mass and lateral stiffness and not to the storey
dimensions of the framing in plan. On the other hand, criteria 4 and 5 refer specifi-
cally to reductions of a storey plan dimension with respect to the underlying storey.
According to the letter of these criteria, buildings with storey overhangs are not
necessarily considered as heightwise irregular. However, in essence they are. So, a
sound conceptual design will avoid overhangs in the structural system.

The criteria of US codes (BSSC 2003, SEAOC 1999) for regularity in elevation
are quantitative, based on the variation of mass, lateral stiffness and strength from
storey to storey. According to these criteria a building is considered as irregular in
elevation, if:

– the mass of any storey exceeds by 50% that of an adjacent storey; or
– the horizontal dimension of the lateral-load-resisting system exceeds by at least

30% the parallel dimension of an adjacent storey; or
– the stiffness of any storey is less than 70% of that of the overlying storey, or less

than 80% of the average stiffness of the three storeys above.

An “extreme soft storey” is one with stiffness less than 60% of the stiffness of
the storey above, or 60% of the average stiffness of the three overlying storeys.

Although quantitative, the US criteria are easy to check and apply at the concep-
tual design stage, because, for the purposes of the last bullet point or of the identi-
fication of an “extreme soft storey”, the storey lateral stiffness may be evaluated on
the basis of the sum of the ratios, EI/h, of vertical elements. At subsequent design
stages it is preferable to evaluate changes in the storey lateral stiffness on the basis
of the ratio of storey shear to interstorey drift from linear analysis (be it according to
the “lateral force” or “equivalent static” method). If the results of such an analysis
are available, US seismic design codes allow considering a building as heightwise
regular irrespective of the criteria in the three bullet points above, provided that at
any storey other than the two uppermost ones the interstorey drift ratio does not
exceed 130% of the interstorey drift ratio in the overlying storey.

2.1.8 Lateral Resistance Characterised by Regularity in Elevation

Heightwise irregularities of the ratio of storey lateral strength to the corresponding
seismic demand may have much more adverse consequences than those of storey
mass, stiffness or even dimensions in plan. Reasons are not limited to the inability
of elastic analysis – be it of the multimodal response spectrum type – to capture
the effects of such irregularities. The prime reason is that, unless the distribution of
available resistance follows the seismic force demands, the fundamental objective
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of earthquake-resistant design, namely the control of inelastic seismic response and
of the plastic mechanism by spreading the inelastic deformation demands over the
full height of the building (cf. Section 1.3.2) cannot be met. Inelastic deformation
demands may be concentrated in storeys where the available lateral strength is clos-
est to the seismic demand. In a worst case scenario, a soft storey may ensue, leading
to collapse.

An undesirable type of overstrength is that of beam moment resistances with
respect to the corresponding seismic demands. It may show up in beams of the upper
storeys with the minimum longitudinal reinforcement of the design code. Beam
cross-sectional dimensions should be as small as reasonably feasible, so that their
longitudinal reinforcement is controlled by the corresponding seismic action effects
and not by minimum requirements. The ideal beam size is the one for which at each
beam end the following design moments are equal:

– the moment due to the factored gravity loads (in the “persistent and transient”
design situation in Eurocode terminology), which is practically independent of
the beam depth, and

– the moment due to the design seismic action together with the quasi-permanent
gravity loads (the “seismic design situation” of the Eurocodes), which increases
with increasing beam depth.

The most dangerous overstrength is one that may cause a storey-sway plastic
mechanism at a certain storey before a beam-sway mechanism over the full height
of the structure above (“soft storey”, see Fig. 1.3(a)). This may happen in frames
where the capacity design condition applied over all joints of the frame as: Σ(ΣMRb)
< Σ(ΣMRc) is not met at certain storeys. To avoid such situations, at the concep-
tual design stage cross-sections should be selected much smaller in beams than in
columns.

Seismic design codes emphasise the importance of avoiding irregularity of over-
strength in elevation for the prevention of “soft-storeys”. US codes consider the risk
of soft-storey development as “significant” or “very large”, if the storey strength (in
terms of the storey shear) is less than 80% or 65%, respectively, of the storey above.
In cases of “very large” risk of soft-storey development, the building is limited to
two storeys or to a height of 9 m.

An important and common source of irregularity in storey overstrength is the
heightwise irregularity of masonry infills, shortly mentioned in Section 2.1.7 under
criterion no. 6 of Eurocode 8 for irregularity in elevation, but addressed in detail in
Section 2.1.13.3.

2.1.9 Redundancy of the Lateral Load Resisting System

Architectural functionality, pressures on budgets or construction time, as well as the
application of higher grades of steel and concrete, have promoted in recent years a
trend towards increased column spacing and the use of only few, but strong walls in
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a building. So modern buildings may rely for earthquake resistance on fewer vertical
elements per unit floor area than those of the past, may have less back-up capacity
and may be more vulnerable in case a single element fails early.

The importance of system redundancy and of multiple force paths can be appre-
ciated with reference to Fig. 2.2 (especially to (c)), in case the walls shown there
are indeed the only means of earthquake resistance in the corresponding horizontal
direction. This is not prudent.

Redundant structural systems with many lateral-load-resisting elements and
alternative paths for earthquake resistance have also a significant overstrength mar-
gin between the value of the seismic base shear corresponding to first yielding any-
where in the structural system, V1, and the base shear that turns the system into a
plastic mechanism, Vu. Recall that force-based seismic design, with lateral forces
obtained from an elastic response spectrum divided by the behaviour factor q, is
founded on the dependence of the q-factor on the displacement ductility factor, μδ,
(cf. Eqs. (1.1) and (1.2)) of a SDOF system with elastic-perfectly plastic depen-
dence of the base shear, Vb, on a representative lateral displacement, e.g. at the top.
So, for the quantification of the behaviour factor, q, the relationship between Vb and
the top displacement, δtop, of the building – as obtained, e.g., from pushover anal-
ysis – should be idealised as elastic-perfectly-plastic. The perfectly plastic branch
of such an idealisation is at a base shear Vb = Vu. However, the seismic action for
force-based design using the reduced (by q) elastic spectrum corresponds to the base
shear V1 at first yielding anywhere in the system, in the sense that member dimen-
sioning for the ULS in flexure on the basis of the seismic action effects from the
elastic analysis corresponds to yielding of the section(s) dimensioned. Therefore,
the ratio αu/α1=Vu/V1 expresses the overstrength margin between the base shear at
first attainment of the aim of dimensioning for the design seismic action, V1, and
the ultimate strength of the elastic-perfectly plastic system for which q is defined.
It is for this reason that Eurocode 8 (CEN 2004a) gives the q-factor of concrete
buildings as the product of a value characterising the inherent ductility of the struc-
tural system and of its detailing, times the factor αu/α1=Vu/V1 (see Fig. 1.12 and
Section 1.4.3.1). This factor expresses the overstrength of the structural system due
to redundancy and ability to redistribute internal forces after first yielding. As it is
not very convenient for the design to use the exact value of αu/α1 from a pushover
analysis of the structure after its detailed design is complete, Eurocode 8 provides
default values that express the inherent redundancy of the structural system. These
values range from 1.0 in buildings with just the minimum number of two uncoupled
walls per direction (as in Fig. 2.2), to 1.3 in the more common case of multi-storey
multi-bay frames (cf. Section 1.4.3.1).

Instead of providing a bonus to the q-factor value due to enhanced redundancy,
US codes penalise the R-factor value for lack of redundancy. This is accomplished
through an empirical factor ρ which multiplies the storey design seismic forces (and
effectively divides the R-factor value used for the storey). The rules in (BSSC 2003)
for the determination of the value of ρ are simpler and have been summarised at
the end of Section 1.4.3.2. Those in (SEAOC 1999) are further elaborated here, as a
guide for the choice of a redundant system:
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According to (SEAOC 1999) ρ cannot be taken greater than 1.5. Its value
depends:

– on the ratio of the maximum seismic shear in any one among all vertical elements
in a storey, to the total storey shear Vstorey, and

– on a characteristic plan dimension Lplan, equal to the square root of the floor
plan A.

For purely frame systems (SEAOC 1999) gives:

ρframe = 2

(
1 − Vstorey

Vmax,col

Lo

Lplan(m)

)
(2.5)

In Eq. (2.5) Vmax,col is the largest sum in the storey of the seismic shear forces
among any two adjacent columns, with the seismic shear of interior columns mul-
tiplied by 0.7, and Lo. = 3 m (more precisely Lo. = 10 ft, i.e. 3.05 m). A minimum
number of columns should be provided in “Special Moment Frames” such that ρframe

< 1.25, which corresponds to Vmax,col/Vstorey < 8/Lplan (m). The optimum number of
columns in the storey is the one that gives Vmax,col/Vstorey < 2Lo/Lplan, for which
ρframe = 1.

For purely wall systems (SEAOC 1999) gives:

ρwall = 2

(
1 − Vstorey

Vmax,wall

max (Lo; lw)

Lplan

)
(2.6)

where Vmax,wall and lw are the seismic shear and the horizontal dimension – length –
of the wall with the largest seismic shear in the storey. If Vmax,wall/Vstorey < 2max(Lo;
lw)/Lplan (giving max(Lo; lw) > Lplan/4 in the extreme case of Vmax,wall = 0.5Vstorey),
then ρ=1 and there is no penalty on the design. If Vmax,wall/Vstorey > 4max(Lo;
lw)/Lplan (e.g. if max(Lo; lw) < Lplan/8 for Vmax,wall = 0.5Vstorey), then we have the
heaviest penalty, i.e. ρ = 1.5.

Dual systems consisting of concrete frames – that are inherently flexible – and
structural walls – which are inherently stiff – are considered to have higher over-
strength and larger reserves in the event of premature failure of one or few ele-
ments. So, provided that the frame can stand-alone sustain at least 25% of the seis-
mic base (SEAOC 1999) allows taking the value of ρ for a dual system as 80%
of the largest among the values given by Eqs. (2.5) and (2.6) for the frames or
the walls of the system, respectively. In the lower storeys, where the walls resist
most of the design storey shear, there is no penalty (i.e. ρ = 1) if Vmax,wall/Vstorey

< 8lw/(3Lplan). The penalty is maximum possible (ρ = 1.5) at the lower storeys,
if there Vmax,wall/Vstorey > 16lw/Lplan. Near the top, it is the frame that resists most
of the storey seismic shear. Then there the maximum and the minimum penalty
(ρ = 1.5 and ρ = 1, respectively) correspond to Vmax,col/Vstorey > 16Lo/Lplan and to
Vmax,col/Vstorey < 8Lo/(3Lplan), respectively.
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The above rules and bounds of the SEAOC recommendations can be used to
advantage during conceptual design as guides against over-reliance of earthquake
resistance on few strong elements.

2.1.10 Continuity of the Force Path, Without Local Concentrations
of Stresses and Deformation Demands

Inertia forces should find their way to the foundation via a smooth and continuous
path in the structural system. From this point of view, cast-in-situ reinforced con-
crete is the ideal structural material for earthquake resistant construction, compared
to prefabricated elements – be it of timber, steel or precast concrete – assembled
on site. The joints between such elements are inherently points of discontinuity in
the flow of forces. Speaking of prefabricated concrete buildings, the joints between
different elements may fail, either by failure of the joining element itself, or because
of damage of the concrete around the fastenings of this element.

The prime implication of the requirement for continuity of the force path in build-
ings of cast-in-situ concrete is that floor diaphragms should have sufficient strength
for the transfer of inertia forces to the lateral load resisting system and from one
element to the other and should be adequately tied into it. Ordinary cast-in-situ con-
crete slabs generally have the necessary in-plane strength and stiffness, provided that
they have the minimum reinforcement for crack control in both horizontal direc-
tions. The same cannot be said for floors consisting of precast concrete segments
joined together and with the structural system via a lightly reinforced, few-cm-thick
cast-in-situ topping, or for waffle slabs with a thin and lightly reinforced top slab.
Figure 2.6 shows typical building collapses in the Spitak (Armenia) earthquake of
1988, due to insufficient connection of the precast floors to the load-bearing concrete
walls. Many parking garage structures built of precast concrete in the Los Angeles
area collapsed also in the Northridge (1994) earthquake. Large openings in floor
slabs, for interior atriums and patios or for large elevator shafts or stairways, etc.,

Fig. 2.6 Collapse of buildings with precast floors inadequately connected to the walls (Spitak,
Armenia, 1988)
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may also disrupt the continuity of the force path, especially if they are next to large
structural walls near the perimeter of the building plan. Section 2.4.4 presents a real
case of a multi-storey building with L-shaped floor plan, where floor diaphragms
with large openings at critical locations contributed to the collapse of one of the
two wings. In Section 2.4.2 the tearing of the floor diaphragms during the collapse
of one of the two wings of another 6-storey buildings with L-shaped floor plan is
attributed to the complete lack of secondary reinforcement in one-way floor slabs.

Continuity of the force path should not be limited to the floor diaphragms that
transfer inertia forces from their source to the lateral load resisting system and from
one element of that system to the other. The load path should be continuous within
the lateral-load resisting system itself. Points or cases where the continuity of the
structural system may be disrupted, include:

– strongly eccentric connections of beams to columns,
– beams supported indirectly on other beams or girders (instead of framing into

beam-column joints),
– an offset of a beam with respect to those of adjacent span(s),
– column axes offset with respect to those of the adjacent storey,
– “floating” columns or walls, supported by a beam or girder and not continuing to

the ground,
– walls that are supported by a pair of columns (instead of continuing to the foun-

dation).

The current State-of-the-Art is not sufficiently advanced to describe with much
confidence the behaviour under cyclic loading of regions of discontinuity like the
ones above.

Regarding connections, our present knowledge of their cyclic behaviour is lim-
ited to concentric ones of simple geometry. Because connections are crucial for the
seismic performance of the system, the designer should choose for them a geometry
that ensures a smooth and continuous load path. Simplicity and clarity is at least as
important at the microlevel (i.e., at the connections) as at the macrolevel (for the
structural system). Complex structural layouts can be analysed with certain degree
of confidence using sophisticated models and techniques. This cannot be claimed,
by contrast, of geometrically complex connection details.

For the reasons above Eurocode 8 (CEN 2004a) limits the eccentricity between
the axes of the beam and the column at connections of ductile frames (of Ductility
Classes M or H) to 25% of the column width, which is considered sufficient for the
smooth flow of forces from one element to the other.

2.1.11 Effective Horizontal Connection of Vertical Elements
by Floor Diaphragms at All Floor Levels

Floor diaphragms and beams should tie together the vertical elements of the
lateral-force-resisting system at all horizontal levels where significant masses are



2.1 Principles and Rules for the Conceptual Design of Building Structures 69

(a) (b) 

(c) (d) 

Fig. 2.7 Collapse of precast concrete buildings: (a)–(c) in Athens 1999; (d) in Spitak (Armenia)
1988

concentrated, as well as at the foundation level. This is essential for the effective
transfer of inertia forces from the masses – mainly concentrated at the floors – to
the lateral load resisting system and for the integration of this system as a whole.
Figure 2.7 shows collapsed buildings consisting of precast concrete elements with
the tops of columns not connected at roof level, floor diaphragms poorly tied to floor
beams and floor beams with insufficient seating.

In the analysis for the seismic action floor diaphragms are commonly modelled as
rigid. A rigid diaphragm over any horizontal level where significant masses are con-
centrated is convenient from the modelling point of view, enhancing the clarity of
the global dynamic response of the system. In this respect, diaphragms that indeed
act as rigid serve a fundamental objective of conceptual seismic design, namely the
reduction of uncertainty about the expected seismic response and performance. To
illustrate the point, consider the long building of Fig. 2.8, with the diaphragm span-
ning over the large distance of the two end frames, where walls resist practically the
full transverse seismic action. To transfer the floor inertia loads to the end frames
floor diaphragms may flex like horizontal deep beams simply supported at the two
ends. In low-rise buildings with thin diaphragms the in-plane deflection of the long
diaphragm between the end frames may be significant. If so, the distribution of seis-
mic shears between the middle and the end frames may differ from the one intended
with the diaphragms considered rigid. The middle frames may be overloaded
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Fig. 2.8 In-plane bending of
diaphragm in building with
large aspect ratio in plan and
strong walls just at the end
frames

compared to the predictions obtained from the rigid diaphragm hypothesis and may
yield earlier than expected. They may even fail prematurely, if, for instance, they
have been designed only for gravity loads and have not been detailed to sustain
large inelastic deformations (i.e., as secondary seismic elements, see Section 4.12).

To fulfill their role, diaphragms should have not only sufficient in-plane stiffness
to act as rigid, but also sufficient strength to remain elastic and – if practicable –
uncracked during the inelastic seismic response of the structural system. Solid con-
crete slabs having thickness at least 120 mm and at least the minimum reinforcement
for crack control at top and bottom surface and in both horizontal directions are suf-
ficient, provided that:

– all storeys have similar planwise distribution of lateral stiffness,
– the slab is at the same horizontal level throughout every storey, and
– the slab continuity in plan is not seriously impaired by large openings.

Demands on the diaphragms are increased, if important elements of the lateral-
force-resisting system are discontinued vertically. In such cases the diaphragm
has to transfer horizontally not only the inertia loads of the storey but also shear
forces from certain location(s) in plan to others. As an example, if the lower-
most storey – sometimes serving as a basement – has a concrete wall all along
its perimeter, the diaphragm at the top of that storey has to transfer very large
shear forces from all interior vertical elements to the perimeter wall. Dual struc-
tural systems are another example, as in the lower storeys the walls restrain the
frames, while by contrast at the upper ones the frames restrain the walls, always
through transfer shears in the diaphragms. The transfer of floor inertial loads to
the vertical elements, or that of seismic shears from certain vertical elements to
others, induces significant shear stresses in the diaphragm. To withstand them, con-
crete diaphragms should have two-way reinforcement, preferably at both surfaces
(top and bottom). Shear stresses are normally larger at the interior than at the
perimeter.

Diaphragms spanning a distance between strong and stiff vertical elements much
longer than their transverse dimension in plan develop significant in-plane bend-
ing (see Fig. 2.8). In-plane flexural deformations and stresses are significant also
in rectangular diaphragms with large aspect ratio, or in L-, T-, U- or H-shaped
diaphragms without seismic joints between the individual rectangular parts. Sim-
ilarly in diaphragms with large openings for patios, elevator shafts, staircases, etc.
Flexural stresses are normally larger at the edge of the diaphragm, especially at
recesses and re-entrant corners. To resist these stresses without excessive crack-
ing, continuous longitudinal reinforcement should be provided along the edges. The
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seismic action induces significant flexural stresses only along the edges that are at
right angle to its direction, while it does not fully stress perimeter beams along these
edges. So, part of the (top and bottom) longitudinal reinforcement of these beams is
available to resist the peak flexural stresses in the diaphragm. There is no problem
if the edge of the diaphragm cantilevers beyond the exterior beams, especially if
it has the minimum secondary reinforcement parallel to the edge. Any cracks that
may develop there at right angle to the edge will stop at the beam. If there is no
beam near an edge of the diaphragm – e.g., along the perimeter of large recesses or
openings in plan, for patios, etc. – diaphragm stresses there should be resisted by an
edge band of reinforcement with sufficient anchorage length, especially at re-entrant
corners.

An effective horizontal connection of the vertical elements at the level of the
foundation reduces significantly the uncertainty of the response. Although the seis-
mic action is commonly perceived as a system of inertia forces that develops in
the superstructure and needs to be safely transferred to the ground, in reality it is a
dynamic displacement imposed to the base of the structure. Therefore, foundation
elements may move separately, unless they are tied horizontally into an integral sys-
tem moving together as a whole. The seismic response of the superstructure is not
easily predicted if foundation elements can move separately. Section 2.3 treats the
conceptual design of the foundation system.

2.1.12 Minimal Total Mass

The maximum elastic base shear and the peak top displacement, elastic or inelas-
tic, due to a horizontal component of the design seismic action depend on the value
of the fundamental translational period in that horizontal direction, T. In concrete
buildings the value of T that determines the peak elastic force and inelastic dis-
placement demands corresponds to members that are fully cracked and at incipient
yielding of the end section(s). Its value is either within the constant spectral pseudo-
acceleration range of the elastic response spectrum, or, more often, in the constant
spectral pseudovelocity range. In the first case, the peak elastic base shear and the
maximum elastic or inelastic displacement demand are proportional to the total mass
of the building, M. In the second case they are proportional to

√
M. Any reduction

of M that is feasible, reduces therefore the peak seismic response.
The lateral force resisting system itself does not contribute significantly to the

total mass of the building. Therefore, the type of the structural system and the sizes
of its members should be chosen on the basis of their stiffness, strength and defor-
mation capacity, without any mass considerations. A reduction of the total mass of
a building with a concrete structural system should be pursued by:

– avoiding heavy finishings, claddings and veneers;
– reducing the thickness of concrete slabs to the minimum required for serviceabil-

ity, durability, fire rating and strength under gravity loads and for their role as
diaphragms under seismic loading;
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– using relatively lightweight partitions and exterior walls, but not to so flimsy that
they will suffer heavy damage under frequent or occasional earthquakes;

– avoiding a massive roof or unnecessarily heavy pieces of equipment (which are
also unfavourable from the point of view of mass regularity in elevation).

2.1.13 Absence of Adverse Effects of Elements Not Considered
As Part of the Lateral-Load Resisting System
and of Masonry Infills in Particular

2.1.13.1 Overview of Potential Adverse Effects – The Position of Eurocode 8
on Masonry Infills

In addition to the vertical elements (walls and columns) and the beams framing
into them, which form the system charged with the task of resisting the seismic
action, some elements may have secondary role in, and contribution to earthquake
resistance – or considered so by the designer, for convenience. If these elements
are of structural concrete, they fall in the category of “secondary members”; which
are designed for non-seismic (e.g., gravity) actions as normal structural members,
but – at least for the design of new buildings – are not relied upon for lateral load
resistance and are subject to special verification rules. Section 4.12 deals at length
with the design of such structural elements in new buildings and their modeling for
the purposes of seismic analysis. It also gives – be it indirectly – certain conceptual
guidance for them.

A special case of structural members normally discounted for lateral load resis-
tance and neglected in seismic design (or at most considered as “secondary mem-
bers”) are the concrete stairs. Specific guidance on how a staircase may be included
in the model is given in Section 4.9.6 for a linear seismic response analysis and
in Section 4.10.5 for a nonlinear one. Besides, in Section 4.10.5.3 staircases are
modelled and verified in two case studies of nonlinear seismic response analysis.
However, staircases are not specifically dealt with in Section 4.12. So, their poten-
tial adverse effects on (local or global) seismic performance are addressed here,
while some guidance for conceptual design is given in Section 2.1.13.5.

Non-structural elements, notably masonry infills, may also interfere in the seis-
mic response with means other than their mass. Non-structural masonry is com-
monly used around the world, especially in seismic-prone southern Europe, to
infill the structural framing of concrete buildings. The masonry is built after cast-
ing the surrounding frame and in contact to it, but without positive attachment. At
least for concrete buildings, masonry infills are still the most cost-effective means
for partition and sound insulation between different compartments of the same
storey and as external cladding with good insulation (thermal and for sound) and
waterproofing properties.

Field experience and analytical and experimental research (Fardis and Panagio-
takos 1997b, Fardis 2000) have demonstrated their overall beneficial effect on seis-
mic performance, especially when the building structure itself has poor engineered
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earthquake resistance. Infill panels that are effectively confined by the surrounding
frame:

– impart lateral stiffness to the building, reducing seismic deformation demands on
storeys and members,

– increase, through their in-plane shear strength, the storey lateral force resistance
and

– contribute, with their hysteresis, to the global energy dissipation capacity.

In buildings designed for earthquake resistance non-structural masonry infills
normally constitute a second line of defence and a cost-effective source of signif-
icant overstrength. This is how Eurocode 8 (CEN 2004a) sees infills. It does not
encourage the designer to reduce the seismic action effects for which the structure is
designed thanks to the overall beneficial effect of infills. At the same time, acknowl-
edging this overall beneficial effect, Eurocode 8 does not penalise the design seismic
action effects of the structure for the presence of infills, as some national codes do.
For the same reason, and to avoid the special detailing needed for waterproofing and
out-of-plane stability of infills separated from the surrounding structural frame, it
does not adopt the position of few seismic design codes (e.g., those of New Zealand
and Russia) to isolate the infills from the frame through appropriate joints.5

If the contribution of masonry infills to the lateral strength and stiffness of
the building is large relative to the strength and stiffness of the structure itself,
the infills may override the seismic design of the structure and undermine the
efforts of the designer and the intention of design codes to control the inelastic
response by spreading the inelastic deformation demands throughout the structure.
In particular:

– loss of integrity of the infills in the ground storey may produce a soft storey and
trigger global collapse;

– if infills are non-uniformly distributed in plan or in elevation, inelastic deforma-
tion demands will concentrate in the part of the building which has more sparse
infills (i.e., at the “flexible” side of a building asymmetrically infilled in plan, or
at the “weak” or “soft” storey of the infilled frame);

– local effects of infills may cause pre-emptive brittle failure of frame members,
notably columns.

Eurocode 8 (CEN 2004a) stands out among the major seismic design codes
for new concrete buildings, in providing specific guidance to the designer, or even
mandatory rules, as safeguards against local or global detrimental effects of masonry
infills, without explicitly accounting for the individual infill panels in the model

5As a matter of fact, to avoid contact of the infill and the columns under the interstorey drifts
induced in a bare frame by the design seismic action, a joint between them would need to have a
width of several centimetres.
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for the seismic analysis. Any Eurocode 8 rules presented in Sections 2.1.13.2 and
2.1.13.3 are mandatory, if the structure itself is designed for relatively low lateral
stiffness and strength and high ductility and deformation capacity. This is the case
of frame systems and of frame-equivalent dual ones (where at least 50% of the seis-
mic base shear is resisted by frames) of Ductility Class High (DC H). Concrete
buildings of the lower Ductility Classes (L or M) are considered as designed for
sufficient lateral strength to overshadow the infill walls. Wall systems and wall-
equivalent dual ones (where at least 50% of the seismic base shear is resisted by
walls) are also considered as sufficiently stiff, not to be affected by the presence of
masonry infills. For such systems of any Ductility Class, and for Ductility Class L or
M frames and frame-equivalent dual systems the safeguards in Eurocode 8 against
the negative effects of infills presented in Sections 2.1.13.2 and 2.1.13.3 are not
mandatory. However, Eurocode 8 advises designers to take them into account even
for such systems, as guidance for good practice.

The Eurocode 8 provisions against the adverse effects of infills do not apply if
there is positive structural connection between the masonry and the surrounding
frame, through shear connectors, or other ties, belts or posts. In that case, Eurocode
8 considers the structure as a confined masonry building, rather than as a concrete
structure with masonry infills.

The rest of Section 2.1.13 highlights the potential global or local detrimen-
tal effects of masonry infills and the design measures specified or recommended
by Eurocode 8 for their mitigation. We should keep in mind, though, that the
best solution to any potential problem is to avoid the problem altogether. It is
the architectural design that sets out the layout of infills in plan and elevation,
as well as the size and location of openings next to or between columns. It is
there that appropriate decisions should be made, or design modifications imple-
mented. If this is not feasible, the structural designer should consider changes
in the lateral-load-resisting system, to mitigate certain global or local adverse
effects of the infills. It is only when such conceptual design measures are not
sufficient, that recourse to the specific relevant rules of Eurocode 8 should be
pursued.

2.1.13.2 Irregular Layout of Infills in Plan

An asymmetric layout of the infills in plan may cause torsional response to the
translational horizontal components of the seismic action. Owing to the torsional
component of the response, structural members on the sides of the plan which have
fewer infills (“flexible” sides) will be subjected to larger deformation demands than
those on the opposite, heavier infilled, side(s). It is not prudent to counteract an
asymmetric layout of the infills with a reversely asymmetric layout of the lateral-
load-resisting system. This will create problems in the calculation of the static
eccentricities and their checks (e.g., through Eq. (2.1)), as well as in the seismic
analysis, all of which, according to the seismic design code, should be based on the
lateral-load-resisting system alone neglecting the infills. Fortunately, analytical and
experimental research (Fardis et al. 1999a) has shown that the adverse consequences
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of an asymmetric layout of infills in plan are not so serious. The increase in lateral
strength and stiffness due to the infills makes up for the uneven distribution of inter-
storey drift demands over the plan. In other words, when infilling is asymmetric,
the maximum lateral displacements at a certain point of the structural system do not
exceed (at least appreciably) the maximum demands at that point in a similar un-
infilled structure. However, as local member deformation demands might exceed
those estimated from an analysis neglecting the infills, Eurocode 8 (CEN 2004a)
requires doubling the accidental eccentricity (see Sections 2.1.5 and 4.8.1) in the
analysis of structural systems with planwise irregular infills that are not included
in the analysis model. This requirement does not unduly penalise the design pro-
cedure or the structural system. It is also effective, especially when the struc-
tural system is almost fully symmetric and regular in plan. In that case the results
of a seismic response analysis without accidental eccentricity have no torsional
features.

A strongly asymmetric layout of infills may cause severe irregularity in plan. If
buildings are practically in contact with each other in the city blocks, the corner
ones have solid infills along the two adjacent sides of the perimeter to the inside
of the block, while the ones on the street sides have either no infills at all, or
large openings in them. As a matter of fact, corner buildings seem to have larger
incidence of severe damage or collapse in earthquakes, although sometimes this is
attributed to pounding or to the lower subsoil strength on the street side because of
smaller overburden. Eurocode 8 does not consider doubling the accidental eccen-
tricity sufficient for such cases of severely irregular in plan infilling. It requires
instead analysis of a 3D structural model explicitly including the infills. Moreover,
given the uncertainty about the properties, the modelling and even the future lay-
out of the infills and their openings, Eurocode 8 requires also a sensitivity anal-
ysis of the effect of the stiffness and the position of the infills. It mentions as (a
main) part of such a sensitivity analysis disregarding one out of three or four infill
panels per planar frame, especially on the more flexible sides. Unfortunately, other
than stating that infill panels with two or more significant openings should not be
included in the model, Eurocode 8 does not provide any guidance for modelling
infill panels.

For buildings with asymmetric layout of infills in plan Eurocode 8 draws the
attention of the designer to the verification of structural elements furthest away from
the side where the infills are concentrated (“flexible side”) for the torsional response
due to the infills. If there are stiff and strong infills along two adjacent sides of the
perimeter, the response to the horizontal components of the seismic action is nearly
torsional about the common corner of these two sides. It turns out that in verti-
cal elements close to that corner the peak deformation and internal force demands
computed for separate action of these two components on the system without the
infills take place simultaneously (Fardis 2000, Fardis et al. 1999a). So, regardless
of whether the infills are taken into account or not in a 3D structural model, the
seismic action effects in these vertical structural elements due to the two horizontal
components would better be taken to occur simultaneously, instead of combined in
accordance with Section 4.7.
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2.1.13.3 Irregular Distribution of Infills in Elevation

A soft and weak storey may develop wherever along the height of a multistorey
building the infills are reduced compared to the overlying storey. The consequences
on the global seismic performance are most critical in buildings with an (almost)
open ground storey. Owing to commercial use or parking facilities at street level,
unfortunately this seems to be the most common case of infill irregularity in
elevation.

A reduction of the infills in a storey relative to the ones above increases the
inelastic deformation demands on the columns of that storey, owing to:

– concentration of the global lateral drift demands to that storey (soft/weak storey
effect); and

– the near-fixity conditions of the columns of that storey at floor levels, as the infill
panels of neighbouring storeys restrain the drift there (and hence the flexural
deformations of the beam as well).

The second of these reasons is explained as follows, with reference to Fig. 2.9 and
to the definition of chord rotation at the end of a member in Fig. 1.4 of Section 1.3.2.
The interstorey drift ratio of the frame (i.e. the relative horizontal displacement of
the two floors, divided by the storey height) is equal to the sum of:

– the chord rotation of the columns of the storey (average chord rotation at the top
and bottom joints over all columns of the storey), plus

Δδ1

infill strut

(c)

Δδ2~0

Fig. 2.9 Two-storey frame: (a) bending moments and deformation of frame without infills; (b),
(c) bending moments and deformation of frame with stiff infills in 2nd storey
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– the chord rotation of the floor beams above and below (average chord rotation
at the two ends over all beams of the two floors above and below the storey
columns).

Owing to the contribution of infills to their lateral stiffness, the storeys above
and below the one with the reduced infills develop low interstorey drift ratio(s). So,
the floor beams just above and below the less infilled storey develop small chord
rotations demands and hence are protected from damage. The (large) interstorey
drift ratio demand in this storey develops almost exclusively through chord rotations
at the top and bottom ends of its columns, which explains their higher damage and
vulnerability. Moreover, these columns cannot be effectively protected from plastic
hinging through application of the capacity design rule, Eq. (1.4). The reason is the
following (Fardis et al. 1999b): As the storeys above and below that with less infills
develop low interstorey drift ratios, chord rotations at the ends of their columns will
also be very low. As a matter of fact, if the infills of these storeys are very stiff
and strong, chord rotations there may have opposite sign in the columns and in the
beams, so that their algebraic sum gives indeed a low interstorey drift ratio. This is
the case at the 2nd storey of the frame in Fig. 2.9(b) and (c). Because the moments
at column ends have magnitude directly related to that of chord rotations there, the
ends of columns in the less infilled storey will receive very little help from the other
column section across the joint to resist the sum of beam flexural capacities, ΣMRb,
around the joint, without yielding (Fardis 2000, Fardis et al. 1999b). The end result
is that, fulfilment of Eq. (1.4) at the joints of the frame notwithstanding, plastic
hinges may develop in the columns of the storey with the less infills (see Fig. 3.27(a)
and (b) for two examples). Chord rotation demands at these plastic hinges may be
large enough to exhaust their capacities. The end result may well be storey collapse.
This is often the case when the ground storey is open, while the overlying ones are
fully or partially infilled (see Fig. 2.10 for examples).

To prevent plastic hinging at top and bottom and collapse of columns in a storey
where infills are less than in the overlying one, Eurocode 8 (CEN 2004a) requires
designing these columns to remain elastic until and after the infills of the overlying
storey attain their ultimate force resistance. To achieve this, the deficit in infill shear
strength in a storey should be compensated by an increase in the resistance of the
frame (vertical) members there. More specifically, the seismic internal forces in the
columns (bending moments, axial forces, shears) from the analysis for the design
seismic action are multiplied by the factor η:

η = (1 + ΔVRw/ΣVEd ) ≤ q (2.7)

where ΔVRw is the total reduction of resistance of masonry infills in the storey
concerned compared to the overlying storey and ΣVEd is the sum of the seismic
shear forces in all vertical primary members of the storey (i.e., the design seismic
shear of the storey). As shown in (Fardis and Panagiotakos 1997b), application of
the η factor on the seismic internal forces of the beams adjoining the less infilled
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(a) (b)

(c)

Fig. 2.10 Open ground storey collapses: (a) Kalamata, Greece, 1986; (b) Aegio, Greece, 1995;
(c) Athens, 1999 (Left: collapsed unit; Right: spared similar unit, at right angles to that on the left).
(See also Colour Plate 1 on page 717)

storey is counter-productive for the columns of the storey, as it increases further
seismic demands in them.

If the value of η is not more than 1.1, Eurocode 8 (CEN 2004a) allows omitting
the magnification of seismic action effects with η.

It is reminded that Eurocode 8 penalises frame buildings of DC M and H having
abrupt heightwise variations in storey overstrength – including the contribution of
infills – with a reduction of their q-factor by 20% (cf. criterion no. 6 for irregularity
in elevation in Section 2.1.7). As Eurocode 8 itself does not specify a quantita-
tive criterion for what is an abrupt heightwise variation of storey overstrength, it is
proposed here to use for this purpose the factor η in a storey with reduced infills
from Eq. (2.7). Should its value exceed 1.1, not only are the column seismic inter-
nal forces from the analysis for the design seismic action multiplied in that storey
by η, but the q-factor of the entire building is reduced by 20%. Of course, this
penalty should be imposed only to the types of systems to which application of Eq.
(2.7) refers, namely to frame systems and frame-equivalent dual ones of Ductility
Class H.

A warning is in order at this point. Large values of η from Eq. (2.7) cannot be
implemented in the design of the columns of the storey with less infills, without
significantly increasing the size of the columns in just that storey (Fardis and Pana-
giotakos 1997b, Fardis 2000). So, if the storey deficit in infill strength is large, the
designer would better solve the problem in the conceptual design stage, through
a structural system with lateral stiffness and strength sufficient to overshadow the
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infills. The best way is with walls that collectively resist most of the seismic base
shear (as in wall systems and in wall-equivalent dual ones). For DC H buildings
with such walls Eurocode 8 waives the requirement to apply the factor of Eq. (2.7)
for the design of the columns of storeys with less infills. For Ductility Class M or L,
this requirement does not apply anyway.

2.1.13.4 Potential Local Adverse Effects of Infills

In addition to the potential detrimental effect of infills on global response, there may
also be local adverse effects. These are mainly two:

1. Stiff and strong infills may shear-off weak columns, especially for imbalanced
(i.e., one-sided) contact. Figure 2.11 shows two examples.

2. A column in contact with infills over a fraction of its full height is laterally
restrained along that length (“captive” column). This localises the development
of the entire interstorey displacement within the column free length. Therefore,
the chord rotation demands at its two ends are larger than those that would had
developed should the column were unrestrained, by a factor equal to the ratio of
the full-to-the-free-height of the column. Moreover, owing to the short shear span
(moment-to-shear ratio) of the “captive” column, its shear ratio (shear span over
column depth within the plane of the infill) is low, making the column liable to
a combined flexure-shear failure, or to pure shear failure dominated by diagonal
compression. Figure 2.12 shows examples of failure of captive columns.

Rules in Eurocode 8 for the protection of concrete buildings from these two types
of adverse local effects apply to buildings designed for DC H or M (but not L), no
matter the structural system (wall or frame).

Regarding adverse local effect no. 1 above, failure or heavy damage of an infill
panel may dislodge part of it, exerting a concentrated force on the adjacent col-
umn. The stronger the infill, the larger is the magnitude of this force and the higher
the likelihood of column shear failure. Infill panels are more likely to fail or suf-
fer heavy damage at the ground storey, as there the shear force demand is largest.
For this reason, in buildings with masonry or concrete infills Eurocode 8 imposes

Fig. 2.11 Examples of shear failure of weak columns interacting with strong infills. (See also
Colour Plate 2 on page 771)
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the special detailing and confinement requirements for column critical regions over
the full clear height of the columns of the ground storey, to help them withstand
local overloading due to dislodgement of the infill at any point along their height.
Eurocode 8 subjects also the entire length of columns that are in contact with infills
on one side only per vertical plane to the special detailing and confinement require-
ments applying to critical regions. Column failure due to imbalanced contact with
infills may take place in columns which are exterior in the plane of the frame (see
Fig. 2.11-right for an example).

Buildings may have captive columns for purely architectural reasons. Openings
with small height between the beam soffit and the sill often extend from column to
column, to provide natural lighting and ventilation according to building regulations
together with function and working space over the height of the wall under the sill,
while preventing visibility through the opening. Such openings are very common
for toilettes, classrooms, industrial spaces, warehouses, storage rooms, partially
buried basements, etc. Captive columns are also created by parapet walls along
open corridors.

Failure of captive columns (adverse local effect no. 1 above) is very common in
earthquakes (see Fig. 2.12 for examples), especially if the column is weak and fails
before it crushes the adjoining infill over the contact area.

Captive columns have such a high failure rate in earthquakes, that architectural
design should avoid them altogether. Possible architectural ways out of the problem
include:

– offsetting the infill with respect to the column, so that there is no contact between
them in the plane of the infill; or

– reducing the horizontal dimension of the opening so that it does not extend up
to the column, but stops at a distance from it such that it does not intercept the
diagonal strut from one corner of the infill panel to the diagonally opposite one
(see Fig. 4.4 in Section 4.9.8 and Fig. 5.7 in Section 5.7.3.6).

Measures for the captive column problem can, and should, be pursued also dur-
ing conceptual structural design. The most effective one is to provide structural
walls with strength and stiffness sufficient to overshadow those of columns (e.g.,
walls resisting at least 50% of the seismic base shear in the horizontal direction of
those infills that keep the columns captive). Another option just for those columns
that are in partial-height contact with infills is to select a large cross-section depth
within the plane of the infill, so that the column is sufficiently strong and stiff not
be “disturbed” (or even “notice”) the infill and its opening. Before reaching its ULS
resistance in shear, such a strong column will crush the adjoining infill over the
contact area. In this connection, it is worth mentioning that in Japan it is common
practice to add “wing walls” to captive columns within the plane of the infill, with
the same thickness as the infill. The width of the “wing walls” in the plane of the
infill panel is (often several times) larger than the cross-sectional dimension of the
column normal to the infill. This has proven to be an effective solution in practice.
However, dimensioning and detailing a column with T- or L-section composed of a
wide flange (the “wing walls”) and a small web (the column) is neither straightfor-
ward, nor supported by a large volume of cyclic test results.
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Fig. 2.12 Examples of captive column failures. (See also Colour Plate 3 on page 718)
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If there is no architectural or conceptual design solution for the captive columns,
we are left with dimensioning and detailing them for the adverse effect of the infill
(as described in Section 5.7.3.6 for Eurocode 8).

2.1.13.5 Avoiding Adverse Effects of Staircases

By connecting adjacent floors of a building, concrete stairs which are integral with
floors act as bracing elements contributing to the storey lateral stiffness and strength.
For instance, the shear failure in Fig. 2.13(a) shows that the flight connecting the
mid-storey landing to the floor above works in the strong direction of its cross-
section as a wall element inclined to the horizontal. The global effect of that staircase
was beneficial: together with the masonry infills around it, it helped the 3-storey
building survive the Aegio (GR) 1995 earthquake, while an identical (except for the
staircase) adjoining building collapsed. Examples of adverse local and global effects
are shown in Fig. 2.13(b) and (c). The stair itself rammed the column supporting it
at mid-storey (Fig. 2.13(b)). More important, the torsional response of the flexible,
open ground storey building due to the staircase at one corner in plan exceeded the
deformation capacity at the tops of the columns near the diagonally opposite corner
(Fig. 2.13(c)). Witness also in Fig. 3.35 (at the bottom left corner) a column that
failed in shear after been made short by the inclined edge beam of a stair it supports.

The location and sometimes the shape of the staircase in plan are normally con-
ditioned by architectural and functional considerations or even by regulations. So,
there is little a structural designer can do to prevent a strongly eccentric in plan stair-
case. However, he/she normally has full control of the way the stair is connected to
the rest of the structural system for vertical support and can use it to minimise the
contribution of the staircase to the global lateral stiffness and avoid its adverse local
effects in an earthquake. There are two options to this end:

1. The first is to support the stair vertically all the way by a large structural wall,
which by itself provides a major contribution to the lateral stiffness and resis-

(a) (b) (c)

Fig. 2.13 (a) Stair flight failing in shear as an inclined wall element in its strong direction; (b)
corner stair in an open ground floor causes damage to the column it is connected to at mid-storey;
and (c) columns at the diagonally opposite corner of the building failed during torsional response
due to the stair in (b) – shown near bottom right at the back. (See also Plate 4 in the Colour Plate
Section on page 719)
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tance of the building. For instance, a U-shaped wall may run around a staircase
of similar shape, or a long rectangular one may run all-along a (mostly) straight
in plan stair. The stair will then be built integral with the wall, cantilevering from
it at right angles to the stair’s axis. It will serve as an inclined rib of the wall, but
it will be safe-sided and simpler to neglect the increase in the wall strength and
stiffness that this entails. If the building depends for its lateral force resistance on
structural walls, this is the option of choice. Moreover, if these walls are anyway
very stiff, the staircase may be placed elsewhere in plan and supported indepen-
dently (but not by columns at midstorey): seismic interstorey drifts will be too
low to mobilise a noteworthy part of its lateral force resistance.

2. If the building does not have walls large enough to support the stair or fully
overshadow its lateral stiffness, there are two things that the designer should do
to minimise the contribution of the stair to the (anyway low in this case) lateral
stiffness of the building and its local and global adverse effects:

a Avoid at any cost connecting the stair to a column at mid-storey. If the column
is slender, it may be rammed by the stair and fail in flexure (see Fig. 2.13(b)
for an example). If it is not, it may turn into a squat column on one or both
sides of the connection and fail in shear (see an example at the bottom left
corner of Fig. 3.35), etc. Besides, such a connection increases the interstorey
lateral stiffness of the column and hence its seismic force demands. It will also
increase the lateral stiffness of the stair-column system, increasing its impact
on the rest of the structural system and possibly inducing stiffness and strength
eccentricities (see Fig. 2.13(c)).

b The stair – supported according to (a) only at floor levels – should make a turn
in plan of at least 180◦, preferably 270◦ or more. In that way it will present a
relatively low interstorey lateral stiffness, working as part of a spiral.

Option (b) requires special attention to be paid to the (non-trivial) design of the
stair for gravity loads, as well as to its integrity under the design seismic action. To
this end, the staircase should be designed/verified as a “secondary member”. Sec-
tion 4.9.6 provides modeling guidelines for the calculation of the seismic action
effects for which this “secondary member” will be verified.

2.2 Frame, Wall or Dual Systems for Concrete Buildings

2.2.1 Seismic Behaviour and Conceptual Design of Frame Systems

2.2.1.1 Features of the Seismic Behaviour of Frames

A frame resists the seismic storey shears through bending moments in its columns.
The algebraic difference between the bending moments at top and bottom of each
column produces the column’s contribution to the seismic shear of the storey.
The seismic overturning moment of the building is resisted by axial forces in
the columns, tensile at one side of the plan and compressive at the opposite one.
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Therefore, the seismic behaviour of frames is governed by flexure, or strictly speak-
ing by normal action effects, i.e., by combination of bending moment(s) and axial
force.

In ordinary regular plane frames the column inflection points are close to the
storey midheight. Therefore, at the column end with the maximum bending moment
the shear span is normally between one-half and two-thirds of the column clear
height. So, the most crucial components of a frame, its columns, normally have
shear span ratios greater than 2.5. In beams, most critical is the end which is in
hogging (negative) bending. The shear span ratio there is normally in the order of
3. For such values of the shear span ratio the inelastic behaviour and the ultimate
deformation of frame members are governed by flexure and are inherently ductile
(provided, of course, that all members are dimensioned not to fail in shear before
their ends yield in flexure).

2.2.1.2 Advantages and Disadvantages of Frames for Earthquake Resistance

The main advantage of frames for earthquake resistance is that, provided that they
are capacity-designed for plastic hinging in the beams and against pre-emptive shear
failure of any member, their flexural behaviour lends itself to the development of
large global ductility and deformation capacity. Moreover, if there are several plane
frames in the building, each one with several bays, the lateral-force-resisting sys-
tem has high redundancy and offers multiple load paths.Therefore, with appropri-
ate detailing of the end regions of their members, frames can be easily designed
to resist strong earthquakes through global ductility, rather than thanks to strength.
For this reason, they are the structural system of choice in high seismicity regions,
such as the Western US and Japan. However, one can fully trust only fairly regular
frames, having concentric beam-column connections. Strongly irregular frames and
eccentric connections may have poor seismic performance. Moreover, they are not
sufficiently covered by present State-of-the-Art.

Although the seismic behaviour of beams, columns and frames has been studied
experimentally and analytically much more thoroughly than those of walls or wall
systems, there are still significant uncertainties and gaps of knowledge about it. A
prime uncertainty is about the width of the slab which is effective as flange of the
beam, especially in tension. Within this effective flange width, slab bars parallel to
the beam increase the beam flexural capacity for hogging (negative) moment, MRb.
This moment resistance controls negative plastic hinging in the beam and enters
into the capacity design check at beam-column connections, Eq. (1.4), as well as
in the calculation of capacity design shears, Eqs. (1.7), (1.8) and (1.9), (1.12) and
(1.13). As noted in Section 1.3.4, the Eurocode 8 rules for the effective flange width
of beams target the dimensioning of beam top reinforcement for the ULS in bend-
ing under the design bending moment. As such, they tend to be safe-sided for the
beam top reinforcement, i.e., to underestimate the flange width and, therefore, the
actual beam flexural capacity, MRb, as well. This is unsafe, not only for the design of
columns against plastic hinging, but also for the capacity design shears of the beams
and the columns.
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The flange width of beams effective in tension increases with increasing defor-
mation demand at the beam end, especially after that end yields and its top reinforce-
ment enters the strain-hardening range, exhibiting large elongations that spread in
the slab next to the beam. If the slab has two-way reinforcement, a realistic estimate
of the slab width that is effective as tension flange of the beam after plastic hinging
is about 25% of the clear beam span on each side of the web, but not exceeding the
mid-distance to the next parallel beam (cf. relevant US code provisions, outlined
in Section 1.3.4). The magnitude of the slab width that is effective as compression
flange under a sagging (positive) moment at the beam end is of little practical signif-
icance, as it affects very little the magnitude of the corresponding flexural capacity,
M+

Rb, which is governed by the beam bottom reinforcement. Moreover, it is the
ultimate deformation of the beam in hogging bending that normally governs beam
failure, as it is associated with a large amount of tension reinforcement at the top
(including the slab reinforcement within the effective flange width) and a narrow
compression zone at the bottom with much less reinforcement.

Note that, at the connection of a beam with an exterior column the tension or
compression force in the effective flange width of the slab is applied to the transverse
perimeter beam at an eccentricity with respect to its axis, producing a torque loading
on the beam. The torsional moment that develops in the transverse beam due to this
torque attains its maximum value near the face of the column at the joint and often
causes spiral cracking of that beam. The cracking often extends to the exterior face
of the joint. These phenomena are complex and their possible effects are, at present,
rather unclear.

The advantages of frames for earthquake resistance may be summarised as
follows:

1. The members of frames are inherently ductile.
2. Two-way frame systems, consisting of several plane frames in each horizontal

direction with several bays each, have very high redundancy and multiple load
paths.

3. Frames place few constraints on the architectural design, especially of the façade.
4. Provided that the frame has concentric connections and regular geometry, there

is little uncertainty about its seismic response, because:
• the seismic performance of frames and frame members is well known and

understood, on the basis of thorough experimental and analytical studies;
• frames are fairly easy to model and analyse for design.

5. Certain features make frames attractive and cost-effective for earthquake resis-
tance:
• beams and columns are needed in buildings anyway to support the gravity

loads; so, why not use them for earthquake resistance as well?
• columns have strength and lateral stiffness against both horizontal compo-

nents of seismic action;
• it is easy to design the foundation of smaller vertical elements (notably,

columns) than of larger ones (walls), with each foundation element trans-
ferring to the ground a small fraction of the seismic base shear.
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Frames have also disadvantages for earthquake resistant design:

1. Frames are inherently flexible and the size of their members is often governed
by the interstorey drift limits (e.g., those listed in Section 1.1.3 under (i)–(iii) for
Eurocode 8).

2. Column counter-flexure within the same storey lends itself to soft-storey mech-
anisms and a “pancake” type of collapse.

3. Detailing of frames for ductility requires high quality workmanship and strict
supervision on site (especially for fixing the dense reinforcement and placing
and compacting concrete through joints of two-way frames).

4. There are certain elements of uncertainty about the seismic response and perfor-
mance of frames:

• The effects of eccentric connections or strongly irregular layouts in 3D are
not sufficiently known.

• There is considerable uncertainty about the effective slab width in tension,
which affects the likelihood of plastic hinging in the columns.

• The behaviour of columns of 3D frames under the complex loading conditions
(cyclic biaxial bending with varying axial force) to which they are subjected
during real earthquakes is poorly known.

• In 3D frames subjected to real earthquakes, columns that have been capacity-
designed on the basis of Eq. (1.4) against plastic hinging, may well form
plastic hinges owing to the biaxial moment demands from beams connected
to them in the two horizontal directions.

2.2.1.3 General Guidance for the Conceptual Design of Frames

The location of frames in plan, the span lengths and often the depth of beams,
are normally controlled – sometimes even dictated – by architectural and func-
tional considerations, as well as by design for gravity loads. However, the structural
designer is normally left with considerable latitude for decisions and choices on the
basis of seismic design considerations alone.

In a regular plane frame having:

– constant span length in all bays,
– beams and interior columns with constant cross-section in each storey, and
– (effective) rigidity of the two exterior columns 50% of that of interior ones,

the elastic seismic bending moments at the ends of all beams in the storey will be
the same, while those in the two exterior columns will be just half of the bending
moments in interior ones. In the elastic range the seismic overturning moment will
be resisted by axial forces in the exterior columns alone, approximately equal to
the ratio of the seismic overturning moment at storey mid-height to the distance
between the axes of these columns. If members are dimensioned for the elastic seis-
mic moments, all beam ends in a storey will be subjected to about the same inelastic
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chord rotation demand; all columns, interior or exterior, will also develop about the
same inelastic chord rotation demand at the storey bottom. The same at column tops.

Provided that the seismic base shear of the building stays the same, an increase or
reduction of the cross-section of a certain column or beam will increase or decrease
the elastic seismic moments in that element, respectively, along with those of the
beams or columns it is connected to. The seismic moments in other members of
the frame will also change, but by less and maybe in the reverse direction. There-
fore, if during dimensioning the cross-section of a certain frame member turns out
to be insufficient, it may not be enough to increase just its cross-sectional dimen-
sion(s), because its seismic moments will increase almost proportionally. It may be
necessary to increase the cross-sectional dimensions of other members as well. In
certain cases it may be more effective to reduce cross-sectional dimensions, instead.
For example, in a frame structure composed of several parallel frames, a reduction
of the depth of all beams or columns of a single frame will reduce its share in the
seismic storey shears, at the expense of those of other frames.

Because frames are inherently flexible, the size of their members is normally
governed by damage limitation requirements under the corresponding seismic action
(e.g., in Eurocode 8 by the interstorey drift limits listed in Section 1.1.3 as (i)–(iii))).
In frames sized for damage limitation, P-Δ (2nd-order) effects are unimportant. The
interstorey drift, Δδi, from mid-height of storey i to midheight of storey i+1 of the
frame may be approximately estimated on the basis of the Virtual Work Principle as:

Δδi = H 3
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(2.8)

where:

VEc,i: average column seismic shear in storey i (equal to the storey seismic shear
divided by the number of columns in the storey, with a weight of 0.5 on
exterior columns),

(EI)c,i: average (effective) rigidity of the columns in storey i (with a weight of
0.5 on exterior columns),

(EI)b,i: average (effective) rigidity of the beams in storey i,
hb,i: average beam depth in storey i,
hc,i: average column depth in storey i, within the plane of the frame,
Hi: average height of storeys i and i+1,
Hcl,i = Hi–hb,i: average clear column height in storeys i and i+1,
Li: average beam span in storey i,
Lcl,i = Li–hc,i: average beam clear span in storey i,

If the columns of storey i and i+1 have the same cross-section, (EI)c,i = (EI)c,i+1,
Eq. (2.8) is simplified to:
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Δδi = VEc,i+1+VEc,i
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Equations (2.8) and (2.8a) suggest that interstorey drift is governed by that ele-
ment, beam or column, which is on average shorter than the other (normally the
columns).

The designer should avoid too short or too long bay lengths, either throughout a
plane frame or in one or several bays. If the span is very long, the beam top rein-
forcement over the supports may be governed by factored gravity loads (the “per-
sistent and transient design situation” in Eurocode terminology), rather than by the
design seismic action together with the quasi-permanent gravity loads (termed in
Eurocodes “seismic design situation”). This penalises capacity design moments of
columns at the joints (cf. Eq. (1.4)), as well as the capacity design shears of beams
and columns. It produces also flexural overstrengths in beams with respect to the
corresponding seismic demands and creates uncertainty about the inelastic response
and the plastic mechanism. If plastic hinges do indeed form in a long beam, they may
exhibit large deformation capacity; not only owing to the high shear span ratio at the
location of plastic hinges, but also because the large negative (hogging) moment at
the ends due to the quasi-permanent gravity loads may prevent reversal of the inelas-
tic flexural deformations there. Yielding in positive (sagging) bending and a positive
plastic hinge will take place at some distance from the end section. The deforma-
tion capacities under monotonic loading will then apply both at the negative and the
positive plastic hinge. These capacities are significantly larger than in cyclic load-
ing (see Eqs. (3.78) in Section 3.2.3.5). Although the primary effect of non-reversal
of inelastic flexural deformations is positive, there is a collateral negative one: as
exemplified in Figs. 3.6 and 3.7, inelastic elongations accumulate in the reinforce-
ment and the beam gradually becomes longer, pushing out its supporting columns
and possibly forcing exterior ones to separate from the exterior beams which are at
right angles to the elongating one(s) (see also Section 3.2.3.6). Finally, according to
Eq. (2.8a) and the remark that follows it, if the average beam clear span in the storey
is much longer than the storey clear height, the cross-section of the beam may have
to be increased too much, for the storey to meet the drift limits for damage control.

The other extreme of very short beam spans gives very high seismic shears in
the beams, both from the analysis for the design seismic action and from capacity
design of the beam in shear. If the span is not short in all bays, but only in few,
then the high seismic shears in the short beams give a large variation of the axial
force in the adjoining columns upon reversal of the direction (sign) of the seismic
action. This reversal will also cause an almost full reversal of the sign of shear
at the ends of the short beam(s), because quasi-permanent gravity loads produce
insignificant shear forces in short beams, especially as these beams usually support
the secondary direction of floor slabs (cf. Eqs. (1.9) and (1.10)). A full reversal of
high shears may exhaust the shear capacity in both diagonal directions (at ±45◦)
or cause sliding shear failure along through-depth cracks at the end section(s) of



2.2 Frame, Wall or Dual Systems for Concrete Buildings 89

the beam. Design against such shear effects may require diagonal reinforcement in
the beam or shear reinforcement at ±45◦ to the beam axis (see Section 5.5.2). Last
but not least, short beams have low shear span ratio (often below 2.5) and hence,
unless they are diagonally reinforced, their deformation capacity is low (possibly
controlled by shear).

For the most common storey heights and for ordinary gravity loads, the optimum
beam span in earthquake resistant buildings is between 4 and 5 m. Span lengths
should be as uniform as possible within each frame.

2.2.1.4 Sizing of Beams

The size of the cross-section and the moment resistance at the end sections of beams
normally govern many aspects of the design of the frame:

1. the column depth at right angles to the frame, which ideally should exceed the
width of the beam by at least 100 mm, to allow the beam longitudinal bars to pass
through the confined core of the column section, between its outermost bars;

2. the column depth within the plane of the frame, on the basis of bond consid-
erations for the beam longitudinal bars inside the joint (see Sections 3.3.2 and
5.4.1);

3. the column moment resistances above and below the joint, to meet the weak
beam-strong column capacity design condition, Eq. (1.4);

4. the size and horizontal reinforcement of beam-column joints (see Section 5.4.2);
5. the capacity design shears of the beams themselves (see Eqs. (1.9) in Section

1.3.6.2) and of columns (see Eqs. (1.11) in Section 1.3.6.3).

So, sizing of the beams and a preliminary estimation of their longitudinal rein-
forcement is needed, not only for a preliminary check of the adequacy of the beams,
the columns and the joints in shear in 4 and 5 above, but also to ensure at an early
stage that the very restrictive condition of the beam maximum reinforcement ratio
(see Section 5.3.2) will be met, without revisiting beam sizes during detailed design.
Needless to say, the cross-section of the beam should remain the same in all bays
of the same frame. Moreover, if the number of different beam sections in the storey
and, if feasible, in the building is kept to a minimum, the formwork will be simpli-
fied and the risk of errors during construction will be reduced.

Equations (2.8) and (2.8a) may be used as the basis for rough calculations (man-
ually or with spreadsheets) to size beams and columns in conceptual design. More
specifically, the lateral stiffness of a frame may be estimated as the ratio (VEc,i +
VEc,i)/Δδi and used to distribute (a first estimate of) the storey seismic shear to
the frames of that storey. The frame seismic shear may then be distributed to its
columns in proportion to their (EI)c,i-value with a weight of 0.5 on exterior columns,
and used to estimate the column moments at the face of the joint as: MEc,i + 1 =
±VEc,i + 1Hcl,i + 1/2 just above the joint and MEc,i = ±VEc,iHcl,i/2 just below, where
VEc,i and Hcl,i are not the average column shear in storey i and the average height of
storeys i and i+1 (as in Eqs. (2.8) and (2.8a)), but the actual ones in that column and
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storey (similarly for VEc,i+1 and Hcl,i+1). The sum (MEc,i+MEc,i+1) may then be dis-
tributed to the ends of the beams framing into the joint, in inverse proportion to their
actual span, L. The so-estimated beam seismic moments should then be reduced to
the face of the joint, by multiplying them by (1–0.5hc/L), where hc is the depth of the
column at that joint, and L pertains to the particular beam. If the resulting seismic
moment at the face of the joint is denoted as MEb, the top and bottom reinforcement
there may be estimated from the ULS verification for the moments:

Mt = max[MγgG+γqQ; MEb + MG+ψ2Q]; Mb = MEb − MG+ψ2Q (2.9)

respectively.
If the quasi-permanent loads which are concurrent with the design seismic action,

G+ψ2Q, amount to an “equivalent uniform” line load on the beam,6 qG+ψ2Q (kN/m),
they produce moments MG+ψ2Q for Eq. (2.9):

– At the support on an exterior column:

MG+ψ2Q ≈ 7 + 12k

7 + 24k + 16k2

qG+ψ2Q L2

12
(2.10a)

– At the support on an interior column:

MG+ψ2Q ≈ 7 + 30k + 24k2

7 + 24k + 16k2

qG+ψ2Q L2

12
(2.10b)

In Eqs. (2.10):

k = (Ib/Ic)(H/L) (2.11)

where H is the storey height, L the (average) beam span and Ib, Ic denote the
moments of inertia of the beam and of the interior columns, respectively (the
moment of inertia of the exterior column considered to be about equal to 0.5Ic).

If the factored gravity loads (“persistent and transient design situation” in the
Eurocodes), γ gG + γ qQ, amount to an “equivalent uniform” line load on the beam,
qd = γ gg + γ qq (kN/m), where g is the “equivalent uniform” line load due to nomi-
nal permanent (“dead”) loads and q that due to nominal imposed (“live”) loads, they
produce moments MγgG + γqQ for Eq. (2.9):

6A triangularly distributed load on the beam with maximum value qm at midspan gives an “equiv-
alent uniform” load: q= (5/8)qm. A load with a trapezoidal distribution, rising linearly from each
end to a value qa at a distance a from that end and staying constant in a central part of the beam
with length L–2a, gives an “equivalent uniform” load: q={1–(a/L)2[2–(a/L)]}qa

.
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– At the support on an exterior column:

Mγ gG+γ q Q ≈ 7 + 12k

7 + 24k + 16k2

(qd + g)L2

24
+ 7 + 6k

7 + 12k + 4k2

(qd − g)L2

24
(2.12a)

– At the support on an interior column:

Mγ gG+γ q Q ≈ 7 + 30k + 24k2

7 + 24k + 16k2

(qd + g)L2

24
+ 7 + 6k

7 + 12k + 4k2

(qd + g)L2

24
(2.12b)

Redistribution of the so-estimated beam moments according to Section 5.7.2.2 is
not just allowed, but strongly encouraged. The targets of the redistribution should
be:

1. To equalise beam design moments across the joint, so that both beam sections at
the faces of the column across the joint can be covered by the same longitudinal
bars.

2. To reduce hogging design moments and increase sagging ones at each support, so
that the amounts of top and bottom reinforcement of the beam come out as close
to each other as possible, especially over that beam support where the hogging
design moment, Mt = max[MγgG + γqQ, MG + ψ2Q + MEb], is the maximum over
the storey in the frame.

The ultimate objective of target no. 2 is to enhance the critical deformation capac-
ity at beam ends, which occurs under hogging moments and increases when the
difference (or ratio) between the top and bottom reinforcement area decreases. The
practical benefit from the convergence of the top and bottom reinforcement areas
is that codes normally let the beam maximum allowable top reinforcement ratio
increase, if the bottom reinforcement increases as well (see Section 5.3.2 for the
case of Eurocode 8 (CEN 2004a)).

Note that the two beam ends across a joint will be subjected to the same chord
rotation demand (equal to the rotation angle of the joint), while their chord rota-
tion capacities increase with increasing shear span ratio of the beam, Ls/h, and with
decreasing top-to-bottom-reinforcement-ratio (see Eqs. (3.78) in Section 3.2.3.5).
So, if we want to balance the chord rotation capacities across a joint between two
unequal beam spans, the beam end section towards the longer span should have
lower top-to-bottom-reinforcement-ratio. This is consistent with the relative magni-
tude of the elastic design moments at these sections, Mt = max[MγgG + γqQ, MG + ψ2Q

+ MEb], Mb = MEb−MG + ψ2Q, because as the beam span increases, the MγgG + γqQ

and MG + ψ2Q increase while MEb decreases. Therefore, target no. 1 above, aiming
at serving both beam sections across the joint with the same longitudinal bars, as
well as target no. 2, aiming at increasing the absolute magnitude of the deformation
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capacity of beams, run against balancing the deformation capacities of unequal adja-
cent beam spans.

The beam top and bottom reinforcement areas over the supports are estimated
from the beam design moments (after redistribution) divided by the product of the
design yield strength of the reinforcement, fyd, times the beam internal lever arm,
zb ≈ 0.9db. The beam effective depth, db, in this estimation is obtained from the
initial choice of beam depth, hb, used in the calculation of the average (effective)
rigidity of beams, (EI)b, and of their uniform line loads, qd and qG + ψ2Q. Then the
initial choice of the width of the web of the beam, which affects much less than hb

the value of (EI)b, is confirmed or revised, so that the beam maximum allowable
top reinforcement ratio is respected at the beam end section where the difference
between the top and the bottom reinforcement area is maximum.

Once a first estimate of the area of top reinforcement required over the supports
is available, it is a good idea to translate it into a specific number and diameter of
longitudinal bars. The maximum diameter of these bars controls their bond within
the core of the joint (see Section 5.4.1) and determines the minimum depth of the
supporting column within the plane of the frame.

2.2.1.5 Sizing the Columns

Architectural considerations sometimes require the column to be flush with, or pro-
trude laterally from, the beam. Structural considerations suggest a column protrud-
ing from the beam(s) by at least 50 mm on each side, to allow the beam longitudinal
bars to pass through the confined core of the column.

Columns should be sized during conceptual design so that, under the design seis-
mic action and the concurrent gravity loads, the following criteria are met:

1. the bond requirements along beam bars passing through the joint or anchored
there (Eqs. (5.10) in Section 5.4.1) are met using a reasonable (i.e., not too small)
maximum bar diameter;

2. the column axial load ratio, νd = Nd/(Acfcd) (defined as the ratio of the column
axial load to the product of its cross-sectional area, Ac, and the design value of
the concrete compressive strength, fcd) is kept low, to the benefit of the flexural
ductility of the column (see Section 3.2.2.8 and Eqs. (3.78) in Section 3.2.3.5, as
well as Table 5.2 for the upper limits to the maximum value of νd in Eurocode 8
depending on the Ductility Class of the building).

The minimum and the maximum value of the column axial load under the design
seismic action and concurrent gravity loads, Nd, to be used in the check of criteria 1
and 2, respectively, may be estimated in conceptual design without any analysis, as
(see Fig. 2.14):

max Nd ≈
∑
floors

(Atr(g + ψ2q) + ΔVE ); min Nd ≈
∑
floors

(Atr(g + ψ2q) − ΔVE )

(2.13)
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In Eq. (2.13) the summation extends over the overlying floors and Atr is the trib-
utary floor area of the column in plan, bounded by lines along column mid-spans.
The uniformly distributed quasi-permanent floor load, g + ψ2q, should be estimated
from the thickness of the slab and the finishing and use of the floor; a value of 8
kN/m2 is quite representative of ordinary concrete buildings. Equation (2.14) gives
the maximum difference of seismic shear forces, ΔVE, that develop in the beams
framing into the column from the right (subscript r) or from the left (subscript l),
discounting the possibility of plastic hinging in the columns. The moment resis-
tances, MRb, hogging (–) or sagging (+), at the ends i and j of the beams adjacent to
the column may be taken with their design values, MRb,d. Note that, in rectangular
in plan buildings, with continuous frames from one side of the plan to the opposite,
each frame with about uniform spans, the difference in beam seismic shears, ΔVE,
may be neglected for interior columns. Exterior columns may be assumed to share
the total seismic axial force in the row of exterior columns in proportion to their
cross-sectional area. The total seismic axial force in the row of exterior columns
may be taken equal to the total seismic overturning moment at storey mid-height,
divided by the plan dimension parallel to the horizontal direction of the seismic
action. In a building with a total height Htot and storeys with the same mass and
storey height, Hst, each, the total seismic overturning moment at mid-height of the
ground storey may be taken as the base shear times (2/3)Htot – Hst/6.

The procedure above should be applied to estimate the minimum cross-section
that meets criterion 1 at the most critical storey (normally the top one, but at exterior
columns of medium- or high-rise buildings sometimes the lowermost storey) and at
the base of columns for criterion 2. As the seismic bending moments and the total
axial force in the columns decrease from the base to the roof, the designer might
be tempted to reduce the column section towards the upper storeys, of course by a



94 2 Conceptual Design of Concrete Buildings for Earthquake Resistance

small amount from one storey to the next.7 However, there is strong evidence from
field experience and large- or full-scale tests that abrupt changes in the strength of
vertical elements at an intermediate storey may trigger its collapse, especially in
high-rise buildings where higher mode effects (inducing significant shears at inter-
mediate storeys) are dominant. Figure 2.4 shows examples of such failures, while
Section 2.4.2 presents a real case of a multi-storey building in which collapse of one
wing appears to have started from the upper floors where column cross-sections had
been reduced to a small fraction of their size at the lower storeys.

If the column cross-section changes from one storey to the next, passage of ver-
tical bars through the joint is tricky and difficult to depict in drawings or implement
on site. Remember also that, for the same reinforcement ratio and cross-sectional
dimensions, the column moment resistance decreases from the ground storey to
the top owing to the reduction in column axial compression. So, if column cross-
sectional dimensions are significantly reduced towards the top, more vertical rein-
forcement may by needed in upper storeys, especially at the top storey where bend-
ing moments due to gravity loads are much larger than in the underlying ones.
Finally, keeping the cross-section of each column constant over the full height of
the building simplifies the formwork. So, this is the recommended practice from
every point of view.

Elastic analysis uses the nominal value of column rigidity, (EI), producing elas-
tic predictions of seismic moments in the columns that are proportional to bh3 (with
a weight of 0.5 on exterior columns). Therefore, the dimensioning of the vertical
reinforcement in the columns will be based on non-dimensional moments μ ≡
M/(bh2fcd) proportional to h. Therefore, if the columns have different sections in
a storey, the larger ones will end up with higher vertical reinforcement ratios than
the smaller. More important, the chord rotation capacity of the column decreases
with decreasing shear span ratio, Ls/h, (see Eqs. (3.78) in Section 3.2.3.5), while the
chord rotation demand in all columns of a frame, being controlled by the frame’s
interstorey drift ratio, is about the same. So, at the base of the building where plastic
hinges do form, the larger columns are expected to fail first, as confirmed by obser-
vations from earthquakes. Therefore, it is more cost-effective to choose as uniform
a size of the columns in the frame system as practically feasible.

2.2.2 Seismic Behaviour and Conceptual Design of Wall Systems

2.2.2.1 Definition of What is a Wall

Design codes define a concrete wall as a concrete vertical element with an elongated
cross-section. A limit of 4.0 for the aspect ratio (long-to-short dimension) of a rect-
angular cross-section is conventionally adopted by most design codes to distinguish

7Note that, if the reinforcement ratio is kept the same, a reduction of the cross-sectional dimen-
sions by a certain percentage causes an about three times larger percentage reduction of moment
resistance.
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walls from columns. If the cross-section consists of rectangular parts, one of which
has aspect ratio greater than 4, the element is also classified as a wall. With this def-
inition on the basis of the cross-sectional shape alone, a wall differs from a column
in that:

– it resists lateral forces mainly in one direction, notably parallel to the long side
of the section, and

– it can be designed for such a unidirectional resistance by assigning flexural resis-
tance to the two far ends of the section (“flanges”, or “tension and compression
chords”) and shear resistance to the “web” in-between them, as in beams.

So, for the purposes of flexural resistance and deformation capacity one may
concentrate the vertical reinforcement and provide concrete confinement only at
the two ends of the section. Note that, if the cross-section is not elongated, the
vertical element is called upon to develop significant lateral force resistance in both
horizontal directions. Then it is meaningless to distinguish between “flanges” on
one hand, where vertical bars are concentrated and concrete is confined, and “web”
on the other, where they are not.

The above definition of “walls” is consistent with concrete design codes and
appropriate for dimensioning and detailing at the level of the cross-section. It is not
very meaningful, though, in view of the intended role of “walls” in the structural
system and of their design, dimensioning and detailing as an entire element and
not just at the cross-sectional level. As noted in Section 1.3.4, seismic design often
relies on walls for prevention of a storey-mechanism in their long direction, without
any verification that plastic hinges form in beams rather than in columns (Eq. (1.4)).
Nevertheless, walls can enforce a beam-sway mechanism only if they act as vertical
cantilevers (i.e. if their bending moment diagram does not change sign within at
least the lower storeys, see Fig. 1.7) and if they develop a plastic hinge only at
the base (at the connection to the foundation). As a matter of fact, unless the wall
bending moment attains two values of large magnitude but of opposite sign within
the full height of the wall (let alone within the same storey), the wall cannot develop
two plastic hinges in opposite bending (positive and negative) along its height and
a storey mechanism between them. Whether a “wall”, as defined above, will indeed
act as a vertical cantilever and form a plastic hinge only at its base, depends not so
much on the aspect ratio of its section, but primarily on how stiff and strong the
wall is relative to the beams it is connected to at storey levels. For concrete walls to
play their intended role, the length dimension of their cross-section, lw, should be
large, not just relative to its thickness, bw, but in absolute terms. To this end, and for
the beam sizes commonly found in buildings, a value of at least 1.5 m for low-rise
buildings or 2 m for medium- or high-rise ones is recommended here for lw.

Obviously vertical elements with cross-sectional aspect ratio less than 4.0 (i.e.
defined conventionally as “columns”) can work as vertical cantilevers and form a
plastic hinge only at the base, if they are connected at storey levels with very flexi-
ble beams or with no beams at all (as in flat slab systems). However, normally the
moment resistance at the base of vertical elements with non-elongated section is
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relatively small, so that, given their long shear span (moment-to-shear ratio) there,
such vertical elements cannot contribute significantly to the base shear of the build-
ing. Moreover, their lateral stiffness is also rather low. So, they are ineffective for
reduction of interstorey drifts for damage limitation and sensitive to P-Δ (2nd-order)
effects. At the other extreme, vertical elements with cross-section sufficiently elon-
gated to be classified as walls but connected at storey levels with very stiff and strong
beams, may act as frame columns rather than as vertical cantilevers.

2.2.2.2 Optimal Length of Walls

We will stick with the definition of a wall as a vertical element with a bending
moment diagram similar to that of a vertical cantilever (Fig. 1.7), forming a plas-
tic hinge only at the base. If the lateral-force-resisting system comprises only such
elements, the full seismic overturning moment at the base of the building is resisted
directly by the (sum of) bending moments at the base of the walls, instead of indi-
rectly by their axial forces. So, at the base of a wall the bending moment is large and
the shear span (M/V ratio), Ls, long. If the beams are very flexible compared to the
walls, each wall works as a vertical cantilever subjected only to horizontal forces
at storey levels. Then Ls is about equal to 2/3 of the total wall height, Htot. For the
usual beam sizes, Ls is about equal to 50% of Htot if the length lw of the wall section
is fairly large, or about equal to 1.5 times the storey height if lw is relatively short
(near the limit lw = 4bw).

The shear strength of a concrete element is roughly proportional to its cross-
sectional depth, h. Therefore, lumping the shear resistance to a few vertical elements
with large values of h, instead of distributing it to many small-sized ones, does not
save materials. On the other hand, the rigidity of RC members, nominal or “effec-
tive”, is roughly proportional to h3. So, lumping the lateral stiffness into few vertical
elements, rather than spreading it to many small ones, is quite cost-effective. Using
a few walls with large cross-section is also cost-effective from the point of view of
moment resistance and vertical reinforcement, according to the considerations of
the following paragraph.

By dividing both sides of M = LsV by bh2fc we get: Non-dimensional moment
μ ≡ M/(bh2fc) = (Ls/h) · (V/(bhfc)). For given base shear, V, and concrete volume
per linear meter of building height, bh, i.e. for given value of V/(bhfc), reduction of
the shear span ratio, Ls/h, reduces μ and, therefore, the total vertical reinforcement
ratio necessary to resist μ, as well. As explained in the previous paragraph, for a
wall with a fairly large value of h = lw, the shear span, Ls, is roughly a fixed fraction
of the building height. Therefore, μ can be reduced by increasing h as much as
reasonably feasible, i.e. by lumping the vertical elements into a few large walls.
The optimum value of h is one that gives values of Ls/h in the range between 2.5
and 3.0, below which the cyclic behaviour of the wall and its ultimate deformation
may be adversely affected by shear. For the typical value Ls ≈ 0.5Htot, a shear span
ratio equal to Ls/h = 3.0 gives lw = h ≈ Htot/6, i.e lw ≈ nstorey/2 for a typical storey
height of 3 m. Note also that the closing remark of Section 2.2.1.5 about the cost-
effectiveness of a uniform choice for the size of all vertical elements in the system
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applies also for walls. Remember, though, that too few large walls provide fewer
alternative load paths and less redundancy (especially if they are of the same size),
which is against the recommendations of Section 2.1.9.

2.2.2.3 Foundation of Walls

The base section of large and strong walls has a large moment resistance. It is dif-
ficult to transfer this large moment capacity to the ground through isolated footings
(pads). The maximum bending moment that an isolated footing can transfer to the
ground is slightly less than the moment causing the footing to overturn, which is
equal to 0.5NB, where N is the vertical force and B the dimension of the footing
in the direction of bending. If the wall section is long, the parallel dimension of its
footing is not much longer than the wall length h = lw. So, the maximum value
of the non-dimensional base moment in the wall, μ ≡ M/(bh2fc), that can be trans-
ferred by an isolated footing is μ≤ 0.5ν, where ν ≡ N/(bhfc) is the non-dimensional
axial load at the base of the wall. Because walls have relatively low values of ν (in
the order of ν ≈ 0.05), the maximum value of μ that can transferred to the ground
through an isolated footing is also very low, in the order of the non-dimensional
moment at cracking of the wall base section (as the tensile strength of concrete is
typically around 10% of fc). Therefore, in order to develop its moment resistance at
the base, a strong wall:

– should be provided with a very large isolated footing, which is not cost-effective
and introduces significant uncertainty about the seismic response (it will uplift,
following a nonlinear relation between bending moment and uplift rotation which
is hard to quantify, at least within everyday design practice – see Section 4.10.3),
or

– should be fixed at the top of a box-type foundation provided for the building as a
whole.

As we will see in Section 2.3.3.3, a box-type foundation for the entire building
consists of:

1. Wall-like deep foundation beams along the entire perimeter of the foundation,
possibly supplemented with interior ones across the full length of the foundation
system. These deep beams are the main foundation elements transferring the
seismic action effects to the ground. In buildings with a basement, the perimeter
foundation beams may also serve as basement perimeter walls.

2. A concrete slab at the level of the top flange of the perimeter foundation beams
(as the roof of the basement, if there is one), acting as a rigid diaphragm.

3. A foundation slab, or a grillage of tie-beams or foundation beams, at the level of
the bottom of the perimeter foundation beams.

Such a foundation system fixes all walls at their base and maximises their effec-
tiveness.
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An isolated footing will uplift from the ground when the moment at its bottom
exceeds the value corresponding to decompression at its edge (cf. Eqs. (4.102) and
(4.102a) in Section 4.10.3). Then it starts rocking, with the value of the moment
at its base approaching but never reaching the overturning moment of the footing,
0.5NB, where B is the dimension of the footing in the vertical plane where rocking
takes place. The wall and its footing will rock as a rigid body. As the seismic action
is not static but dynamic, rocking is a very stable mode of response for the wall,
provided that:

– the angle of rocking θ does not exceed the value φ = arctan(B/Htot) which corre-
sponds to overturning under the weight of the wall alone, where the total height
of the wall, Htot, is measured from the bottom of the footing (see Fig. 2.15); and

– the concentrated force at the edge of the footing does not bring about bearing
capacity failure of the foundation soil.

The peak rotation angle of a rocking rigid wall may be roughly estimated assum-
ing that the kinetic energy at the beginning of a half-cycle of rocking (when the
footing is still horizontal) is converted not into deformation energy (that may involve
inelastic deformation and damage) but into potential energy, by lifting the centre of
gravity of the wall (and of the footing). More specifically, if the rocking wall is con-
sidered as a SDOF system, the maximum kinetic energy during its response is about
equal to MSv

2/2, where Sv is the spectral pseudo-velocity. Equating the difference
in potential energy due to an angle of rotation θ , i.e., (Mg)θ /2, to the peak kinetic
energy gives: θ = Sv

2/g. As a matter of fact, the effective period of rocking generally
lies within the constant spectral pseudo-velocity range of the response spectrum. So,
the peak value of θ turns out to be roughly independent of this effective period.

The relationship between the lateral force and the horizontal displacement during
rocking under cyclic loading is non-linear but nearly elastic, following an approx-
imately bilinear envelope and recentring to approximately zero displacement for
zero force. Therefore, rocking of a wall on an isolated footing may be considered
as a ductile mode of seismic response, almost as ductile as that of a fixed wall
with a flexural hinge at the base. For this reason some international standard-like
documents (ATC 1998, JBDPA 1977) acknowledge for rocking a q-factor value of
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Fig. 2.15 Rocking wall
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the same order as that applying to ductile structural response. However, there is
so much uncertainty about rocking – notably about its implications for the seismic
action affects within the superstructure – that it cannot be reliably quantified and
modelled in the context of earthquake-resistant design of wall systems.

2.2.2.4 Special Features of the Seismic Response of Large Walls

Walls with large cross-sectional length fixed at the base exhibit certain features in
their seismic response which remind rocking of walls with isolated footings. This is
because of the proximity of the neutral axis of the cracked (or yielded) base section
to the edge of the section (owing to the small magnitude of the wall axial force)
and its large distance from the centroid of the wall gross section. Therefore, flex-
ure of the wall significantly lifts the centroid of the gross section and, with it, the
tributary mass of the building supported on the wall. So, part of the kinetic energy
is – be it temporarily – harmlessly transformed to potential energy of these tributary
masses, in lieu of damaging deformation energy of the wall itself. Furthermore, the
end of any beams framing into the part of the wall section outside the compression
zone is also lifted (see Fig. 2.16). So long as the other end of these beams does
not uplift by the same amount, their shear forces have a stabilising effect. They act
downwards on the wall, increasing its axial compression to the benefit of the instan-
taneous wall strength, stiffness and stability, while reducing the resultant moment on
the section.

The above beneficial aspects of the behaviour are due to the large horizontal
dimension of the wall, combined with the no-tension feature of cracked concrete
(similar to the interface between a footing and the ground) that causes the flexural
rotation to take place about a pivot near the edge of the wall section. These phe-
nomena being of purely geometric origin (due to coupling of the rotations with the
vertical displacement at the centroid of the wall section), they are neglected in ordi-
nary geometrically linear analyses of the response, even when the analysis accounts
for material nonlinearities. Therefore, they are unaccounted-for sources of good per-
formance of structural systems consisting of large walls.

Beams Neutral axis

Beams

CG

Fig. 2.16 Plan view of
beams framing into a wall
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Walls with large horizontal dimension compared to their height cannot be
designed effectively for energy dissipation through plastic hinging at the base, as
they cannot be easily fixed there against rotation with respect to the rest of the struc-
tural system. Design of such walls for plastic hinging at the base is even more dif-
ficult, if the wall is monolithically connected with one or more transverse walls
which are also large enough that they cannot be considered merely as “flange(s)”
or “rib(s)” of the first wall. Walls with large horizontal dimensions will most likely
develop limited cracking and inelastic behaviour under the design seismic action.
Cracking will be mainly horizontal, at construction joints at floor levels. Flexural
yielding, if it occurs, will also take place mainly there. Then the lateral deflections
of large walls, acting as vertical cantilevers, will be produced by a combination of:

– a rotation of the foundation element of the wall with respect to the ground, most
often with uplifting; and

– similar rotations at sections of horizontal cracking and (possibly) flexural yield-
ing at one or more floor levels, with the wall swaying as a stack of rigid-blocks.

Owing to the rather low axial load level in large walls, all these rotations will
take place about a “neutral axis” very close to the compressed tip of the foundation
element, or to the compressed edge of the wall section at locations of cracking and
(possibly) yielding. As already noted, such rotations induce significant uplift of the
centroid of the sections, raising the floor masses tributary to the wall and the ends
of beams framing into it, to the benefit of the global response and stability of the
system. Moreover, rigid-body rocking of the wall with its footing promotes radiation
damping, which is particularly effective in reducing the high-frequency components
of the input motion.

Eurocode 8 (CEN 2004a) recognises the ability of large walls to withstand large
seismic demands through their geometry, rather than via strength and hysteretic
dissipation derived from vertical reinforcement. It defines a “large lightly reinforced
wall” as a wall with horizontal dimension, lw, at least equal to 4.0 m or to two-thirds
of its height, hw (whichever is less) and gives it a special role. It also provides special
design and detailing rules for such walls, allowing much less reinforcement than
in “ductile walls”, under the condition that they belong in a lateral-force-resisting
system consisting mainly of such walls. The provisions of Eurocode 8 for “Systems
of large lightly reinforced walls” are highlighted in Section 5.6.

2.2.2.5 Behaviour Factors of Wall Systems

Most present codes for the design of concrete buildings for earthquake resis-
tance assign lower q-factor values to wall systems than to frame systems (cf.
Section 1.4.3). The reasons are the following:

– Walls with large cross-sectional length, lw, have generally lower shear span ratios
than the beams and columns of frames. Therefore, shear plays a greater role for
their cyclic behaviour and deformation capacity.
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– The State-of-the-Art on the cyclic behaviour of walls and wall systems is less
advanced than for frames, because experimental studies on walls is practically
difficult and numerical/analytical research is more demanding. So, design codes
tend to be safe-sided for them.

However, in view of the beneficial features of the seismic behaviour of walls
described in the previous sections and of the very favourable experience of their
performance in very strong earthquakes (e.g. in Chile, 1985 and in Kocaeli, Turkey,
1999), there is presently a tendency towards convergence of the q-factor values for
frame and wall systems. This tendency is more evident in Europe and South Amer-
ica, but grows stronger in the USA as well, which was traditionally the most fervent
proponent of frame systems for concrete buildings. One of the prime arguments of
the pro-wall school of thought is that, through their stiffness, walls are best suited
for protection from non-structural damage in frequent moderate earthquakes. The
strength of this argument has grown with the recent emergence of performance-
based seismic design as a means to reduce the economic consequences of earth-
quakes over the whole range of their potential intensity (see Section 1.1.2).

2.2.2.6 Walls with Non-Rectangular Section or With Openings

Most of what has been said so far in Section 2.2.2, as well as practically every-
thing we know today about the cyclic behaviour of concrete walls, is about walls
with rectangular or quasi-rectangular (barbelled) doubly-symmetric section.8 Such
walls are modelled and dimensioned as prismatic elements with axis through the
centroid of their section. Lacking a better alternative, the same practice is applied
when a rectangular wall runs into or crosses another wall at right angles, to form a
wall with a composite cross-section of more than one rectangular parts, each with
aspect ratio greater than 4 (L-, T-, U-, H-, Z-shaped walls, etc). Such walls have high
stiffness and strength in both horizontal directions. So, they are subjected to biaxial
bending and bi-directional shears during the earthquake. They appear to be more
cost-effective than the combination of their constituent parts as individual rectangu-
lar walls – and indeed they are. We should not forget, however, that our knowledge
of their behaviour under cyclic biaxial bending and shear is very limited, and that
the rules used for their dimensioning and detailing still lack a sound basis. More-
over, their detailing for ductility is complex and difficult to implement on site. For
this reason, it is strongly recommended to make limited use of such walls in prac-
tical design. Designers choosing to use non-rectangular walls should opt for fairly
simple geometries (e.g. symmetric U- or doubly-symmetric H-sections).

Large openings should be avoided in ductile walls, especially near the base,
where a plastic hinge will form. If they are necessary for functional reasons (e.g.

8Defined as rectangular walls with a rectangular or square “column” or a compact flange (with
aspect ratio less than 4) added to the ends of the cross-section, to enhance its moment resistance
and prevent lateral instability of the compression zone.
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for doors or windows), openings should be arranged at every floor at a very regular
pattern, turning the wall into a coupled one, with the lintels between the openings
serving and designed as coupling beams.

2.2.2.7 Advantages and Disadvantages of Walls for Earthquake Resistance

On the basis of what has been said so far in Section 2.2.2 and elsewhere in this
chapter, the advantages of walls systems for earthquake-resistant design may be
summarised as follows:

1. Walls are inherently stiff, so:

• they are insensitive to the presence and to the adverse global or local effects
of infills;

• they prevent or limit damage in frequent or occasional earthquakes.

2. Walls offer excellent protection against collapse, as the lack of wall counter-
flexure within a storey makes a soft-storey mechanism physically impossible.

3. The seismic behaviour and performance of individual walls is less sensitive than
that of frames to lower quality design or poor workmanship on site.

4. Geometric effects and phenomena in large walls are favourable for the seismic
response and performance.

5. All things considered, walls are more cost-effective for earthquake-resistance
than frames.

Wall systems have also disadvantages for earthquake resistant design:

1. Walls are inherently less ductile than beams or columns, more sensitive to shear
effects and harder to detail for ductility.

2. Wall systems offer limited redundancy and few alternative load paths.
3. Walls limit the freedom of the architectural layout, especially at the façade.
4. It is not cost-effective to use walls alone to support the gravity loads of the build-

ing; some beams and columns are needed anyway for that purpose.
5. To avoid large eccentricities or low torsional stiffness of the storeys, walls with

large contribution to lateral stiffness and strength (e.g., those around service
cores housing elevators, stairways, vertical piping, etc., close to the centre in
plan, or large perimeter walls), require balancing in plan by other elements with
similar lateral stiffness and strength.

6. It is difficult to provide an effective foundation to a wall, especially with isolated
footings.

7. There is large uncertainty about the seismic response of wall systems:

• the cyclic behaviour and seismic performance of walls and wall systems are
less well known than those of frames, because experimental research is more
difficult to carry out and analytical models need to be more advanced and
sophisticated;
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• the effects of rocking or of the rotations about the neutral axis of the wall
cannot be accounted for reliably in practical design;

• walls are more complex to model, analyse, dimension and detail in practical
design (especially those with non-rectangular section).

2.2.3 Dual Systems of Frames and Walls

Walls and frames, each has its advantages and disadvantages as lateral-load-resisting
systems (see Sections 2.2.2.7 and 2.2.1.2, respectively). Although walls seem to
have a better balance of advantages v disadvantages, we should keep in mind that
there are almost always beams and columns in a building to carry gravity loads
to the ground. It is a waste not to use them at all for earthquake resistance. So,
it is cost-effective for earthquake resistance to combine within the same structural
system frames and walls.

Dual systems of frames and walls combine the high strength and stiffness and
insensitivity to soft-storey effects of wall systems (advantages no. 1 and 2 of walls
in Section 2.2.2.7) with the large ductility, deformation capacity and redundancy
of frames (advantages no. 1 and 2 of frames in Section 2.2.1.2). The walls offer
protection from nonstructural damage in frequent, moderate earthquakes and help
meeting the code’s interstorey drift limits (e.g., those listed in Section 1.1.3 under
(i)–(iii) for Eurocode 8). The frames may act as a second line of defense in very
strong earthquakes, in case the deformation capacity of the inherently less duc-
tile walls is exhausted and some walls lose a significant part of their strength
and stiffness. In view of this potential back-up role of frames, US codes require
the frames of dual systems to be designed for at least 25% of the design seis-
mic action, no matter the relative stiffness of the walls and the frames in the
system. If this condition is met, US codes entitle dual systems of high ductil-
ity frames and walls with as high a value of the force reduction factor, R, as in
frame systems. Eurocode 8 (CEN 2004a) assigns also the same q-factor value to
frames and to dual systems having frames resisting at least 35% of the design
base shear.

Frames subjected to lateral loading have shear-beam-type lateral displacements,
with the floors sliding horizontally with respect to each other. Interstorey drifts fol-
low the heightwise pattern of storey seismic shears: they decrease from the base to
the roof (see Eq. (2.8a)). By contrast, walls fixed at the base deflect laterally like
vertical cantilevers, i.e. their interstorey drifts increase from the base to the roof.
If frames and walls are combined in the same structural system, floor diaphragms
impose on them roughly common floor displacements. As a result, the walls restrain
the frames at lower floors, undertaking there the full inertia loads of the floor. Near
the top of the building the frame is called upon, not only to resist the full floor inertia
loads, but also to hold back the wall, which – if acting alone – would have developed
a very large deflection at the top. It is often stated that in dual systems the walls may
be considered to be subjected to (cf. Section 5.8.2):
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– the full inertia loads of all floors, and
– a concentrated force at the roof level, in the reverse direction with respect to the

peak seismic response and the floor inertia loads.

The magnitude of the concentrated force at the top exceeds that of the resul-
tant inertia loads in the upper floors (i.e., of the storey seismic shear there). Con-
sequently, in the upper storeys the walls are often under reverse bending and shear
with respect to the storeys below. The frame may be considered to be subjected
to just a concentrated force at the top, equal and opposite to the one applied there
to the wall(s) and in the same sense as the floor inertia loads. Then the frame has
roughly constant seismic shear in all storeys and hence about the same bending
moments in all of them. As a result, even when the cross-sectional dimensions of
frame members are kept the same in all storeys, their reinforcement requirements for
the seismic action do not increase from the top to ground level. As a matter of fact,
column reinforcement requirements may even decrease in lower storeys, thanks to
the favourable effect of the increased axial force on flexural strength. Therefore, in
dual systems column size should not decrease toward the roof.

Dual systems are geometrically more complex than frame or wall systems and
have more complicated seismic response than either one of them. Therefore, there is
larger uncertainty about their seismic behaviour and performance. This uncertainty
is the main (if not only) inherent drawback of dual, against pure frame or wall sys-
tems. Their conceptual design should aim at reducing this uncertainty. For instance,
as the diaphragms of dual systems are called upon to impose common floor dis-
placements to the two systems by transferring horizontal forces from the frame to
the wall or vice-versa, they should be thicker and stronger within their plane than
what is required in pure frame systems. Another uncertainty arises from any rock-
ing of the wall(s) at the base. Such rocking shifts part of the storey shears from the
wall(s) to the frame. It is reminded that rocking of wall footings with uplift is an
intrinsically complex phenomenon, that cannot be reliably modelled in the frame-
work of seismic design practice. Underestimation of such rocking leads to unsafe
design of the frames, while overestimation is unsafe for the wall(s). So, a prudent
design would eliminate rocking in dual systems, by providing full fixity of the walls
at the foundation.

Note that in a system consisting only of walls, the distribution of seismic shear
between them will be practically unaffected by the rotation of all the walls at the
foundation level. The rotation will only increase the absolute magnitude of storey
drifts. The effect of rotations of foundation elements will be even less in purely
frame systems. Any rotation of the footing of a frame column has practically no
consequences beyond the ground storey. Moreover, such a rotation will be much
smaller than in a wall footing, because the higher axial load of the column resists
uplift. More important, the smaller the cross-section of a vertical element compared
to the plan dimensions of its footing, the smaller is its rotation. So, it is the design
of systems that combine the two types of elements, walls and columns, that suffers
from increased uncertainty owing to the rotations of footings with respect to the
ground.



2.2 Frame, Wall or Dual Systems for Concrete Buildings 105

Tall buildings often have a dual system comprising a strong wall near the centre
in plan (around a service core housing elevators, stairways, vertical piping, etc.) and
stiff and strong perimeter frames. In such a system outrigger beams may be used
to advantage, increasing the global lateral stiffness and strength of the system and
mobilising the perimeter frames in resisting the seismic overturning moment.

2.2.4 The Special Case of Flat-Slab Frames

Beamless slabs (“flat slabs”, called “flat plates” in North America if they are sup-
ported on columns directly without drop panels or column capitals) provide larger
clear storey height, unobstructed passage of services under the slab and freedom for
irregular layouts of the column grid and for potential modifications of the layout
of partitions. Moreover, if labour is expensive, they may be cost-effective for resi-
dential or office buildings. Most common are solid cast-in-place slabs, sometimes
post-tensioned with bonded or unbonded tendons. Waffle slabs with drop panels
around the columns are also common. “Lift slabs” are all precast at ground level
around the columns and lifted to their final position.

In flat slab frames subjected to lateral loading strips of the flat slab between
the columns act and behave as beams. The effective width of such strips increases
with increasing seismic demands, as measured, e.g., by interstorey drift, but is quite
uncertain. Irrespective of this uncertainty, the stiffness and flexural capacity of these
strips is relatively low compared to those of the columns, conducive to a beam mech-
anism with column plastic hinging only at the base, as in a strong-column-weak-
beam design. Note that, owing to the flexibility of the flat slab, flat slab frames
may develop large 2nd-order (P-Δ) effects. There is also large uncertainty about the
behaviour of the region of the slab around the column under inelastic cyclic load-
ing, and especially about its capacity to transfer to the column the floor gravity loads
through vertical shear stresses, along with the slab moment due to the cyclic lateral
loading. A compilation of past experimental work on slab-column connections sub-
jected to large amplitude cyclic deformations suggests that, when the vertical shear
force transferred from the slab to the column through the connection increases from
zero to about 45% of the capacity of the connection in concentric punching shear, the
overall displacement ductility ratio of the slab-column system at failure of the slab
decreases from an average value of around 3.5 to about 1.0 (i.e. to brittle failure),
while the ultimate interstorey drift ratio of the system decreases from an average
value of above 4% to about 2% (Moehle et al. 1988, Pan and Moehle 1989, Moehle
1996). Given that yielding of the slab-column system takes place at an interstorey
drift ratio of around 1.5% on average, slab-column connections having a large safety
margin against punching shear failure seem able to sustain significant cyclic defor-
mation demands.

According to current conventional wisdom, beamless frames of columns and flat
slabs (“flat slab frames”) are not considered suitable for earthquake resistance owing
to questions about their lateral displacement capacity. Indeed, buildings with “flat
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slab frame” systems suffered heavy damage in the Northridge (1994) earthquake.
However, in all earthquakes that have inflicted heavy damage to urban centres in
Greece in the 1980s and 1990s (Kalamata 1986, Aegio 1995, Athens 1999), such
buildings either performed surprisingly well, despite the lack of proper design and
detailing for earthquake resistance, or were damaged only in the vertical elements
supporting the flat slab and not at the connection (see Fig. 2.10(c) for an example).
So, there is no conclusive evidence that “flat slab frames” are condemned in a strong
earthquake.

The provisions of Eurocode 8 do not cover flat slab frames used as part of the
lateral-load-resisting system (i.e. as “primary seismic” elements). Eurocode 2 (CEN
2004b) includes special rules for the detailing of flat slabs for non-seismic actions.
For Ductility Class M or H buildings, flat slab frames cannot be considered as part
of the lateral-load-resisting system (i.e., they are considered as “secondary seismic”
elements) and the relevant Eurocode 2 rules alone apply to the flat slabs and to the
columns supporting them. The Eurocode 2 rules apply also to flat slab frames of
Ductility Class L buildings designed as part of the lateral load resisting system (i.e.,
as “primary seismic” elements), with a value of the behaviour factor q for the entire
building not larger than 1.5. It is reminded, though, that Ductility Class L buildings
are recommended by Eurocode 8 only for low seismicity regions.

The 1987 Mexico City code has provisions for closed stirrups in flat slabs, as well
as for the effective slab width. However, the use of flat slab frames over Mexico City
soft soils is practically limited by lateral stiffness requirements and by increased lat-
eral forces, to low-rise buildings. US codes (ACI 2008) include rules for the design
and detailing of flat slabs for gravity loads and special rules for their design and
detailing as part of an “Intermediate Moment Frame”, excluding them from use in
“Special Moment Frames”. These rules, as well as those applicable for the design
and detailing of flat slabs for gravity loads, were developed in the late 1980s (ACI-
ASCE Committee 352, 1988). They have not been updated since then, despite the
significant volume of research conducted in the mean time on slab-column connec-
tions subjected to large amplitude cyclic deformations, or on entire flat slab frame
buildings under lateral actions simulating earthquakes.

A prime example of the second type of research mentioned above is a 3-storey,
full-size waffle slab frame with one-bay in each direction depicted in Fig. 2.17. The
four slab-column connections encompass a corner and an interior one, as well as
two edge connections, with the edge either parallel or at right angles to the direc-
tion of lateral loading. The waffle slab had a total depth of 0.29 m. In addition to
drop panels next to the columns, it had solid column strips between them; in the
direction of testing the edge strip was 0.45 m wide and the interior one 0.525 m
wide. The building was subjected to pseudodynamic testing at the ELSA laboratory
of the JRC of the European Commission in Ispra (Zaharia et al. 2004). The damage
pattern in Fig. 2.17 is after a test that has driven the frame to a top drift ratio of
4.3%, corresponding to interstorey drift ratios varying from 5% at the ground floor
to 3.75% at the top floor. At these peak drifts the corner connection and the one
along the edge at right angles to the direction of loading were subjected to negative
(hogging) moments in the slab (inducing upwards shear stresses near the free edge
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(a) (b) (c)

(d) (e) (f) 

Fig. 2.17 Flat slab frame after pseudodynamic test at the ELSA laboratory of the JRC: (a) side
parallel to loading; (b) hinge in slab in positive (sagging) bending and plastic hinges at column
base; (c) side at right angles to loading, with slab damage around connections; (d) edge slab-
column connection, 1st floor; (e) edge slab-column connection, 2nd floor; (f) edge slab-column
connection, 3rd floor (pictures (d)–(f) courtesy F. Taucer, JRC). (See also Colour Plate 5 on
page 719)

in Fig. 2.17(c) and to downwards shear due to the overturning moment). These peak
drifts had been preceded by interstorey drift ratios in the opposite direction ranging
from 1.5 to 2%. Column plastic hinges formed only at the base (Fig. 2.17(b)). Plas-
tic hinges (or rather yield lines) in positive (sagging) bending formed next to the
transition from a solid slab to a ribbed section (Fig. 2.17(b). The cleavage failures at
all six connections on the free edge in Fig. 2.17(c)–(f) are due to the transfer of part
of the strongly eccentric shear from the slab to the faces of the column that are par-
allel to the direction of loading via torsion in the column strip which is transverse to
the direction of loading. The termination of the straight ends of column bars within
the roof slab was a factor for the location and the pattern of damage in Fig. 2.17(f).
The cleavage failures prominent in Fig. 2.17(c) (with two of them shown in detail
in Figs. 2.17(e) and (f)) took place at the phase when the peak negative (hogging)
moments in the slab induced upwards shear stresses near the free edge. The excep-
tion is the edge connection at the 1st floor slab (Fig. 2.17(d)), which suffered the
largest damage in the preceding half-cycle of the response when the peak positive
(sagging) moments in the slab induced downwards shear stresses near the free edge
and the overturning moment an upwards seismic shear on the connection.

Studies like (Zaharia et al. 2004) may shed more light into the seismic response
and performance of flat slab frames and contribute to the prompt development of
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rules for their seismic design. The cost-effectiveness and seismic performance of
earthquake resistant concrete buildings will benefit from the rational use of flat slab
frames as part of the lateral-load-resisting system (i.e., as what is called in Eurocode
8 “primary seismic elements”).

2.3 Conceptual Design of Shallow (Spread) Foundation Systems
for Earthquake-Resistance

2.3.1 Introduction

This section presents the principles for the conceptual design of systems of shallow
foundations in earthquake resistant buildings. The “term shallow foundations” cov-
ers systems of isolated footings (pads) and tie-beams, foundation-beams and rafts.
The same types of foundations are often called (e.g. in Eurocode 7) “spread” foun-
dations. Deep foundations, through piles, are not commonly used for buildings and
are not treated at all in this book.

Seismic design of buildings should pay due attention to the foundation, for the
following reasons:

– The foundation should be protected from seismic damage, because it is difficult
and costly to access and inspect after an earthquake, repair any damage to it, or
remedy any deficiency by retrofitting.

– The superstructure will be adversely affected by any damage in the foundation –
normally manifested as excessive deformations, felt by the superstructure as dif-
ferential settlements of its supports – but not the other way around.

Eurocode 8 is one of the few seismic design codes that pays due attention to the
design of foundations. The whole of Part 5 of Eurocode 8 (CEN 2004c) is devoted
to foundations and other geotechnical aspects, while Part 1 (CEN 2004a) pays sig-
nificant attention to the design of foundation systems and elements.

Despite its importance, the foundation receives little attention in design practice.
Its conceptual design is often done last and its layout follows the choices in the
conceptual design of the superstructure.

Under-rating the foundation in seismic design codes and practice may not only
be because foundation failures pose limited threat to life, but also because of their
low incidence in past earthquakes. There are on record many cases of liquefac-
tion or landsliding, but they are of purely geotechnical interest and have little to do
with the presence of a building. There are widely quoted cases of building settle-
ments in Mexico City during the 1985 earthquake due to bearing capacity failure
(Fig. 2.18(a)). A few similar cases took place over very soft soils in Adapazari (TR)
during the 1999 Kocaeli earthquake (Fig. 2.18(b)) and several corner buildings there
toppled, most likely owing to one-sided bearing capacity failure and cyclic accu-
mulation of permanent deformations under the street side part of the building due
to smaller overburden there (Fig. 2.18(c)–(f)) (Gazetas and Anastasopoulos 2007).
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(a)

(b)

(c)

(d)

(e)

(f)

Fig. 2.18 Bearing capacity failures at: (a) in Mexico City (1985) (b)–(f) Adapazari (TR) in the
1999 Kocaeli earthquake (courtesy G. Gazetas, NTUA). (See also Colour Plate 6 on page 720)

There are no widely known cases of damage or collapse in the superstructure itself
due to influences of, or problems in the foundation.

The scarcity of failures or serious problems in foundations during earthquakes
could be due to the traditionally very high safety factors against bearing capacity
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failure of the ground under gravity or seismic loads and to the oversized foundation
elements. In other words, inadequacies of the conceptual design of the foundation
or the lack of a meaningful design of it against seismic actions may be overshad-
owed by the oversizing of the foundation. Clearly this is not a rational and cost-
effective design practice. There is, therefore, wide scope for improvement of the
cost-effectiveness and rationality of the seismic design of the foundation, without
any loss of the safety level it provides.

2.3.2 Foundation of the Entire Building at the Same Level

It has been emphasised in Section 2.1.11 that all foundation elements should be tied
together horizontally, into a system that introduces to the base of the structure the
same ground motion throughout the plan. This implies that all foundation elements
should be essentially at the same horizontal level.

Foundation of the entire building at the same level not only promotes integration
of all foundation elements into a single entity, but also facilitates modelling of the
support conditions of the building for the seismic response analysis. Figure 2.19
illustrates the case for a building on sloping ground. The most common modelling of
the support conditions to the ground employs vertical springs under the foundation
elements, simulating the vertical compliance of the soil. Such springs are essential
for realistic calculation of the effects on foundation elements and the superstructure,
not only of the seismic action but also of gravity (including the action effects of the
“persistent and transient design situation”). Given the high static indeterminacy of a
typical building structure, there is no way to calculate the internal forces induced in
tie-beams, foundation beams, rafts or the superstructure by differential settlements
or rotations between different points of the foundation, unless compliance of the
ground under bearing stresses is realistically modeled.

Fig. 2.19 Common (but
erroneous) modelling of
support conditions in a
building with foundation
elements at different levels
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It is also common modelling practice to constrain horizontally all nodes at the
interface of the foundation and the ground, instead of using horizontal springs
there for the horizontal compliance of the ground. The reason for this practice is
three-fold:

– There is almost no loss of accuracy in the calculation of action effects in the
structure, if the compliance of the soil in the horizontal direction is neglected
in the model, especially when all elements of the foundation are connected
horizontally.

– There is much higher uncertainty about the horizontal than the vertical compli-
ance of the ground. This is not only owing to modelling reasons, but also because
it depends on relatively unknown or poorly controlled factors, such as the embed-
ment depth, the presence of and interaction with adjacent structures, etc.

– (Most important:) If included in the model, the horizontal soil compliance will
strongly affect the calculated dynamic characteristics of the structure. The fun-
damental mode and the corresponding period in each horizontal direction will
most likely be that of translation of the structure as a rigid body on horizontally
deformable ground. It is feasible, but not trivial, to isolate any spurious effects
from the results of analyses that consider the horizontal soil compliance. The end
result for the superstructure will be close to that obtained neglecting the horizon-
tal soil compliance.

If the common modelling approach described above is adopted and all horizontal
displacement constraints are at the same horizontal level, the seismic overturning
moment will be (correctly) reflected by the analysis results in the form of reactions
in the vertical springs that vary from one side in plan to the opposite. If the horizontal
displacement constraints are not all at the same horizontal level, the full seismic
overturning moment will be taken by a couple of horizontal reactions developed
between horizontal constraints at different levels. So, it will not affect at all the
distribution of vertical soil reactions under the foundation. Regarding the seismic
action effects in the superstructure, the seismic overturning moment will produce
differences in the column shear forces – corresponding to the horizontal reactions
due to the overturning moment – instead of axial forces in the columns. These are
spurious results and the modelling that leads to them should be avoided.

Introducing horizontal constraints only to nodes of the foundation that are all at
the same horizontal level, while letting all others free in the horizontal direction, is
obviously not the proper way out of the problem, as the vertical elements connected
to the second set of nodes will develop no seismic shears, which is also a spurious
result. The only ways out are:

– either to arrange all foundation elements at the same horizontal level, or
– to provide a rigid horizontal connection between all foundation elements that are

at different levels, so that they effectively work as if they were all at the same
horizontal level.
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2.3.3 The Options for Shallow Foundation Systems

2.3.3.1 Isolated Footings with Tie-Beams

Isolated footings cannot be effectively designed for the large eccentricity normally
produced by the combination of the moment(s) and of the vertical reaction force
due to the design seismic action acting along with the concurrent (quasi-permanent)
gravity loads. To reduce this eccentricity, stiff tie-beams should connect every foot-
ing with the adjacent ones in both horizontal directions. The bending moments and
shears in tie-beams always have a sense of action that leads to reduced moment reac-
tion of the ground at the underside of the footing. So, for given moments and forces
applied at the top of the footing by the vertical element, the larger the stiffness of the
tie-beams, the smaller is this moment reaction at the base of the footing. Tie-beams
should be connected directly to the body of the footing in order to:

– avoid creating a squat column between the soffit of the beam and the top of the
footing;

– increase the effectiveness of tie-beams, by increasing their stiffness, EI/Lcl,
through the reduction of the clear length, Lcl.

If we want to calculate the action effects in tie-beams and the ground reactions, it
is essential to model realistically the ground compliance for rotation of the footing
(Sections 4.9.9.4 and 4.10.3).

2.3.3.2 Two-Way Systems of Foundation Beams

A system of foundations beams, arranged in both horizontal directions throughout
the plan of the foundation to support all vertical elements of the building, is much
more effective for earthquake resistance than a combination of footings with two-
way tie-beams. It is also often more cost-effective.

In order to impart to the building a large torsional stiffness about the vertical,
end frames are often made stiffer than interior ones, sometimes by including walls.
So, they resist a larger share of the seismic action, while, owing to their smaller
tributary area, supporting a smaller fraction of the quasi-permanent gravity loads.
So their foundation may be more challenging than for interior vertical elements. If
there is a basement, the perimeter foundation beams can extend up to the floor slab
at its top, at least along most of each side of the perimeter. In that case, the building
can be provided with the most effective foundation system for earthquake resistance,
namely the box system outlined in Section 2.2.2.3. Section 2.3.3.3 is devoted to this
system.

It is essential to model the soil compliance under the foundation beams, even for
their design for gravity loads. The approach commonly used to that end is that of the
subgrade reaction modulus (also known as Winkler foundation spring). Libraries of
commercial software for analysis and design of buildings for seismic or non-seismic
actions often include a special linear-elastic beam-on-elastic-foundation element,
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with the soil subgrade-reaction-modulus among its parameters. A single element of
this type can be conveniently used to model the full length of a foundation beam
between adjacent vertical elements. Uplift between the underside of the foundation
beam and the ground cannot be modelled with this linear approach. Anyway, nei-
ther the extent nor the consequences of partial uplift are significant in a two-way
system of stiff foundation beams. To take into account uplift, soil compliance may
be modelled with discrete no-tension vertical springs at regular spacing along the
underside of each foundation beam. A linear-elastic version of such modelling may
be applied, if the computer code used does not include in its library a special beam-
on-elastic-foundation element.

2.3.3.3 Box Type Foundation Systems

The ideal shallow foundation for earthquake-resistant buildings is the box-system
already described in Section 2.2.2.3. Such a system suits well buildings with base-
ment, even when that basement is only partially embedded and has some openings
along the perimeter. However, for the system to be fully effective, any openings
between the top of the perimeter foundation beam and the soffit of the beam sup-
porting the basement roof should be limited to a small fraction of the corresponding
side of the perimeter.

It is not essential to have a raft, or a two-way system of foundation beams con-
necting the bottoms of the perimeter deep foundation beams. Interior vertical ele-
ments may be founded, instead, on individual footings, provided that these footings
are connected to the bottom of the perimeter foundation beams through a diaphragm
consisting of two-way tie-beams or a slab (possibly serving also as the basement
floor). As the transfer of the full seismic action from the ground to the superstructure
(or vise-versa) takes place through the perimeter beams, the foundation of interior
elements and the above-mentioned diaphragm may be at a level slightly above the
bottom of the perimeter beams.

Owing to its large rigidity and strength, a box-type foundation works as a rigid
body. Thus, it minimises uncertainties about the distribution of seismic action effects
over the interface between the ground and the foundation system and imposes the
same rotation of all vertical elements at the level of their connection with this sys-
tem, so that they may be considered as fixed there against rotation. Plastic hinges in
walls and columns will develop just above the top of the box-type foundation. Fixity
of interior vertical elements at the top of the foundation system is achieved through
a couple of horizontal forces that develop at the levels of the top and bottom of this
system. The main role of the diaphragm at the bottom of the perimeter foundation
beams is to provide the bottom horizontal force for the fixity of vertical elements at
the top of the foundation box.

Because of the large rigidity and strength of a box-type foundation system, no
inelasticity is expected to take place under the design seismic action in the inte-
rior vertical elements within the box (apart from potential plastic hinges at their
tops underneath the roof of the basement) or in any beam of the foundation system
(including those at the roof of the basement).
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The seismic bending moment at the connection of interior vertical elements with
their foundation element is small, and a footing (subjected in this case to essentially
concentric compression) is sufficient for each one of them. The free height of the
interior vertical element will be subjected to a seismic shear approximately equal to
the moment resistance of the element at the level of the roof of the box, divided by
the free height of the vertical element within the box (see Fig. 2.20 for a wall).

The top slab of a box-type foundation transfers the seismic shears from the inte-
rior vertical elements to the perimeter wall-type foundation beams. It should have
sufficient in-plane stiffness (i.e. thickness) and strength (two-way reinforcement)
and should be free of large interior openings. The restraint of shrinkage of this
slab by the stiff perimeter elements may induce through-thickness cracking (cf.
Section 2.1.6). Two-way reinforcement at both surfaces of the slab will reduce the
consequences of such cracking on its in-plane stiffness. If the slab is cast shortly
after the perimeter elements of the box to minimise their differential shrinkage,
cracking due to restraint of drying shrinkage is less likely. Another option is to
lap-splice all slab reinforcement in each direction of the slab along a strip all the
way from one side of the perimeter to the opposite and defer for a few days casting
of the concrete in that strip and striking of the formwork of the entire slab. In this
way the early (and largest) part of the ultimate drying shrinkage of the parts of the
slab cast first takes place without any restraint.

A box-type foundation offers additional advantages, which are not captured by a
conventional analysis of the seismic response:

– An integral rigid foundation for the whole building filters out differences in the
seismic input between different points of the base, due to arrival there of the seis-
mic waves with a time-lag (be it short) and other minor differences. So, it intro-
duces in the superstructure a single seismic excitation, which at any given point in
time is the average of the ground motion over the entire interface (horizontal and
vertical) between the foundation system and the ground. This smoothing of the
input motion removes its high-frequency components. The larger the interface

Fig. 2.20 Seismic moments
and shears in an interior wall
of a building with box-type
foundation
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between the ground and an integral foundation (e.g. in buildings with a raft at
the bottom or with deep embedment due to more than one basement storeys), the
more extensive is the smoothing of the input motion.

– If the system of the foundation and the superstructure is stiff relative to the under-
lying soil stratum (more specifically, if its fundamental period is shorter than that
of the soil deposit) and, moreover, there is an integral and rigid foundation system
for the entire building, some of the input energy is radiated back into the ground,
instead of being trapped within the building. This phenomenon, termed “radia-
tion damping” reduces the seismic forces and deformations in the superstructure.

– It is extremely rare, but not inconceivable, to have surface faulting through the
foundation (as happened at Awaji island in Kobe (1995) and at the Bolu viaduct in
the Ducze (TR) 1999 earthquake). An integral and rigid foundation may straddle
the fault without collapse or severe damage in the superstructure due to the fault
displacements – horizontal or vertical.

2.3.4 Capacity Design of the Foundation

The foundation is of paramount importance for the integrity of the whole. It is also
difficult to access for inspection of seismic damage and even more difficult to repair
or retrofit. So, it is ranked at the top of the hierarchy of strengths in the entire struc-
tural system and should be designed to remain elastic, with inelastic deformations
and hysteretic energy dissipation limited to the superstructure it supports. To this
end, the verification of the foundation of buildings designed for energy dissipation
should be based on seismic action effects derived from capacity design calcula-
tions, on the basis of the overstrength capacity of the yielding elements of the super-
structure. Eurocode 8 applies this capacity design concept for the verification of the
foundation soil and, in general, for the dimensioning of the foundation elements.
US codes (BSSC 2003, SEAOC 1999), by contrast, reduce the overturning moment
at the base from the analysis, by 25% for “equivalent” static (lateral force) analysis,
or by 10% for a multimodal response spectrum one. This is to account for uplift and
(for the “equivalent” static analysis) for the different contribution of higher modes
to the overturning moment than to the base shear.

For individually founded vertical elements (i.e., essentially for individual foot-
ings) seismic action effects from capacity design may be calculated assuming that
the corresponding action effects from the elastic analysis increase proportionally
until the dissipative zone or element that controls the seismic action effect of interest
reaches the design value of its force capacity, Rdi, times an overstrength factor, γ Rd.
This can be achieved by multiplying all seismic action effects from the analysis by:

– for individual footings: aCD = γRdΩ = γRd(Rdi/Edi) (2.15)

where Edi is the seismic action effect from the elastic analysis in the dissipative zone
or element controlling the seismic action effect of interest. Implicit is the assumption
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that the action effect of gravity loads concurrent with the design seismic action is
negligible compared to Rdi and Edi. Eurocode 8 specifies γ Rd = 1.2 if the q-factor
value used in the design of the superstructure exceeds 3, or γ Rd = 1.0 if it doesn’t.

For individual footings of walls or columnsΩ is the minimum value of MRd/MEd

in the two orthogonal directions, y, z, of the sides of the element (even for L-, T- or
U-section) at its lowest cross-section where a plastic hinge can form, as it is in that
direction that the element will first develop its force resistance:

– for individual footings of columns or walls

aCD = γRd min[(MRd,y/MEd,y); (MRd,z/MEd,z)]
(2.15a)

The moment resistances MRd in Eq. (2.15a) should be determined for a value
of the axial force in that section of the vertical element from the analysis, NEd,

using the same combination rule of the effects of the two horizontal seismic action
components as for MEd,y, MEd,z. As we will see in Section 4.7.2, depending on the
method of analysis (linear static or modal response spectrum analysis) and on how
the effects of the seismic action components are combined, we may have 4 or even
16 such combinations of MEd,y, MEd,z, NEd. The value of aCD computed for each one
of these combinations multiplies the seismic action effects applied from the ground
to the footing as reactions (biaxial moments and horizontal forces, vertical reaction),
as well as those applied on the footing from the vertical element and all tie-beams
framing in it. It multiplies also the seismic action effects in the tie-beam, up to the
tributary length of the footing, i.e., normally up to tie-beam mid-span. (The value of
aCD from the column at the other footing to which the tie-beam is connected applies
over the rest of the tie-beam). The seismic action effects multiplied by aCD pertain to
the same combination from which the value of aCD has been computed. All these 4
or 16 combinations should normally be considered, as different ones may be critical
for different verifications. For example, the bearing capacity of the soil, to be com-
pared with the vertical reaction, decreases with increasing biaxial horizontal force
reactions (which are the seismic ones from the analysis times aCD for the same
combination of seismic action effects) but decreases more with increasing biaxial
eccentricities of the vertical reaction with respect to the centre of the underside of
the footing. For the same (absolute) values of MEd,y, MEd,z in Eq. (2.15a), the value
of aCD is largest when MRd,y, MRd,z are largest, i.e., when the seismic axial force in
the column or wall is compressive. The same holds for the vertical reaction (the seis-
mic one from the analysis times aCD, plus that due to the concurrent gravity loads)
and the biaxial moment and horizontal force reactions (all proportional to aCD), with
the increase of which the bearing capacity decreases. However, the bearing capacity
is very sensitive to the values of the eccentricities, which, being ratios of moment
reactions to the vertical reaction, are largest when the vertical seismic reaction (the
one from the analysis times aCD) is tensile (uplifting). So, the bearing capacity ver-
ification may be more critical when the seismic axial force in the column or wall is
tensile than when it is compressive (especially under exterior columns of tall frame
systems), despite the lower value of aCD. For sure, all verifications of the tie-beams
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framing into the footing will be more critical when aCD is largest, i.e., when the
seismic axial force in the column or wall is compressive.

For common foundations of more than one vertical elements (e.g. in a box-type
foundation, a raft, foundation beam, etc.) the value ofΩ should be derived from the
vertical element that develops the largest seismic shear for that particular direction
and sense of the horizontal component of the seismic action. Eurocode 8 allows, as
an alternative, to take the value of γ RdΩ equal to:

– for common foundations of two or more members: aCD = 1.4 (2.16)

and multiply the seismic action effects from the analysis by 1.4, without capacity
design calculations. The intention is not to fully cover the potential overstrength of
all jointly-founded vertical elements, because plastic hinging of all these elements
at the same instant in the seismic response is considered unlikely.

According to Eurocode 8, wherever in the foundation or its elements the seismic
action effects from an analysis for the design seismic action with q = 1.0 is less
than the result of capacity design calculations, this smaller value from the analysis
may be taken as seismic demand in the verifications. This applies to parts of the
foundation and to individual foundation elements. Eurocode 8 allows also calcu-
lating the seismic action effects for the entire foundation system from the analysis
for the design seismic action using q = 1.5 and omit capacity design calculations.
This option is consistent with the way seismic action effects are calculated in build-
ings designed for strength alone and not for ductility, (Ductility Class L, see Section
1.4.2.1). This is not a feasible alternative in high seismicity regions, especially for
medium- or high-rise buildings, as the seismic action effects resulting from q = 1.5
for the entire foundation system may be prohibitively high for the verification of
certain parts of that system.

Foundation elements dimensioned for seismic action effects derived from the
above capacity design approach are expected to stay elastic under the design seis-
mic action. So, Eurocode 8 allows applying to them the simpler dimensioning and
detailing rules appropriate for seismic design for strength alone, in lieu of ductility.
It also allows this simplification whenever the seismic action effects for the founda-
tion element(s) are derived from an analysis with q = 1.5.

The foundation ground should always be verified for capacity design effects (or,
as an alternative allowed by Eurocode 8 (CEN 2004a), with seismic action effects
from the analysis for the design seismic action with q = 1.5). However, as far as the
foundation elements themselves, in certain cases it makes more sense to dimension
and detail them for ductility and energy dissipation, as in the superstructure. In that
option, allowed by Eurocode 8, foundation elements are dimensioned in bending for
seismic action effects derived from the analysis for the design seismic action using
the q-factor of the superstructure. They are also dimensioned and detailed according
to all relevant special rules pertaining to the corresponding ductility class and apply-
ing to elements of the superstructure. For example, tie-beams and foundation beams
should be dimensioned in shear for a shear force derived from capacity design cal-
culations (according to Section 1.3.6.2) and should follow all the special detailing
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rules for the longitudinal and transverse reinforcement that aim at enhanced local
ductility.

As pointed out in Section 2.3.3.3, owing to the large rigidity and strength of a
box-type foundation, interior vertical elements in the box as well as all beams in this
foundation system (including those at the roof of the foundation box) are expected
to stay elastic under the design seismic action (except potential plastic hinging at
the top of interior vertical elements underneath the roof of the basement). They can
be designed and detailed following the simpler rules for seismic design for strength
alone without ductility.

The connection between a foundation beam and a concrete column or wall is
essential for the transfer of the seismic action effects from one element to the other.
This connection is an inverted-T or a knee “beam-column joint” and should be
dimensioned and detailed according to the rules applicable to such joints. This nor-
mally implies, among others, that the transverse reinforcement of the critical region
at the base of the column or the wall should also be placed within its entire connec-
tion region with the foundation beam or wall (see Section 5.4). In buildings of DC H
the connection region of a foundation beam with a concrete column or wall should
also be explicitly verified in shear (see Section 5.4.2). The value of the design hori-
zontal shear force to be used in this verification, Vjhd, may be obtained as follows:

– If the foundation beam is dimensioned on the basis of seismic action effects from
capacity design calculations (i.e., in the simplification allowed by Eurocode 8,
for 1.4 times the seismic action effects from the analysis for the design seismic
action), then Vjhd may be determined from the analysis for the design seismic
action. However, that analysis does not provide directly seismic action effects
for the joints. So, Vjhd may be conservatively estimated as the design moment
resistance at the base section of the column or wall, MRd, divided by the depth of
the foundation beam, hb.

– If the foundation beam is dimensioned for seismic action effects from the anal-
ysis for the design seismic action, Vjhd itself may be conservatively determined
via capacity design calculations, on the basis of the areas of the top and bottom
reinforcement of the foundation beam (see Sections 3.3.3.1 and 5.4.2).

2.3.5 A Look into the Future for the Seismic Design
of Foundations

All modern seismic codes, including Eurocode 8 (CEN 2004a), consider the struc-
ture and the ground as uncoupled. Soil-structure interaction is taken into account
to a limited extent, only in special cases and always considering the ground and
its interaction with the structure and its foundation system as linear. Soil-structure
interaction aspects covered in Eurocode 8 are limited to isolated issues, such as those
of dynamic impedance of foundations, of material or geometric/radiation damping
in the soil, etc. What is really needed in future is to consider in seismic design (a)
the structure, (b) its foundation and (c) the soil, coupled into a single system and not
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as isolated components. This includes consideration of the effects on the superstruc-
ture of (important) phenomena in the soil (large deformations and nonlinearities),
or at its interface with the structure (e.g. sliding and/or uplift/rocking). Taking the
structure, its foundation and the soil as a coupled system may lead to alternative
cost-effective seismic design concepts that will allow – under certain conditions –
concentration of nonlinearity and energy dissipation in the soil or in the foundation,
with the soil and/or the foundation (possibly modified with the use of geo-textiles,
or other structural inclusions) engineered into an isolation system of the superstruc-
ture. It may also change the global ductility demands in the superstructure, leading
to inelastic spectra that relate the behaviour factor, q, of the superstructure not only
to the period, T, and the displacement ductility factor, μδ, of the SDOF system, but
also to important parameters of the foundation and the soil (e.g., uplift, embedment,
resistance to combined shear and vertical force, etc.).

The concept of considering the soil and the structure as a system in seismic
design is also very important for structures developing large interaction with the
surrounding ground, such buildings with deep embedment, or underground facili-
ties (including underground rail or metro stations, tunnels, buried storage facilities,
etc.), which are currently outside the scope of Eurocode 8.

2.4 Examples of Seismic Performance of Buildings with Poor
Structural Layout

2.4.1 Introductory Remarks

This section gives three examples of buildings that suffered partial collapse dur-
ing earthquakes that hit Greek cities in the 1990s. All three buildings had been
designed and built in the 1970s with very little engineered earthquake resistance.
Their structural framing had been conceived with gravity loads as the main, if not
sole, consideration.

The author has been involved in studies of the mechanisms that led to the col-
lapses. Technical views expressed in the following are his own.

2.4.2 Collapse of Wing of Apartment Building in the Athens 1999
Earthquake

Figure 2.21 shows the framing plans of an L-shaped 5-storey apartment building
(plus penthouse at the top, shown at the bottom row, right-hand side) in Athens.
The 1st storey (top row, left-hand side) is essentially a mezzanine running along the
middle of the L in plan, with its floor suspended via RC ties from the floor above
(top row, right-hand side). Storeys 3–5 (bottom row, left-hand side) are very similar
to each other, except that most columns decrease in size, sometimes from 400 or
600 mm at the ground floor to 200 mm at the top storey. There is a U-shaped wall
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Fig. 2.21 Framing plans of partially collapsed apartment building in Athens (1999) earthquake

around the elevator shaft and a staircase right to the left of it, both very loosely
connected to the rest of the framing (essentially, via a single beam per storey with
a 200 × 400 mm cross-section). Floors have one-way ribbed slabs, with ribs and
reinforcement essentially only along the short dimension of the L in plan. In floors
2–5 a 1.3 m-wide beam, with depth equal to that of the ribbed slab, is the only
interior beam, running from the re-entrant corner to the opposite side in plan. Its
intended purpose was to provide support to the one-way ribbed slab. The 2nd storey
floor slab (top row, right-hand side) has several wide beams (with the same depth as
the ribbed slab) to suspend the RC ties holding the 1st floor slab. Infills were rather
uniformly distributed in plan and elevation and had many openings, except at the
ends of the legs of the L, where the building – being a corner one – was in contact
with the property line and adjacent buildings.

Figure 2.22 shows the location of the centre of overlying masses in each storey,
CM, vis-à-vis those of:

– the centroid of the gross-section rigidity of storey vertical members, CR-
uncracked, from Eqs. (2.2) in Section 2.1.5;

– the centre of rigidity of storey vertical members, CR-col, determined from Eqs.
(2.2) but using the stiffness to yield-point, (EI)eff, of storey vertical members (at
both ends in skew-symmetric bending for columns, at the base section of the
storey for walls) from Eq. (3.68) in Section 3.2.3.3;
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Fig. 2.22 Centres of mass (CM), rigidity (CR), strength (CV) and twist (CT) of 1st to 5th storey
and of penthouse in the partially collapsed apartment building in Athens (Kosmopoulos and Fardis
2006)

– the storey centre of rigidity, CR-effective, defined and determined as in (Cheung
and Tso 1986, Tso 1990) according to Section 2.1.5;

– the storey centre of twist, CT, determined as the pivot of the floor from elastic
analysis with member stiffness equal to their stiffness to yield-point under storey
torques with inverted triangular heightwise pattern (see Section 2.1.5); and

– the storey centre of resistance, CV, determined as the centroid of the lateral
force resistance of storey vertical members, as controlled by shear or flexure –
whichever is most critical.

As shown in Fig. 2.23(a), the wing of the building to the right of the elevator
shaft and of the column on the opposite side in plan collapsed in the Athens 1999
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(b) 

(a)

Fig. 2.23 Apartment building in Athens: (a) wing that did not collapse; (b) detail of (a) showing
the side of the 1st storey beam along the line where floor diaphragms were torn apart

earthquake. Witness in Fig. 2.23(b) the lack of any connection of the side of the
beam with the secondary direction of the collapsed ribbed slab, along the line where
floor diaphragms were torn apart.

The unusually large irregularity of the building in plan and elevation, the lack of
a clear and simple lateral-load-resisting system, as well as the vulnerability of its
diaphragms, are evident from Figs. 2.21 and 2.22. The eccentricities in Fig. 2.22
between the centre of overlying masses, CM, and the storey centre of twist, CT, rep-
resenting the elastic storey rigidity, or the storey centre of resistance, CV, which is
most pertinent for the inelastic range, suggest a torsional component of the response
that would induce larger lateral displacements in the right-hand wing of the building.

Section 4.10.5.3 presents the conclusions of an in-depth study of the response of
the building on the basis of a series of nonlinear response-history analyses. Most
critical seem to be the penthouse above the 5th floor and several columns in the
upper storeys of the right-hand wing. A very likely scenario is that collapse was
triggered by shear failures of columns at the penthouse and in the upper storeys of
the part of the building to the right of the elevator shaft. Very crucial turned out to
be the large reduction of the cross section of many columns from the ground floor
to the top storey, which in some cases may allow diagonal cracks that do not engage
a single tie of the column. Floor diaphragms, being essentially unreinforced in the
secondary direction, had indeed torn off along a line that starts next to the shaft and
extends to the opposite side in plan. So, the part to the left of the elevator shaft did
not follow the rest of the building to collapse, although it sustained heavy damage.
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2.4.3 Collapse of Four-Storey Hotel Building in the Aegio (GR)
1995 Earthquake

A sea-side hotel building was located in between the city of Aegio (GR) and the
epicentre of the 1995 earthquake. One of its three (structurally independent) four-
storey buildings, shown in Fig. 2.24, collapsed during the earthquake. The framing
plan of the standard floor of that building is shown in Fig. 2.24(a). There was a stair-
case near the upper left-hand corner in plan, with straight flights between landings
at floor levels and in-between floors. The standard storeys from the 2nd to the 4th
had one row of rooms along each long side in plan, separated by an internal corridor.

The short sides of the perimeter were fully infilled with 200 mm-thick masonry
block-work in all storeys, except for certain openings at the ends of the corridor
between the rooms at storeys 2–4 and for the right-hand side of the ground floor,
which was open. The ground floor had a few 100 mm-thick solid interior partitions
in the vicinity of the staircase and a similar one between the restaurant and the
cooking facilities, all along one of the two interior longitudinal frames. It also had
an exterior infill wall along the façade opposite to the one in Fig. 2.24(b), with an
opening over its upper part creating a series of captive columns above the sill. In

(b)

(a)

(c)

Fig. 2.24 Collapsed hotel in Aegio (GR): (a) framing plan of standard floor; (b) façade frame
intact; (c) collapsed part with the frame surrounding the staircase shown at the far-right
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the overlying storeys, solid interior partitions with a thickness of 100 mm infilled
the bays between columns in the direction of the short sides and, given that these
columns had that direction as their strong one in bending, made up for the lack
of interior beams and framing action along the short side in plan. At the 2nd to
the 4th storeys the exterior infills of the two long façades, as well as the 100 mm-
thick interior partitions between the rooms and the interior corridor, had many large
openings and imparted very little lateral strength and stiffness to the frame. Overall,
the ground floor had much fewer infills than the overlying ones. The slabs were
one-way, with almost no secondary reinforcement.

The collapse of the building left the staircase and its surrounding frame almost
intact, as well as the entire exterior frames on the side bordering the staircase and
on the façade of Fig. 2.24(b). In all likelihood the collapse was triggered by shear
failures of captive columns at the ground floor of the façade frame opposite to that
of Fig. 2.24(b). The imbalance of infills between the ground floor and the overlying
ones played a prime role. The survival of the staircase and of the surrounding frame
may give the impression that the eccentricity they induced played an important role.
However, torsional response was partially restrained by the almost full contact of the
building with the adjacent stronger and stiffer one all along the side opposite to the
staircase. The lack of interior beams and framing action along the short side in plan
was also not a prime factor for the collapse, as the solid masonry panels between
columns in that direction in the 2nd to the 4th storey made up for it (even for the
ground floor, by limiting the column chord rotation at the level of the 1st floor).The
lack of slab secondary reinforcement did not allow the diaphragm to redistribute
forces from the distressed vertical elements whose collapse was imminent to the
others and contributed to the partial collapse of the building.

2.4.4 Collapse of Six-Storey Apartment Building in the Aegio (GR)
1995 Earthquake

A six-storey (plus basement) corner building, with framing plans shown in Fig. 2.25,
was standing at the top of a ridge in Aegio (GR) during the 1995 earthquake.

Due to the sloping ground, the wing of the L-shaped plan to the right of the stair-
case/elevator shaft was founded (through isolated footings without any tie-beams,
as shown at the top right of Fig. 2.25) one storey-level above the other wing (that
had the basement).

The far-right and the uppermost sides in plan were on the property line and were
fully infilled in all storeys with stiff and strong 200 mm-thick masonry block-work.
Infill panels on the two façades adjoining the external corner of the building and the
two opposite ones (adjoining the re-entrant corner) had many large openings and
imparted very little lateral strength and stiffness to the frame. Interior partitions were
of 100 mm thick masonry block-work. The ones with solid panels were oriented
mainly at right angles to the streets: i.e., parallel to the 200 mm-thick solid infills on
the property line of the corresponding wing.
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Foundation

Fig. 2.25 Framing plans of collapsed apartment building in Aegio (GR) and pictures after removal
of debris
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Fig. 2.25 (continued)

At the ground storey and at the 2nd storey above ground level, a wide but shallow
beam has replaced a proper beam along the full length of the façade frame shown
at the bottom of each part of Fig. 2.25, probably to enhance lighting and the unob-
structed view through the windows of the façade. A 800 mm wide strip of slab, with
more reinforcement than the rest, plays the role of a beam at the level of the partly
embedded basement in the frame of the façade to the left of that part of Fig. 2.25. In
other cases such heavily reinforced strips of slab have replaced missing beams along
part of the perimeter of two-way slabs (e.g., on two sides of the elongated slab open-
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ing near the re-entrant corner of the L-shaped plan). At the upper right-hand side of
the 4th storey above ground a heavily reinforced strip of the slab is used to support
three one-storey “floating” structural walls, starting at that level owing to a setback
of the 5th storey.

Witness the limited lateral strength and stiffness of the wing of the L-shaped plan
to the right of the staircase/elevator shaft in its longitudinal direction (the horizontal
one in Fig. 2.25):

– interior frames in that direction are not continuous throughout this part of the
plan;

– columns there have their strong direction of bending in the transverse one of the
wing;

– the beams of the three-bay façade frame at the bottom of each part of Fig. 2.25
are shallow and wide at the ground storey and the storey above, or eccentric with
respect to the columns at the 3rd and 4th storeys above ground level;

– all infill panels on the two façade along the street and along the back side, as well
as the 100 mm thick interior partitions in the same direction have many large
openings.

The same wing has, by contrast, larger lateral strength and stiffness in its trans-
verse direction, owing to, among others, the 200 mm-thick solid infills at the far-
right side on the property line.

There is a relative surplus and a relative deficit in lateral strength and stiffness
in the other wing of the L-shaped plan, but they are at right angles with respect to
those of the former wing. Witness:

– the several structural walls at the façade to the left of each part of Fig. 2.25, with
their strong direction of bending almost at right angles to the façade;

– the several continuous interior frames in the transverse direction of the wing;
– the two thick rectangular walls of the elevator shaft in the transverse direction of

the wing, vs. the single thin one in its longitudinal direction
– the 200 mm-thick solid infills on the property line at the uppermost side in plan

and several 100 mm thick solid interior partitions parallel to it and at right angles
to the façade facing the street to the left.

Normally, a relative surplus in the lateral strength and stiffness of one of the two
wings can make up for a deficit in the same direction in the other wing, provided
that the diaphragms are strong enough to transfer large in-plane seismic shears from
one wing to the other. In the present case, however, a large opening in the diaphragm
starts at the very critical re-entrant corner of the perimeter, with another major open-
ing next to it for natural lighting of interior spaces. The very narrow strip between
that opening and the corner of the two façade frames is what is left of a diaphragm.

The strength and stiffness in the longitudinal direction of the wing to the right
of the staircase/elevator shaft was apparently insufficient to withstand the seismic
demands, probably increased in that direction (at right angles to the ridge) by topo-
graphic amplification of the ground motion (see Section 4.2.1). The wing could had
mustered support in the direction of its distress from the surplus of lateral strength
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and stiffness of its presumed partner on the left of the staircase/elevator shaft, had
the narrow available strip of diaphragm the ability to deliver the support. The strip
was torn apart, letting the wing to the right suffer the only collapse of a concrete
building in the city itself, with many casualties.

After removal of the debris, the surviving wing of the building stood next to the
line of separation as shown at the top left in Fig. 2.25.



Chapter 3
Concrete Members Under Cyclic Loading

This chapter presents the mechanical behaviour:

– of the constituent materials of concrete members, namely concrete and reinforc-
ing steel, as well as of their interaction; and

– of concrete members typical of buildings,

under cyclic loading of the type induced by strong earthquake shaking. This
behaviour determines how concrete and reinforcing steel are used in concrete ele-
ments (notably, the shape and dimensions of concrete members and the shape,
amount and layout of their reinforcement), for satisfactory seismic performance of
the members and the structural system as a whole.

Some of the material in this chapter provides the background for detailing rules
specified in Part 1 of Eurocode 8 for ductile members in new earthquake resistant
buildings. These rules are derived in Chapter 5. Besides, the rules and expressions
given in Part 3 of Eurocode 8 for the deformations of concrete members at yielding
and at ultimate conditions are also presented here, along with their background and
justification. This material is used and developed further in Chapter 4 for the mod-
elling of concrete members in seismic response analysis and in Chapter 6 for the
assessment and retrofitting of existing concrete members.

3.1 The Materials and Their Interaction

3.1.1 Reinforcing Steel

3.1.1.1 Stress-Strain Behaviour Under Cyclic Uniaxial Loading

Owing to their one-dimensional geometry, reinforcing bars are essentially sub-
jected to uniaxial tension or compression. So, we are interested in the uniaxial σ -ε
behaviour of reinforcing steel. The fundamental features of this behaviour are shown
in Fig. 3.1. Yielding at the yield stress fy is followed by the yield plateau, which is
relatively short, at least in the reinforcing steels currently used in most of the world.

129M.N. Fardis, Seismic Design, Assessment and Retrofitting of Concrete Buildings,
Geotechnical, Geological, and Earthquake Engineering 8, DOI 10.1007/978-1-4020-9842-0 3,
C© Springer Science+Business Media B.V. 2009
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Fig. 3.1 Features of the cyclic σ -ε behaviour of reinforcing bars

Strain-hardening follows. Under monotonic loading strain-hardening leads to the
maximum stress, ft, termed tensile strength, that takes place at strain εsu, which is
called strain at maximum stress (or uniform elongation at failure) and is taken as the
nominal ultimate strain of steel under monotonic loading.

Unloading from the yield plateau or from the strain-hardening region is initially
elastic, but it gradually deviates from linearity before reaching the yield stress in
monotonic compression, –fy, as if the steel yielded prematurely. This is termed
“Bauschinger effect”. Because of it the tangent modulus of elasticity decreases from
the elastic value, Es = 200 GPa, to zero; but it does so gradually, not abruptly as
when steel first yields in monotonic loading.

If the steel has yielded first in tension, then unloading does not lead to a yield
plateau in compression. The Bauschinger effect leads to a stress that exceeds the
yield stress in compression, –fy. If there is a reversal of stress and strain (i.e., unload-
ing from compression and reloading towards the original direction of loading, i.e.
to tension), it leads to a σ -ε branch similar to that of the previous unloading from
tension to compression. The reloading branch exceeds the yield stress fy in first (vir-
gin) loading and heads towards the point from where the previous reversal from
tension to compression had started (previous peak stress and strain point in the cur-
rent direction of loading). If loading continues past that point, it follows the σ -ε
curve in monotonic loading till rupture of the bar, unless a new reversal of loading
takes place towards compression.

In the unlikely case (for a bar in a concrete member) that before it yields in
tension the bar yields in compression without buckling, the yield plateau takes place
in compression alone (see Fig. 3.2(a)). The rest of the σ -ε behaviour is similar to
the one described above, with the roles of compression and tension interchanged.
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Fig. 3.2 σ -ε loops of bar that buckles in a concrete member under cyclic loading: (a) stress σ v
real strain ε along the axis of the buckled bar; (b) stress v apparent strain in the original direction
of the bar axis (adapted from Suda et al. (1996)). Buckling is displayed as (•)

An unloading branch from tension to compression (or vice-versa) and the fol-
lowing reverse branch of reloading in the opposite direction towards the point from
where the first branch started, constitutes a hysteresis loop. If the second reversal
(from compression to tension) occurs at a stress and strain equal and opposite to
those at the first reversal (from tension to compression), the hysteresis loop is sym-
metric (see Fig. 3.3(a)).

Fig. 3.3 Loops of stress vs apparent strain of bar subjected to cyclic loading with full reversal, as
a function of the ratio of free bar length to diameter, L/D (Monti and Nuti 1991)

3.1.1.2 Buckling of Longitudinal Reinforcing Bars in Concrete Members
Subjected to Cyclic Flexure and Its Consequences

Unless well restrained laterally – by a thick shell of sound concrete cover and/or
engagement by closely spaced transverse reinforcement – a longitudinal bar in a
flexural plastic hinge of a concrete member may buckle. Outward lateral pressures
exerted on the bar from the bulging concrete core accelerate buckling.

As buckling entails lateral deflection of the bar, the distance between the two
ends of the buckled length, L, shortens without any real axial shortening of the bar
itself. The experimental σ -ε values in Fig. 3.2(a) show that right after buckling the
mean axial strain of the bar increases algebraically: the bar axis unloads (its mean
compressive stress decreases) following the σ -ε law of the material. As bending of
the bar axis due to buckling shortens the distance between the ends of its buckled
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length, the apparent strain of the bar along its original axis (i.e., the relative displace-
ment of the two ends along the original axis, divided by their original distance L)
decreases algebraically. Remember that what matters for the macroscopic behaviour
of the member, in whose compression zone the bar belongs, is the force in the bar
as a function of the average strain of the surrounding concrete, i.e. of the apparent
strain of the buckled bar, not of the real one. The stress-apparent strain behaviour
of a buckling bar is as shown in Fig. 3.2(b) and in Fig. 3.3(b) and (c) for bars with
unrestrained length 8- or 11-times the diameter, respectively.

A longitudinal bar in a flexural plastic hinge will not buckle, unless the adjacent
concrete has already disintegrated or the concrete cover is thin and weak, provid-
ing little lateral restraint. Real lateral restraint against buckling is provided only by
closed ties. The effective buckling length depends on the conditions of engagement
of the bar by, and the spacing and diameter of the ties. Under ideal conditions, the
effective buckling length is equal to 50% of the tie spacing or of the distance of
the first tie engaging the bar from the end section where the member connects to
another one or to the foundation. In reality, the deflection of the bar upon buckling
will extend beyond the ties engaging it and the effective buckling length will exceed
the ideal value above. Ties with small diameter compared to the longitudinal bar
may stretch and let the effective buckling length extend over several tie spacings
(see Fig. 3.4(b)).

(a) (b)

Fig. 3.4 Bar buckling over: (a) one; or (b) several tie spacings

The stress at which the bar may buckle is proportional to its Modulus and to the
square of the ratio of the bar diameter to the effective buckling length. Regarding the
Modulus, note that bars in concrete members subjected to seismic loading normally
yield in tension before they do so in compression (see Figs. 3.5, 3.6 and 3.7 for typ-
ical seismic σ -ε histories of bars in various types of concrete members). Buckling
usually takes place during a σ -ε branch of unloading from tension to compression

Fig. 3.5 σ -ε histories of the type induced by seismic action to column bars: (a) for grade S400
steel; (b) for S500 steel (Carvalho and Coelho 1997)
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Fig. 3.6 σ -ε histories of the type induced by seismic action to bottom bars of beams: (a) for grade
S400 steel; (b) for S500 steel (Carvalho and Coelho 1997)

Fig. 3.7 σ -ε history of the type induced by seismic action to S500 top bars in beams (Carvalho
and Coelho 1997)

that exhibits the Bauschinger effect, or in the hardening branch that follows it. So,
it is not the Elastic Modulus, Es = 200 GPa, that applies for the critical buckling
load of the bar, but a much lower value. If bending due to buckling is considered
to cause one side of the bar cross-section to unload elastically while the opposite
side continues loading, then Engesser’s “Reduced Modulus” or “Double Modulus”
applies, which has a value between Es and the tangent Modulus, Et. For buckling of
round bars in the strain hardening range the “Reduced Modulus” is about double the
strain hardening modulus (Pantazopoulou 1998). In Shanley’s alternative model for
inelastic buckling the axial force in the bar is considered to keep increasing while
buckling commences (as if the full bar section continues loading). So the tangent
Modulus (which is much lower than Engesser’s “Reduced Modulus”) is considered
to apply. No matter which one of the two approaches is adopted, the reduction in
Modulus is such that an individual bar is predicted to buckle at a load much lower
than Euler’s critical load for elastic buckling.

The buckling behaviour of an individual bar compressed under force-control
is different from that of a longitudinal bar in the compression zone of a flexural
plastic hinge (Pantazopoulou 1998), as the latter is just one component in a highly
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redundant parallel system encompassing the entire compression zone and compris-
ing concrete and several longitudinal bars. Occurrence of buckling is very sensitive
to minor differences in the lateral restraint conditions of the bar and to the pressure
exerted on it by the bulging concrete. So, the longitudinal bars of the compression
zone will not buckle all at the same time. Buckling of a bar takes place under condi-
tions of deformation control and allows force redistribution to the rest of the parallel
system. So, it does not have the immediate catastrophic consequences that we see,
e.g., when a strut in a statically determined steel truss buckles. Normally the member
will survive buckling of one or more longitudinal bars.

The immediate consequence of buckling of a compression bar in a concrete mem-
ber is a drop in the lateral force resistance of the member, due to the following
reasons:

– Unless it has already taken place, spalling of the shell of concrete cover will be
triggered by bar buckling, as, without prior disintegration of the concrete core
inside the cage of reinforcing bars, bars can buckle only outwards.

– Redistribution of the compressive force of the buckled bar brings the surrounding
concrete closer to exhaustion of its compressive strength.

– A buckled bar does not contribute anymore to the confinement of the concrete
core, particularly if its buckled length extends over several tie spacings. In this
latter case the lateral bar deflection due to buckling stretches all ties that lie within
the buckled length and reduces their own effectiveness in confining the concrete
inside.

Note that in a concrete member subjected to bending the compression zone is on
the concave side. So, its longitudinal bars, having their convex side inwards, would
tend to buckle inwards against the concrete core. Buckling outwards would be much
easier, as the concrete shell may have already spalled off, or if it hasn’t, it can spall
upon bar buckling. For the bar to buckle outwards, it has to overcome and reverse
its inwards pre-curvature, which is unlikely. So, it is the corner bars that normally
buckle first, and, as a matter of fact, they do so outwards almost at right angles to the
plane of bending of the member and of the bar. For an intermediate bar to buckle,
the concrete core in its immediate vicinity should be in (imminent) disintegration.

The interplay between the tendency of a compression bar in a concrete member
to buckle over one or more tie spacings, the lateral pressures exerted on it by the con-
fined concrete core and the restraint provided by the ties both against bar buckling
and bulging of the confined concrete, is very complex even for monotonic load-
ing (Pantazopoulou 1998). The phenomena are much more complex under cyclic
loading, as described in the following paragraphs.

In a concrete member subjected to cyclic bending, the tension is taken exclu-
sively by the tensile reinforcement, while the compression reinforcement shares the
compressive force with the surrounding concrete. As a result, if the member is sub-
jected to no axial load or to low axial compression, symmetric load cycles (i.e.
cycles between equal and opposite values of moment M, or curvature, ϕ) induce
in longitudinal bars asymmetric σ -ε cycles, with peak tensile strains significantly
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exceeding the peak compressive ones and permanent tensile strains accumulating
in the reinforcement of both sides. The σ -ε histories in Figs. 3.5, 3.6 and 3.7 are
typical of what happens in concrete members subjected to cycles of constant
moment amplitude but increasing deformation amplitude:

– in Fig. 3.5, for the bars of a column with symmetric reinforcement and relatively
low axial load ratio, ν = N/Acfc;

– in Fig. 3.6, for the bottom bars of an asymmetrically reinforced beam, that yield
in compression in order for the crack to close at the bottom under positive (sag-
ging) moments;

– in Fig. 3.7, in the beam’s top reinforcement, which normally has larger cross-
sectional area than the bottom one and never yields in compression.

In the σ -ε histories of Fig. 3.5 bar buckling may take place under conditions of
tensile strain but of compressive stress in the bar. These bars, having unrestrained
length six-times their diameter, indeed buckled during the last compressive half-
cycle and ruptured in the following tensile half-cycle. The bars of Fig. 3.6(a) and
(b) have the same geometry and mechanical properties as those of Fig. 3.5(a) and
(b), respectively, but didn’t buckle. They eventually broke in tension, at a strain at
maximum stress not much lower than the uniform elongation, εsu, of the steel in
monotonic loading. Note the superior ductility of grade S400 steel over S500 in
Figs. 3.5 and 3.6.

Bars seem very vulnerable to buckling during that phase of unloading-reloading
when the crack is open throughout the depth of the section, owing to cyclic accu-
mulation of tensile strains in the reinforcement of both sides, exhibited by all bars
in Figs. 3.5, 3.6 and 3.7 (see also point 3 in Section 3.2.2.6). During that phase the
reinforcement alone resists the compression force of the section and, in the absence
of the stabilising effect of concrete, the bars of the compression zone may be con-
sidered as liable to buckling all at the same time. Fortunately, the crack may be
open throughout the depth only at about the time the bending moment of the section
changes sign. The likelihood of buckling during that stage is reduced by the low
magnitude of compression stresses in the reinforcing bars and of the lateral pressure
exerted on them by the concrete inside. Buckling may start shortly thereafter, before
the surrounding concrete is fully mobilised in compression but after the bending
moment increases sufficiently to build up the stress in the bar and reduce its tangent
Modulus to the level necessary for buckling (see, e.g., the point where buckling
occurs in Fig. 3.2(a)). It may start even later, after the outward pressure exerted on
the bar and its restraining ties by the bulging concrete builds up as well.

Sometimes, but not often, bar buckling entails an immediate drop in the lateral
force resistance of the member, large enough to be considered as ultimate failure.1

1A member is conventionally considered to have reached its ultimate deformation, if its (lateral)
force resistance cannot increase above 80% of the maximum ever force resistance (defined as the
force capacity of the member) by increasing the member’s deformation, see Section 3.2.2.7.
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Even when it is not, buckling of longitudinal bars in members subjected to cyclic
loading may precipitate ultimate failure afterwards, by rupture in tension of the
buckled bar during a subsequent half-cycle of loading, according to the following
mechanism: Buckling induces in the bar additional flexural strains, positive (tensile)
on one side and negative (compressive) on the other. These strains are superimposed
on the axial strain of the axis of the bar (the one on the horizontal axis of Fig. 3.2(a)).
The shorter the length, L, over which the bar buckles, the larger are the additional
flexural strains. In all likelihood, the mean bar strain on which the flexural strains
are superimposed is tensile, due to the yielding of the bar in tension before and the
permanent extension it entails (cf. Fig. 3.2(a)). So, the total (mean plus flexural)
strain of the extreme tensile fibres of the bar may approach, or even exceed, the
uniform elongation, εsu, of steel. Note that, exceedance of the rupture strain at the
bar surface upon buckling is more likely in the Tempcore steels currently dominating
the European market. These bars owe their superior yield and tensile strengths to
quenching and tempering of their surface, which increases very much the strength
of the skin but reduces its elongation at failure.2 So, a crack may develop at the
surface of the buckled bar. After reversal of the loading of the member, the bar that
has buckled straightens up and – depending on the magnitude of the new half-cycle –
may go into the inelastic range in tension. Then the pre-existing crack may extend
through the entire cross-section, causing complete loss of the bar. If the loss of the
tensile capacity of the bar causes a drop in the peak force resistance exceeding 20%
of the maximum ever force resistance (see footnote 1 above), we will conventionally
call this failure (or ultimate deformation) of the member.

Should the compression zone lose a large fraction of its compressive strength
owing to abrupt or gradual disintegration of the concrete during load cycling, its
longitudinal bars will buckle, unless they have done so already.

3.1.1.3 Time Effects on the Mechanical Behaviour of Steel

The fundamental quantities characterising a reinforcing steel, notably the yield
stress, fy, the tensile strength, ft and the uniform elongation at rupture, εsu, are mea-
sured in the lab under strain rates which are very slow compared to those induced by
an earthquake. For the types of steel normally used in earthquake resistant design,
namely steel grades S400–S500, it may be considered that the values of the afore-
mentioned σ -ε parameters under monotonic loading increase with strain rate, ε̇, by
cln(ε̇/ 5 × 10–5) above those measured in the lab under quasi-static loading with
ε̇ = 5 × 10–5 s–1, where (CEB 1988a):

c = 6 MPa for fy,
c = 7 MPa for ft and
c = 0.3% for εsu.

2Whatever effect, internal or external, increases the strength of steel, typically reduces its ductility
and elongation at failure.
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Fig. 3.8 Effect of strain rate
on hysteresis loops of
reinforcing steel (adapted
from Restrepo-Posada et al.
(1993))

Cold worked reinforcing steels, that are normally not used in earthquake resistant
structures, exhibit a smaller effect of strain rate on the values of fy and ft than the
more ductile types of steel, like those of grade S400–S500. The effect on their –
anyway low – ultimate elongation is more pronounced.

Everything that has been said so far refers to monotonic loading. Figure 3.8 sug-
gests that under cyclic loading the strain rate affects only the yield stress, leaving
the subsequent σ -ε behaviour (notably the peaks of hysteresis loops) unaffected.

The strain rate is not constant during seismic loading. It is zero at peaks of the
deformation, positive or negative, and attains a maximum value in-between these
peaks (normally, at zero stress). The increase in strength relative to the quasi-static
value is not derived from the mean strain rate during the half-cycle of the response,
but from a lower value, about 15% of the peak strain rate during the response (i.e. of
the strain rate attained at practically zero stress), or about 30% of the average strain
rate.

3.1.1.4 Requirements on the Reinforcing Steel Used in Earthquake
Resistant Construction

The steel parameters which are of prime importance for the seismic performance of
concrete members are:

– the strain at maximum stress (uniform elongation at failure), εsu, and
– the ratio of tensile strength to yield stress, ft/fy (“hardening ratio”),

of reinforcing bars. The yield stress, fy, per se is important just for the onset of yield-
ing of structural members, to the extent it matters for the Operational or the Imme-
diate Occupancy performance levels and for the member stiffness to the yield point.

The importance of εsu for the failure of reinforcing bars, possibly after buckling,
has been noted in Sections 3.1.1.1 and 3.1.1.2. The impact of εsu on the ultimate
deformation of a RC member is elucidated by the relationship between the ultimate
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curvature of a concrete section, ϕsu, as controlled by rupture of the tension rein-
forcement, and the value of εsu:

ϕsu = εsu

(1 − ξsu) d
(3.1)

where d is the effective depth of the section and ξ su the neutral axis depth at steel
rupture, normalised to d.

The hardening ratio ft/fy is important for several reasons. First, the higher its
value, the greater is the tangent modulus of the steel bar in its strain-hardening
range and the later buckling will take place. More important is the role of ft/fy for the
control of the value of the maximum moment at the end of a member and, through
it, of the extent of plastification near that end. This extent may be defined as the
length of the member over which the bending moment exceeds the yield moment,
My. If we assume that after yielding the internal lever arm at the end section stays
approximately constant, then the bending moment at the end section is equal to M =
(σ s/fy)My, where σ s is the stress of the tension reinforcement there. If failure of the
end section takes place due to rupture of the tension bars, at that section we have
σ s = ft. If the bending moment diagram is approximately linear in the vicinity of
the end section over a length Ls (which is equal to the moment-to-shear ratio at the
end section, i.e., to the shear span), then member plastification at failure due to steel
rupture extends over a length of:

l p l = Ls

(
1 − My

Mu

)
= Ls

(
1 − fy

ft

)
(3.2)

Therefore, the higher the value of ft/fy, the longer is the zone of plastification as
a fraction of the shear span Ls. In turn, the longer the length of plastification, lpl, the
larger is the value of the chord rotation at flexure-controlled failure of the shear span
(see footnote 1 in Chapter 1 and Fig. 1.4 for the definition of the chord rotation at a
member end). As a matter of fact, if we assume that along the shear span, Ls, only
flexural deformations take place, the ultimate chord rotation at the end of the shear
span, θu, is derived from Fig. 3.9 as:

θu = ϕy
Ls

3
+ l p l

3

[
ϕu

(
1 + fy

2 ft

)
− ϕy

(
1

2
+ ft

fy

)]
(3.3)

My

Mu

Ls

lpl

Fig. 3.9 Extent of
plastification of member
when the end section reaches
its ultimate moment
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where ϕy is the curvature at yielding of the end section and ϕu the ultimate curvature
there (see Sections 3.2.2.2 and 3.2.2.4). For increasing ft/fy ratio, the value of the
expression in brackets decreases, but not sufficiently to override the ensuing large
increase in the value of lpl. So, overall, the larger the hardening ratio, ft/fy, the greater
is the flexure-controlled ultimate chord rotation at the end of the member where
inelasticity takes place. As a matter of fact, if the value of ft/fy is close to 1.0, that
of lpl approaches zero and the flexure-controlled ultimate chord rotation is very low
as well. For this reason, Eurocode 8 sets a lower limit to the value of the hardening
ratio, ft/fy, of the steel to be used in ductile structures.

As emphasised in Section 1.3, current seismic design codes pursue the con-
trol of the inelastic seismic response through capacity design. The required force
resistance of those regions or mechanisms intended to remain elastic is computed
from equilibrium and the force capacities of the adjacent ductile regions or force-
transfer mechanisms considered capable of developing large inelastic deformations.
The only mechanism of force transfer entrusted to develop inelastic deformations
under cyclic loading is flexure – provided that the yield moment is controlled by the
tensile reinforcement and its nominal yield stress, fyk. If the tensile strength of steel
is much higher than its yield stress, soon after the ductile members yield their force
resistance may increase well beyond the value used in the capacity design calcula-
tions. This increase may upset the balance between the force resistances of ductile
and brittle mechanisms achieved through capacity design and cause the brittle mech-
anisms to exceed their force resistance and start developing inelastic deformations
that they are not capable of. For this reason, Eurocode 8 sets an upper bound on the
value of ft/fy of reinforcing steel to be used in ductile structures. For similar reasons,
and, in addition, to ensure that the steel of any section or region will indeed yield
before the concrete crushes, Eurocode 8 sets an upper limit on the ratio of the actual
yield stress of the steel to the nominal value, fyk.

Recognising that deformation and ductility capacity depends not only on the
detailing of members, but on the inherent ductility of their materials as well,
Eurocode 8 increases the ductility requirements on the steel in “critical regions”
(i.e., those where inelastic deformations may take place under the design seismic
action, see Section 5.1.1) of the elements of the lateral-load-resisting system (the
“primary seismic” ones, see Section 4.12) with the Ductility Class, DC, as shown in
Table 3.1. The limits on the hardening ratio, ft/fy, and the strain at maximum stress
(uniform elongation at failure), εsu, refer to lower 10% fractiles. The lower bound on
εsu is for ensuring a minimum curvature ductility and flexural deformation capacity,
by preventing bar fracture prior to concrete crushing, or simply delaying it until a
target flexural deformation is reached. The lower limit on ft/fy aims at ensuring a
minimum length of the flexural plastic hinge according to Eq. (3.2). The ceiling on
the values of ft/fy and fyk,0.95/fyk is to limit flexural overstrength, and hence shear
force demands on members and joints, as controlled by flexural yielding at the end
of members, as well as the moment input from beams to columns.

Steels of class B or C according to Eurocode 2 (CEN 2004b) fulfil the conditions
for the steel in DC L or M buildings. The conditions on εsu and ft/fy of steel in DC
H buildings are met only by steels of class C according to Eurocode 2.
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Table 3.1 Requirements of Eurocode 8 for reinforcing steel in elements of the lateral-load-
resisting system of new buildings

Ductility Class DC L or M DC H

5%-fractile yield strength fyk 400–600 (MPa)
95%-fractile actual yield strength fyk,0.95/fyk – ≤1.25
(ft/fy)k,0.10 ≥1.08 ≥1.15

≤1.35
10%-fractile strain at maximum stress, εsu,k,0.10 ≥5% ≥7.5%

Strictly speaking, for buildings belonging in DC M the Eurocode 8 requirement
for the use of steel of at least class B applies only to the “critical regions” at the
ends of “primary seismic” elements. As in DC L buildings “critical regions” are not
defined, the requirement for the use of steel of at least class B applies throughout
the length of their elements. As DC M or H buildings should not in any respect
be inferior in local ductility to DC L ones, the whole length of “primary seismic”
elements of DC M and H buildings should have reinforcing steel of at least class B.
The additional requirements on the steel of the “critical regions” of DC H buildings
essentially apply:

– thoughout the entire height of “primary seismic” columns,
– in the “critical region” at the base of “primary seismic” walls, and
– in the “critical regions” near the supports of “primary seismic” beams on columns

or walls (including the slab bars which are parallel to the beam and fall within
the effective flange width in tension).

In practice, the Eurocode 8 requirements on reinforcing steel of “critical regions”
are expected to be applied over the entire primary seismic element, including the
slab it may be working with.

Thanks to its lower cost-to-strength ratio, weldability and fairly good ductility,
weldable tempcore steel of type S500s has become the reinforcing steel of choice
in the more seismic prone European countries since the mid-1990s. It is a surface-
hardened low carbon steel with nominal yield strength of 500 MPa. It easily fulfils
all Eurocode 8 requirements for DC L or M buildings, but it meets those for DC
H ones (notably the lower limit on ft/fy) only when produced for application in
moderate- or high-seismicity regions. The small quantity of S400 steel still on the
market of these countries has higher strain at maximum stress, εsu, and hardening
ratio, ft/fy, both meeting easier the limit values for DC H buildings. However, the
value of fyk,0.95/fyk may exceed the maximum limit permitted for DC H. The main
reason is that steels produced as S500 but failing to meet the minimum criteria on
fyk, are sometimes re-classified and marketed as S400.

The widest available survey of ductile steels of the type used in the seismic
regions of Europe has been carried out in the early 1990s (Carvalho and Coelho
1997, Carvalho 1995, Pipa and Carvalho 1994), drawing several thousands of data
from nine different European countries (Carvalho and Pipa 1994, Plumier and
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Table 3.2 Outcome of surveys of steel used in seismic regions of Europe

Country of production
Spain,
Portugal Italy

Belgium, France,
Germany, Italy,
Luxembourg,
Netherlands, Portugal,
Spain UK Various

nominal yield strength, fyk

(MPa)
400 430 500 500 460

mean yield strength, fym

(MPa)
496 478 571 552 530

95%-fractile of actual yield
strength, fyk,0.95/fyk

1.335 1.19 1.23 1.165 1.27

mean tensile strength, ftm
(MPa)

598 733 663 653 618

(ft/fy)k,0.10 1.15 1.44 1.10 1.13 –
(ft/fy)k,0.90 1.27 1.62 1.23 1.23 –
mean strain at maximum

stress, εsu,m (%)
11.8 11.6 10.4 11.7 11.1

10%-fractile of strain at
max. stress, εsu,k,0.10 (%)

9.6 9.7 8.6 9.7 –

Vangelatou 1995, Stanescu and Plumier 1993, Elnashai 1994, Calvi et al. 1994).
That survey paved the way for the revision of the requirements of ENV 1998-
1-3:1993 (the prestandard version of Part 1 of Eurocode 8) toward the limits in
Table 3.1. The statistical outcome of that survey is compiled in Table 3.2, columns
1–5, in the form of average statistics of those steel parameters which are of interest
to Eurocode 8. The last column of Table 3.2 gives also statistics of steel properties
provided by the UK certification agency (Cairns 2006). All values listed in Table 3.2
meet the requirements of EN-Eurocode 8 for the reinforcement of DC L or M build-
ings. However, the values in italics in Table 3.2 violate the corresponding limit for
the steel of DC H buildings. So, not a single one among the types of steel in Table
3.2 conformed fully to the limits placed on the steel of DC H buildings. Neverthe-
less, since then the steel industry in at least some European countries has developed
and marketed cost-effective products that meet all Eurocode 8 limits for the steel of
DC H buildings.

3.1.2 The Concrete

3.1.2.1 Concrete Under Cyclic Uniaxial Compression

Unlike reinforcing bars, which by geometry develop essentially only uniaxial stress
conditions, concrete may be subjected also to biaxial or triaxial stresses. Because of
its low tensile strength, concrete normally cracks at right angles to any significant
tensile stresses. As a result, these stresses drop to zero. Even when there is no
cracking tensile stresses are low anyway. The compressive strength and stiffness
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of concrete decreases with increasing tensile stress in the transverse direction. This
reduction is taken into account where relevant (see Eqs. (3.96) in Section 3.2.4.2
under The Variable Strut Inclination Truss of the CEB/FIP Model Code 90 and
Eurocode 2). Compressive stresses in one of the three principal stress directions
increase the compressive strength and stiffness in the orthogonal directions, but if
the lowest of the three principal stresses is much smaller than the other two (regard-
less of its sign) the increase is negligible.

The prime case where multiaxiality of stresses has a major effect on the behaviour
in the direction of the predominant compressive stress is when the stresses in both
orthogonal directions are compressive and significant in magnitude. This is the case
of confinement, Except for that case (dealt with at length in Section 3.1.2.2) and the
strength reduction due to transverse tension (Eqs. (3.96) in Section 3.2.4.2 under
The Variable Strut Inclination Truss of the CEB/FIP Model Code 90 and Eurocode
2), the multiaxiality of the stress field is neglected and the behaviour in the direc-
tion of the predominant compressive stress is considered, as if we had uniaxial
compression.

The σ -ε behaviour depicted in Fig. 3.10 is typical of concrete under cyclic uni-
axial compression. The energy dissipated by the material (i.e. the area enclosed by
unloading-reloading hysteresis loops) is small, compared to either the deformation
energy stored in the concrete at the peak of a loading cycle, or to the energy dissi-
pated by steel under cyclic loading. Reloading σ -ε branches are directed toward the
σ -ε curve in monotonic loading and follow it if reloading continues past the maxi-
mum ever previous strain value. Therefore, the monotonic σ -ε curve is the envelope
and the skeleton curve of σ -ε loops under cyclic loading.

If unloading-reloading from and to a constant maximum stress equal to a large
fraction of the uniaxial compressive strength, fc, is repeated indefinitely, perma-
nent compressive strains accumulate and the falling branch of the monotonic σ -ε
envelope will ultimately be reached, signaling failure. In Fig. 3.10(b) 19 cycles
at a peak stress of 0.9fc suffice to reach the monotonic σ -ε curve. If the peak
stress is at 0.85fc, 200 cycles are required for this to happen (Karsan 1968). This
behaviour is characteristic of low-cycle fatigue. If the peak stress level is lower, the
loading–unloading loops stabilise and the falling branch of the monotonic σ -ε curve
is never reached.

Fig. 3.10 σ -ε behaviour of concrete under cyclic uniaxial compression (adapted from Karsan
(1968))
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The number of stress cycles approaching the uniaxial compressive strength, fc, in
an earthquake is roughly equal to the duration of strong ground shaking divided by
the predominant period of the structure. For a concrete building this number would
normally be expected to be not more than 10, which means that low-cycle fatigue
effects will not be important. Then, only the monotonic σ -ε behaviour of concrete
in uniaxial compression is of interest.

Until a uniaxial stress of about 0.95fc the Poisson ratio of concrete is approxi-
mately constant and close to 0.20. Above that stress level it increases fast, reaching
a secant value of about 0.4 at ultimate strength. The underlying physical reason is
that, as failure approaches, pre-existing microcracks at the interface of aggregates
with the hardened cement paste extend into the latter in a direction parallel to that of
the applied uniaxial compression stress and tend to join up as macro-cracks in that
direction. The opening up of these macro-cracks soon leads to ultimate strength,
manifesting itself as a precipitous increase in the apparent lateral strain. The volu-
metric contraction, which so far had been continuously increasing, starts decreasing.
Right after ultimate strength it gives way to volumetric expansion (dilation). This
mechanism has important implications for the enhancement of concrete strength
through confinement.

3.1.2.2 Effects of Confinement on σ -ε Behaviour in Compression – Modelling

The case of prime interest in earthquake resistant design is that of concrete under
the following conditions of triaxial compression:

– the stress in one principal direction, let’s say direction 1, is compressive and
rather high;

– the two other principal stresses, in directions 2 and 3, are compressive and about
equal in magnitude, but smaller than σ 1: σ 2 ≈ σ 3 < σ 1.

Such triaxial stress conditions are found in the compression zone when the con-
crete approaches its ultimate strength, provided that the lateral expansion that pre-
cedes its failure is restrained (Pantazopoulou 1995). Lateral restraint may come from
various sources:

– tests have demonstrated that the restraint of the dilation of the compression zone
of the end section of a member framing into another (a beam into a column,
a column into a floor slab or a foundation element, etc.) by the volume of the
surrounding concrete of the latter produces a triaxial stress condition, greatly
enhancing the local strength and deformation capacity of the concrete (Takiguchi
et al. 1997, Imai et al. 2005);

– closely spaced hoops or ties as transverse reinforcement restrain the lateral dila-
tion of the concrete inside the cage of stirrups and longitudinal reinforcement
(the “concrete core”);

– Fibre-Reinforce Polymers (FRPs) wrapped around the member have a similar
effect on the enclosed volume of concrete.
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The restraint of the lateral dilation of concrete by such means is termed “confine-
ment”, and the volume of concrete affected is considered as “confined”.

By opposing the large Poisson expansion arising from the opening up of internal
macro-cracks parallel to the predominant compressive stress σ 1 when concrete is
close to ultimate strength, a uniform pressure, σ 2 = σ 3 = p, at right angles to σ 1

and to these macro-cracks, increases the compressive strength in the direction of
σ 1 from fc to fc∗ and the strain at the peak of the σ 1–ε1 curve from εco ≈ 0.2%
to εco

∗. The larger the lateral pressure, the greater is the enhancement of ultimate
strength and of the corresponding strain. Moreover, the falling branch of the σ 1–ε1

diagram after the peak at fc∗, εco
∗ becomes flatter with increasing value of p (i.e.,

confined concrete strain-softens slower). The monotonic σ 1–ε1 curve for p > 0 is
the envelope of the hysteresis loops under cycling loading with p > 0.

Several models have been proposed over the past decades for the σ -ε behaviour
of confined concrete. A few of them are described here, notably those that are –
for some reason or another – widely used, as well as simple models that fit well
available experimental results.

The available test results for concentric compression show that the compressive
strength in the direction of σ 1> σ 2=σ 3 increases with p as:

f ∗
c = fc(1 + K ) (3.4)

Eurocode 8 Part 3 (CEN 2005a) has adopted the value of K proposed in (Newman
and Newman 1971).

K ≈ 3.7

(
p

fc

)0.86

(3.5)

As shown in Fig. 3.11(a), Eq. (3.5) gives about the same result as the more com-
plex expression fitted to data by (Elwi and Murray 1979):

K = 2.254

[√
1 + 7.94

p

fc
− 1

]
− 2p

fc
(3.6)

After its adoption by Mander et al. (1988), Eq. (3.6) is widely quoted and used
today.

One of the earliest confinement models is the one proposed in Sheikh and
Uzumeri (1982), still used in the US. It referred directly to confinement by ties.
That model, gives:

K = a

(
7

√
2p

fc

)
(p and fc in MPa) (3.7)

where a is the “confinement effectiveness factor” of the ties, given by Eqs. (3.24),
(3.20), (3.21) and (3.22) in Section 3.1.2.3. The lateral pressure may be taken equal
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(a)

(b)

(c)

Fig. 3.11 Comparison of the predictions of various confinement models for the enhancement of
concrete: (a) strength; (b) strain at maximum strength; and (c) ultimate strain
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to p = 0.5ρwfyw, where fyw is the yield stress of the ties and ρw their volumetric ratio
(ratio of the volume of stirrups to the volume of the confined core of the concrete,
measured to the centreline of the perimeter stirrup) (cf. Eqs. (3.19) and (3.23)).

In Europe, the model in Model Code 90 of CEB/FIP (CEB 1991) is still in
use, although it gives, in general, less enhancement of the key properties of con-
crete with confinement (see Fig. 3.11(a)). In that sense it is safe-sided for design.
It is used mainly thanks to its adoption by Eurocode 2 (CEN 2004b). In that
model the enhancement of ultimate strength and of the corresponding strain are
given as:

f ∗ = β fc = min

(
1 + 5

p

fc
; 1.125 + 2.5

p

fc

)
fc (3.8)

εco
∗ = εcoβ

2 (3.9)

where β in Eq. (3.9) is the strength amplification factor in Eq. (3.8), standing for the
factor (1+K) of Eq. (3.4).

If the two transverse stresses are not equal (σ 2 > σ 3) the value p ≈ (σ 2+4σ 3)/5
may be used in Eqs. (3.5), (3.6) and (3.8). The smaller of the two transverse stresses
controls confinement, implying that detailing of concrete members for earthquake
resistance should aim at providing (about) the same restraint of lateral expansion in
both transverse directions of the member.

Larger than the enhancement of maximum strength with confinement is the
increase in the strain at maximum strength. According to Richart et al. (1928) the
following expression applies (adopted also in Eurocode 8, Part 3 (CEN 2005a)):

εco
∗ ≈ εco(1 + 5 K ) (3.10)

Equation (3.10) gives much higher enhancement of the strain at maximum
strength than Eq. (3.9) in Model Code 90 (CEB 1991) and Eurocode 2 (see
Fig. 3.11(b)).

Confinement starts affecting the σ 1–ε1 diagram only when the value of σ 1

approaches the uniaxial compressive strength of unconfined concrete, fc. Until then,
neither the tangent, nor the secant value of the elastic modulus of concrete are
affected much by confinement. Note that the secant modulus from the origin to
the peak of the σ 1–ε1 diagram, i.e. the value of fc∗/εco

∗, drops, as the confining
pressure increases. Note also that, if the ascending branch of the σ 1–ε1 diagram is
modelled as a parabolic curve (a common practice for uniaxial compression), then
the initial tangent modulus is equal to 2fc∗/εco

∗ and decreases with increasing value
of p. This anomaly can be avoided by adopting – instead of the commonly used
parabolic diagram – the σ 1–ε1 relation proposed by Eurocode 2 (CEN 2004b) for
use in nonlinear analysis of concrete structures. The generalised form of that relation
is:
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σ

f ∗
c

=
ε

ε∗
co

(
k − ε

ε∗
co

)

1 + (k − 2)
ε

ε∗
co

(3.11)

where:

k = 1.05Ecεco
∗/ f ∗

c (3.12)

with Ec denoting the secant modulus of elasticity from the origin to a stress
σ 1=0.4fc, which is equal to Ec = 11000fc0.3 (for Ec and fc in MPa) according to
Eurocode 2 (CEN 2004b). Equation (3.11) reduces into the simple parabolic σ 1–ε1

diagram if k is taken equal to 2. By extension from the uniaxial compression for
which it has been adopted in Eurocode 2, Eq. (3.11) may be considered to apply
also along the softening branch beyond the peak at fc∗ and εco.

In seismic design, more than the strength of concrete matters its ultimate strain –
i.e. the strain beyond which concrete is considered to shed all its resistance to load
and disintegrate – denoted as εcu (or εcu

∗ for confined concrete). The ultimate defor-
mation of a member (i.e. “failure”) is conventionally identified with attainment of
εcu at the extreme compression fibre of that section where the bending moment
is largest (typically at the end section for seismic action), or of εcu

∗ at the extreme
fibres of the confined core. εcu is also conventionally defined as the strain at the point
on the softening branch of the σ 1–ε1 diagram where the stress, σ 1, has dropped to
0.85fc (or to 0.85fc∗, for εcu

∗ in confined concrete). Recall that in design the flexural
resistance of concrete sections is conveniently calculated assuming that the σ 1–ε1

diagram is parabolic up to the peak stress and horizontal thereafter, until the value of
εcu. The implication is that the value of εcu should be such that the softening branch
of the σ 1–ε1 diagram contributes to the maximum possible force that can develop in
the compression zone with a force of fcbx(εcu–εco)/εcu, or of fc∗b∗x∗(εcu

∗–εco
∗)/εcu

∗

for confined concrete, where b and x are the width and depth of the compression
zone, if rectangular, and b∗, x∗ their counterparts in the confined core.

The Model Code 90 CEB/FIP model (CEB 1991), adopted by Eurocode 2 (CEN
2004b) for the design of new buildings, gives the following ultimate strain of con-
fined concrete:

εcu
∗ = 0.0035 + 0.2p/ fc (3.13)

On the basis of test results showing that concrete confined by stirrups and sub-
jected to concentric compression ultimately fails when concrete dilation causes the
stirrups to exhaust their uniform elongation at failure, εsu,w and rupture, Mander
et al. (1988) proposed that when the ultimate strain of confined concrete is reached,
the total deformation energy stored in the stirrups until they rupture at strain εsu,w

is equal to the gain in the total deformation energy of the confined concrete core.
Assuming, for convenience, that the σ -ε diagram of the stirrup steel is horizontal
(i.e. rigid-plastic) at a stress equal to fyw until the failure strain of εsu,w, the idea in
Mander et al. (1988) gives: ρw fywεsu,w ≈ fc

∗ (εcu
∗ − εcu), i.e.:
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εcu
∗ ≈ εcu + 2εsu,w

p

f ∗
c

(3.14)

where the confining pressure p is taken equal to p = 0.5ρwfyw, according to the
discussion right after Eq. (3.7) and to Eqs. (3.19) and (3.23).

Paulay and Priestley (1992) proposed a modified form of Eq. (3.14), on the basis
of test results for concentric compression (again with p = 0.5ρwfyw):

εcu
∗ ≈ 0.004 + 2.8εsu,w

p

f ∗
c

(3.15)

Whatever has been said so far has been developed for concentrically compressed
concrete and, strictly speaking, applies only there. What matters, though, for earth-
quake resistance is the behaviour of the extreme fibres in the confined concrete core
of members subjected to cyclic bending, with or without axial load. Apart from the
strain gradient (i.e. the fact that the strain is maximum at the extreme fibres, decreas-
ing to zero towards the neutral axis), what is different from concentric compression
is the target, which is the flexure-controlled ultimate deformation of the member.3

Test results, especially in cyclic loading, show that by the time the ultimate curvature
is reached, stirrups very rarely exhaust their elongation capacity and snap. There-
fore, the value of εsu,w is not of prime importance for the confined concrete core.

If we adopt the analysis in Section 3.2.2.4 for the calculation of the ultimate cur-
vature, ϕu, on the basis of first principles and use Eqs. (3.4), (3.5) and (3.10) for
the confined concrete strength, fc∗, and for the associated strain, εco

∗, good aver-
age fitting to available experimental results on ϕu of cross-sections with rectangular
compression zone and confined concrete core is achieved (with acceptable scatter)
if the following expressions are used for εcu

∗ (Biskinis 2007):

– for monotonic loading:

εcu
∗ = 0.0035 +

(
10

hc

)2

+ 0.57
p

f ∗
c

(3.16a)

– for cyclic loading:

εcu
∗ = 0.0035 +

(
10

hc

)2

+ 0.4
p

f ∗
c

(3.16b)

or, alternatively:

– for monotonic or cyclic loading:

εcu
∗ = 0.0035 +

(
1

xc

)3/2

+ 1

3

p

f ∗
c

(3.17)

3See footnote 1 in Section 3.1.1.2 for the definition of ultimate deformation (see also Sections
3.2.2.4 and 3.2.2.7).
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where:

– hc is the depth of the confined concrete core within the plane of bending (in mm);
– xc is the neutral axis depth in the confined concrete core within the plane of

bending (mm);
– the confining pressure, p, is related to the geometric ratio and to the arrange-

ment of the confining medium (the transverse reinforcement), differently for Eqs.
(3.16) or for Eq. (3.17) as specified in Section 3.1.2.3;

– the confined compressive strength, fc∗, is given from Eqs. (3.4) and (3.5).

The “ultimate strain” of the extreme compression fibres of the unspalled section
at its ultimate curvature (i.e. when the moment resistance of the unspalled section
drops below 80% of the maximum previous moment resistance, see footnotes 1 and
3 of this chapter) may be determined from Eqs. (3.16) and (3.17) with p = 0 and the
full section depth in the plane of bending, h, or the neutral axis depth x in the full
concrete section, instead of hc or xc, respectively.

The 2nd terms in Eqs. (3.16) and (3.17) imply a size-effect, as in Bigaj and Wal-
raven (1993) and Bosco and Debernardi (1993). Although this is a controversial
issue (e.g., Alca et al. 1997), a size effect on εcu is rationalised on the basis of stabil-
ity considerations of the compression zone (cf. the definition of εcu as the terminal
strain of a parabolic-rectangular σ -ε diagram that reproduces the maximum possible
resisting force of the compression zone).

Part 3 of Eurocode 8 (CEN 2005a) proposes the following for the ultimate strain
at the extreme fibres of the confined concrete core in members under cyclic bending:

ε∗
cu = 0.004 + 0.5

p

f ∗
c

(3.18)

Equation (3.18) is meant to be used with Eqs. (3.4), (3.5) and (3.10) for fc∗ and
εco

∗ in a package considered by Part 3 of Eurocode 8 as more accurate and repre-
sentative than the confinement model of Eurocode 2, consisting of Eqs. (3.8), (3.9)
and (3.13).

Figure 3.11(c) compares the outcome of Eqs. (3.16) to those of Eqs. (3.13), (3.14)
and (3.15). For the purposes of this comparison, the value of εsu,w used in Eqs. (3.14)
and (3.15) is the average in the tests to which Eqs. (3.16) have been fitted. The pre-
dictions of Eq. (3.15) are on the high side, while Eq. (3.14) seems to agree well with
Eq. (3.16a) – and hence with the underlying monotonic data – but to be on the unsafe
side compared to Eq. (3.16b) – and to the underlying cyclic data. The predictions of
Eq. (3.18) – not shown in Fig. 3.11(c) – are half-way between those of Eqs. (3.16a)
and (3.16b). Being design-oriented, Eq. (3.13) gives safe-sided estimates of the
ultimate strain, but not overly so, and hence is an acceptable alternative to
Eq. (3.16b) for cyclic loading.

Sections 3.2.2.4 and 3.2.2.10 elaborate further the context of Eqs. (3.16) and
(3.17), notably the expressions for the ultimate curvature ϕu in which the value of
εcu

∗ is to be used.
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Note that all expressions given in the present section, except Eqs. (3.16), (3.17)
and (3.18), have been fitted to concentric compression test results. The reader should
be cautioned, then, for the fact that all confinement models are applied throughout
the compression zone of sections subjected to bending with or without axial load,
and especially to its extreme fibres. The implicit assumption there is that every point
in the compression zone is laterally restrained by the surrounding volume of con-
crete in the same way that the perimeter stirrup and any intermediate ones restrain a
section under concentric compression. Being under smaller strains than the extreme
fibres, the ones immediately inwards have a lower tendency to dilate and do indeed
restrain the inward dilation of the extreme fibres. However, it is rather arbitrary to
assume that this restraint depends on the diameter, layout and spacing of stirrups,
in exactly the same way as the outward restraint does (see next Section 3.1.2.3).
Indeed, the available experimental evidence suggests they don’t.

3.1.2.3 Confinement by Transverse Reinforcement

The confinement of the end section of a member by the surrounding concrete beyond
the member end – i.e. by a larger column for a beam, or a large foundation element
for the base of a vertical element – is neglected in design, as it refers to a single
section. However, confinement of the concrete core inside the reinforcement cage
by closely spaced transverse reinforcement is a key point in the detailing of concrete
members for earthquake resistance.

The yield strain of reinforcing steel is about 2.5-times the lateral strain of con-
crete at uniaxial ultimate strength. When the uniaxial stress approaches fc the con-
fining steel is activated and, if in sufficient quantity, reaches its yield stress, fyw,
while the – by now triaxially compressed – concrete attains its enhanced ultimate
strength.

Circular hoops or spirals provide the most efficient confinement. Hoops or spi-
rals with small spacing or pitch, respectively, compared to the centreline diameter
of the hoop or spiral, Do = 2Ro, may be considered as a tube of thickness t = Asw/s,
where Asw is the cross-section of the tie or spiral and s its spacing or pitch. (Strictly
speaking, the equivalent thickness is equal to ast, where as is the confinement effec-
tiveness factor given by Eqs. (3.20a) and (3.20b) and which is close to 1.0 if s/Do

is small). Reacting to the tendency of the enclosed concrete core to dilate when it
approaches its ultimate strength under axial compression, the hoop or spiral will
develop a tensile stress σ s and exert on the concrete core a radial (confining) pres-
sure, p, related to σ s as: p = tσ s/Ro. The confining steel reaches its yield stress, fyw,
while the triaxially compressed concrete attains its enhanced ultimate strength. After
yielding of the confining steel, σ s = fyw, the lateral pressure p remains constant. On
this basis, confinement models, like those in Section 3.1.2.2, fitted to triaxial com-
pression tests under constant value of p are considered to apply when the lateral
pressure derives from transverse reinforcement. If this reinforcement is idealised as
a tube of thickness t, the value of p (normalised to the unconfined concrete strength)
to be used in these confinement models is:

p

fc
= 0.5ρw

fyw

fc
= 0.5ωw (3.19)
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Where ωw = ρwfyw/fc is the mechanical volumetric ratio of the confining reinforce-
ment, defined with respect to the volume of the concrete core to the centreline of the
confining hoop or spiral: ρw = (2πRo)Asw/(πRo

2s) = 2Asw/sRo = 2t/Ro.
A circular hoop or spiral exerts its confining action on the concrete it surrounds

not as a uniform pressure p = tσ s/Ro, but as a radial force per unit length of the
perimeter, 2πRo. The effect of this force is dispersed within the volume of the con-
crete core inside the hoop or the spiral. A convenient assumption for the dispersal
of the confinement force was initially proposed by Sheikh and Uzumeri (1982) and
extended by Mander et al. (1988). According to this assumption, the confinement
force is dispersed following parabolic arcs defined within planes through the mem-
ber axis (meridional planes) and spanning from one hoop (or intersection of the
spiral with the meridional plane) to the next with tangents there at ±45◦ to the plane
of the cross-section (see Fig. 3.12(a)). Any concrete outside these parabolic arcs is
assumed as unconfined, like the concrete cover outside the hoop or spiral. The entire
concrete volume inside these arcs is considered as uniformly confined.

For circular hoops, the minimum confined cross-sectional area along the member
is mid-way between consecutive hoops. The apex of a parabolic arc is at a distance
from the chord connecting its two ends equal to 0.5(s/2)tanα, where α is the angle
of the tangent to the parabola at each end with respect to the chord of the parabolic
arc. For the assumptions in Sheikh and Uzumeri (1982) and Mander et al. (1988),
α = 45◦. The minimum confined cross-section has a diameter equal to 2(Ro–s/4) =

(a) (b) 

Fig. 3.12 Confined and unconfined parts over the cross-section and along a member with: (a)
circular section and circular hoops; or (b) square section and multiple ties
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Do–s/2 and a cross-sectional area of π(Do–s/2)2/4, i.e. to the following fraction of
the confined core defined by the centreline of the hoop:

as =
(

1 − s

2Do

)2

(3.20a)

If confinement is provided by a spiral, the model in Sheikh and Uzumeri (1982)
and Mander et al. (1988) gives a constant confined cross-sectional area along the
member. This area is circular with the ends of its diameter defined as follows:

– One end is at the apex of the parabolic arc extending between consecutive points
of intersection of a meridional plane with the spiral.

– The other end is at the intersection of the same meridional plane with the spiral
itself.

Then the diameter of the confined area is equal to Do–s/4, where s is now the
pitch of the spiral. Therefore, the confined area is equal to the following fraction of
the cross-sectional area inside the centreline of the spiral:

as =
(

1 − s

4Do

)2

≈ 1 − s

2Do
(3.20b)

In rectangular sections confinement is normally provided by rectangular ties. If
the centreline dimensions of the tie are bxo and byo (Fig. 3.12(b)) the same reasoning
gives a minimum confined cross-sectional area mid-way between consecutive ties
with area equal to the following fraction of the cross-section area inside the tie
centreline:

as =
(

1 − s

2bxo

)(
1 − s

2byo

)
(3.20c)

Circular hoops or spirals exert radial confining forces all along the perimeter.
By contrast, straight stirrup legs along the perimeter do not develop any confining
action, because the tendency of concrete to dilate when its stress approaches its
ultimate strength causes these legs to bend outwards. The confining force exerted
by a unit length of a stirrup bent to a radius of curvature equal to R is Aswσ s/R,
where Asw is the stirrup cross-section area and σ s its tensile stress. This force is
negligible, until eventually outwards bending of the straight stirrup leg reduces its
radius of curvature, R, to a value of the order of the cross-sectional dimensions. But
then it may be too late for the concrete. So, rectangular or polygonal stirrups are
considered to exert concentrated confining forces on the concrete inside, only:

– at the corners, and
– wherever outwards bending of their straight legs is prevented by the hook of a

cross-tie, well anchored within the concrete volume (the end hooks of intermedi-
ate single-legged cross-ties normally engage opposite sides of a perimeter tie).
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Normally every stirrup corner or any intermediate point of the perimeter tie later-
ally restrained by a cross-tie hook engages also a longitudinal bar with much larger
diameter than the stirrup itself. This bar plays an important role for the dipersal of
the confining force concentrated there to the volume of the concrete core. The dis-
persal model in Sheikh and Uzumeri (1982) and Mander et al. (1988) is used also to
separate the unconfined from the fully confined part inside the cross-section where
the stirrup lies. The unconfined part is the one outside parabolic arcs connecting
consecutive stirrup corners or points laterally restrained by a cross-tie hook, and the
fully confined part is that inside these arcs. The apex of each parabolic arc is at a
distance bitanα/4 from the chord connecting its two ends, where bi is the length of
this chord along the perimeter and α the angle between the chord and the tangent
of the arc at each end, taken as α = 45◦ according to Sheikh and Uzumeri (1982)
and Mander et al. (1988). The area enclosed by the arc and its chord of length bi is
equal to their distance at the apex times 2bi/3, i.e. to bi

2/6. So, the confined part of
the cross-section at the level of a rectangular stirrup with centreline dimensions bxo

and byo is equal to the following fraction of the area enclosed by the centreline of
the stirrup:

an = 1 −
∑

bi
2/6

bxobyo
(3.21)

Circular hoops or spirals provide confinement all along their perimeter, so the
counterpart of Eq. (3.21) is:

an = 1 (3.22)

Rectangular columns or beams have a closed perimeter stirrup providing con-
finement only at its corners. Columns of earthquake resistant buildings designed for
ductility are required by codes to have intermediate longitudinal bars engaged by a
stirrup corner or cross-tie hook not further apart than a specified maximum spacing
(of the order of 150–250 mm, see Table 5.2 in Chapter 5 for Eurocode 8). As a mat-
ter of fact, for buildings of Ductility Class M or H Eurocode 8 requires (for other
reasons) a least one intermediate bar between adjacent corners of a column sec-
tion, but does not impose engaging such bars with a cross-tie hook. Lateral restraint
of intermediate bars is provided by cross-ties engaging two intermediate bars at
opposite sides of the cross-section, or, more commonly in large cross-sections, by
intermediate closed stirrups engaging one bar at each stirrup corner. A tensile stress
σ s = fyw in all stirrup legs and cross-ties parallel to transverse direction x (or 2)
that opposes the dilatation of a concrete that approaches its ultimate strength, pro-
duces an average compressive stress σ 2 in the concrete, computed from equilibrium
as: σ 2byo = (ΣAswx/s)fy, i.e. σ 2/fc = ρxfyw/fc, where (ΣAswx/s) is the total
cross-sectional area of all stirrup legs or cross-ties per unit length of the member
parallel to transverse direction x, and ρx = ΣAswx/(sbyo) the geometric ratio of trans-
verse reinforcement in that direction. Similarly in the other transverse direction y (or
3): σ 3/fc = ρyfyw/fc. If ρx > ρy it is the value p ≈ (σ 2+4σ 3)/5 that counts. It is sim-
pler and safe-sided to consider that essentially the minimum of the two transverse
reinforcement ratios controls confinement:
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p/ fc ≈ min(ρx , ρy) fyw/ fc = 0.5ωw (3.19a)

where the volumetric ratio of confining reinforcement, ρw, referring to the volume
of the confined concrete core inside the centreline of the perimeter stirrup, is not the
real one, but that defined as:

ρw = 2 min(ρx , ρy) = 2 min(ΣAswx/byo,ΣAswy/bxo)/s (3.23)

The mechanical volumetric ratio of confining reinforcement in Eq. (3.19a), ωw

= ρwfyw/fc, derives from the fictitious volumetric ratio of confining reinforcement,
ρw, given by Eq. (3.23).

Equations (3.19a) and (3.23) are similar to the one for confinement by circular
hoops or spirals, Eq. (3.19), but applies only to cross-sections with stirrup legs or
cross-ties parallel to the section sides. In (nearly) square columns (with bx ≈ by)
with just one intermediate bar to be laterally restrained along each side, all four
intermediate bars can be conveniently restrained at the same time by a diamond-
shaped interior tie (Fig. 3.13 (a)). That tie enters in the calculation of ρx and ρy

with its cross-sectional area Asw, times
√

2. In that special case the value of ρw

(a) (b)

(d)(c) 

Fig. 3.13 Ties in square column engaging the four corner bars and (a) four mid-side bars; (b), (c)
two intermediate bars per side; (d) three intermediate bars per side
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coincides with the real volumetric ratio of confining reinforcement (volume of all
tie legs, divided by the volume of confined core to the centreline of the perime-
ter tie). In a (nearly) square section with two intermediate bars that need lateral
restraint along each side, it is cost-effective and convenient to employ a single octag-
onal interior tie engaging all eight intermediate bars (Fig. 3.13(c)), instead of two
interior rectangular ties each engaging two pairs of intermediate bars at opposite
sides of the section (Fig. 3.13(b)). The octagonal tie enters in the calculation of ρx

and ρy with its cross-sectional area, Asw, times
√

2 so, the volumetric ratio from
Eq. (3.23) is slightly less than the real volumetric ratio of confining reinforcement.
If all intermediate bars in a square column are laterally restrained by single-leg
cross-ties, the outcome of Eq. (3.23) coincides with the real volumetric ratio of
confining reinforcement. This is not the case anymore if interior rectangular ties
engage each two pairs of intermediate bars at opposite sides of the section (Fig.
3.13(b) and (d)), because the legs of an interior tie on the perimeter do not count in
Eq. (3.23).

Equations (3.21) and (3.22) express the confined fraction of the cross-section at
the level of an individual stirrup, as a fraction of the area enclosed by the centreline
of the perimeter stirrup. Equations (3.20) give the minimum confined area along the
length of the member as a fraction of the confined area at the level of individual
stirrups. Factors as and an may be considered as coefficients of confinement effec-
tiveness along the member, or over the cross-section, respectively. The combined
confinement effectiveness factor is the product:

a = anas (3.24)

which gives the minimum confined cross-sectional area anywhere along the mem-
ber, as a fraction of the area enclosed by the centreline of the perimeter stirrup or
spiral (Fig. 3.12(b)).

Early work about the effect of confinement on the behaviour of concrete focused
on the ultimate strength of columns under concentric compression. Under such load-
ing the compression strength of the column is equal to that of its least confined cross
section. If unconfined concrete does not exhaust its ultimate strain, εcu, before the
confined concrete reaches its compressive strength, fc∗, the ultimate compressive
force of the column may be taken to be approximately equal to (Ac +aKAo)fc, where
Ac is the area of the gross concrete section, Ao is the cross-sectional area enclosed
by the centreline of the perimeter stirrup or spiral, a is the confinement effective-
ness factor of Eq. (3.24) and K the strength enhancement factor in Eq. (3.4). It
is often considered that just the concrete cover spalls-off before the confined con-
crete reaches its ultimate strength, fc∗. Then the ultimate compressive load may be
estimated as aAofc∗, computed from Eq. (3.4) with the value of K multiplied times
the confinement effectiveness factor of Eq. (3.24). As a matter of fact (Sheikh and
Uzumeri 1982), that first introduced the concept of a confinement effectiveness fac-
tor essentially in the form of Eqs. (3.20), (3.21), (3.22) and (3.24), incorporates it in
K as a multiplicative factor in Eq. (3.7).
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If K is proportional to the confining pressure p (as, e.g., in the 1st term of the
model of Eq. (3.8)), which in turn is proportional to the mechanical volumetric
ratio of transverse reinforcement (see Eqs. (3.19) and (3.19a)), then a may multiply
directly ωw. However, this practice has been common even in models where K is
nonlinear in p. In the Mander et al. (1988) model factors an and as multiply the
transverse stresses σ 2 and σ 3. More specifically, for circular hoops or spirals as

multiplies ωw in Eq. (3.18); for rectangular ties a from Eq. (3.24) multiplies the
mechanical stirrup ratios in the two transverse directions, ωx = ρxfyw/fc and ωy =
ρyfyw/fc, for the calculation of σ 2/fc = aωx, σ 3/fc = aωy. A similar approximation
is common in the use of Eq. (3.5), which is also nonlinear in p. Unfortunately, this
practice is carried over to the calculation of εco

∗ through Eq. (3.10) and of εcu
∗

through Eqs. (3.13) and (3.18). So, the common practice is to apply Eqs. (3.5), (3.6),
(3.8), (3.13) and (3.18) with a value of p/fc from Eqs. (3.19) or (3.19a) multiplied by
a (which is equivalent to multiplying ωw at the right-hand-side of Eqs. (3.19) and
(3.19a) by a):

p

fc
= 0.5aρw

fyw

fc
= 0.5aωw (3.25)

The same for Eqs. (3.16) and (3.17), but not for Eqs. (3.14) and (3.15).
The so resulting value of K is used then in Eqs. (3.4) and (3.10).
In earthquake resistant structures confinement is primarily of interest for the com-

pression zone of members subjected to bending with or without axial force. A more
meaningful measure of the effectiveness of confinement for a member with rectan-
gular section subjected to bending in a plane parallel to side bx, would involve a
value of a modified as follows (see Fig. 3.14):

Fig. 3.14 Calculation of confinement effectiveness in the compression zone of the confined core
of a member in flexure
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– instead of the depth of the confined concrete core, hc = bxo, its neutral axis depth
from the centreline of the perimeter stirrup, xo, is used, calculated from the nor-
malised neutral axis depth at ultimate conditions of the confined concrete core,
ξ cu, computed according to Section 3.2.2.4 under Ultimate Curvature of the Con-
fined Core, After Spalling of the Cover and Flow Chart 3.2;

– the summation Σibi
2 in the numerator of the 2nd term of Eq. (3.21) extends

over the external perimeter of the confined compression zone – i.e. from one
intersection of the neutral axis with the centreline of the perimeter stirrup to the
other intersection on the opposite side, excluding the neutral axis itself between
these two intersection points;

– the 1st parenthesis at the right-hand-side of Eq. (3.20c) is replaced by 1–0.25s/xo,
where s is the stirrup spacing.

The end result is a factor for the effectiveness of confinement of the compression
zone:

ax =
(

1 − s

2bxo

)(
1 − s

4xo

)(
1 −

∑
b2

i

6xobyo

)
(3.24a)

replacing a in Eq. (3.24).
The strong interaction between confinement of concrete and buckling of longitu-

dinal bars, already noted in Section 3.1.1.2, is worth re-emphasising:

– Thanks to their flexural stiffness, longitudinal bars contribute to the confinement
of the adjacent concrete, no matter that the model in Sheikh and Uzumeri (1982)
and Mander et al. (1988) and Eqs. (3.20) and (3.21) derived from it discount
this contribution. The confined concrete in turn exerts on these bars outwards
pressures driving them toward buckling.

– Once they buckle outwards, longitudinal bars contribute little to confinement
and to axial force resistance. Moreover, they may buckle over several tie spac-
ings (see Fig. 3.4(b)), stretching the ties and diminishing their role for confine-
ment. So, bar buckling may precipitate disintegration of the confined concrete
core.

3.1.2.4 Confinement by FRP Wrapping

The columns of existing substandard buildings normally have widely spaced and/or
poorly closed stirrups. Such stirrups provide little confinement, if at all. Confine-
ment can be very conveniently provided a-posteriori by wrapping the end regions of
columns where plastic hinges may form in Fibre-Reinforced-Polymers (FRPs) with
fibres oriented (primarily) in the hoop direction of the section (see Section 6.8.3).

The lateral stress-axial strain response for the two most common Fibre-
Reinforced-Polymers, notably carbon FRP (CFRP) and glass FRP (GFRP), is
contrasted in Fig. 3.15(a) to that for confinement by steel. Being essentially linear-
elastic, once activated by concrete that dilates after its unconfined ultimate strength
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(a) (b)

(c) (d)

Fig. 3.15 Schematic behaviour of concrete confined with steel, CFRP or GFRP: (a) σ -ε curves of
confining material, normalised to the yield stress and strain of steel; (b) axial σ -ε curves of confined
concrete, normalised to the strength and the corresponding strain of unconfined concrete; (c) (d)
lateral or volumetric strain v axial strain of confined concrete, normalised to the corresponding
strains of unconfined concrete at ultimate strength (adapted from fib 2006)

is attained, the FRP provides an ever increasing confining pressure until it fractures
in tension. So, unlike the σ -ε curve of concrete confined by ties which exhibits
softening after the ultimate strength, those of FRP-wrapped concrete continue hard-
ening until the FRP breaks (Fig. 3.15(b)). As shown in Fig. 3.15(c) and (d), after
they yield steel ties lose effectiveness compared to CFRP, and later on to GFRP as
well, in restraining the lateral and volumetric strains of concrete. As a matter of
fact, as shown in Fig. 3.15(d), after the unconfined ultimate strength of concrete is
exceeded, the restraint of its dilation by the large confining stiffness of CFRP can
soon turn dilation into contraction (Teng and Lam 2004). Of course, for the σ -ε
curve of confined concrete to be continuously ascending until rupture of the FRP,
the FRP wrapping should have a minimum of tensile strength, ffutf, and extensional
stiffness, Eftf, with ffu and Ef denoting the ultimate strength and Modulus of the
FRP material and tf the thickness of the FRP jacket (see Fig. 3.16 for FRP wrapping
with large values of ffutf and Eftf). Otherwise, the confined concrete will soften after
ultimate strength, as shown schematically in Fig. 3.16(b) for concrete wrapped with
FRP having low values of ffutf and Eftf. According to Yan and Pantelides (2006,
2007), the transition from hardening to softening takes place when the value of
ffutf/R drops below 0.2fc.
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(a) (b) 

Fig. 3.16 Schematic axial σ -ε response of FRP-confined concrete (a) for increasing FRP strength,
ffutf, and stiffness, Eftf, (b) hardening (top) or softening (bottom) behaviour, for ffutf/R > 0.2fc or
ffutf/R < 0.2fc, respectively (adapted from Yan and Pantelides 2007)

The difference between the passive confinement offered by an elastic material,
such as FRP, and an active one by a constant lateral pressure p was not recognised
at the beginning. So, in the first publications that proposed and investigated the use
of FRP to confine the concrete (Fardis and Khalili 1981, 1982), Eqs. (3.4) and (3.5)
have been applied for the enhancement of the concrete strength. Equations (3.4),
(3.7) and (3.10) were adopted for the same purpose when the subject was first revis-
ited (Saadatmanesh et al. 1994) and later adopted in ACI Committee 440 (2002)
too. All subsequent work avoided blind adoption of models of active confinement
by a constant lateral pressure, p, such as those presented in Section 3.1.2.2 for con-
crete confined by steel ties. Models were custom-fitted, instead, to the stress-strain
behaviour and the strength of FRP-confined concrete.

Research on the experimental behaviour of FRP-confined concrete under concen-
tric compression and its modelling has been intense since the mid-1990s and will
continue at least till the end of the first decade of the 20th century. In the absence
of agreement within the research community about the models to be used in prac-
tice, the present section covers the subject at a greater length than warranted by its
importance. Hopefully, the dust will soon settle and some of the following material
will become redundant.

The ultimate strength and strain of confined concrete under concentric com-
pression are controlled by the failure strain of the FRP in the hoop direction. It
has recently emerged that the value of the effective ultimate hoop strain of the
FRP, εfu, is a much more important factor for stress-strain and strength models
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of FRP-confined concrete than the model itself. There is indeed strong experi-
mental evidence that the full elongation at rupture of the FRP material, as mea-
sured in coupon tests, cannot be utilised for confinement. The FRP that confines
concentrically compressed concrete fails when its hoop strain reaches a fraction
of the ultimate elongation of tension coupons. In ACI Committee 440 (2002)
this fraction is called efficiency factor and is given a value of 0.75 for rectan-
gular members subjected to bending and shear (but with the value of the effec-
tive ultimate strain of FRP not to exceed 0.004), or of 1.0 for circular sec-
tions. In the light of current knowledge the values in ACI Committee 440 (2002)
are high: values of the efficiency factor around 0.5 (Yan and Pantelides 2007,
Toutanji et al. 2007, Fujikake et al. 2004), 0.6 (Lam and Teng 2003a,b, Tamužs
et al. 2007, Tabbara and Karam 2007), or 0.85 just for AFRP (Lam and Teng
2003a,b) are more consistent with test results. It has also been found in Tab-
bara and Karam (2007) that models of active confinement by a constant lateral
pressure, p, such as those presented in Section 3.1.2.2 for concrete confined by
steel ties, can describe well the ultimate strength of FRP-confined concrete under
concentric compression, provided that p is derived from the FRP geometric ratio
ρf = 2tf/D as p = ρfffu, with the effective ultimate strength of FRP taken as ffu =
Efεfu, where εfu is the effective, reduced ultimate hoop strain of the FRP and not the
ultimate elongation of tension coupons. Finally, it has been demonstrated in Teng
and Lam (2004) that σ -ε models for confined concrete agree much better to test
results if they employ the measured ultimate hoop strain of the FRP, instead of a
default value or the ultimate elongation of tension coupons. So, the reader should
consider the statement in the second sentence of the present paragraph as well sub-
stantiated and should keep it in mind while going through the rest of this section.

The Spoelstra and Monti model in Spoelstra and Monti (1999):

f ∗
c

fc
= 0.2 + 3

√
ρ f

f f u

fc
(3.26a)

ε∗
cu

εco
= 2 + 1.25

Ec

fc
ε f u

√
ρ f

f f u

fc
(3.26b)

applies to circular sections with diameter D, wrapped with FRP having a geometric
ratio ρf = 2tf/D and effective ultimate strain εfu, giving an effective ultimate FRP
strength ffu = Efεfu. Although widely quoted – notably in fib (2001, 2003) – the
model has been recently found (Vintzileou and Panagiotidou 2007, Yan and Pan-
telides 2006, Tamužs et al. 2007, De Lorenzis and Tepfers 2001) to overestimate on
average by about 5% the strength of confined concrete cylinders (via Eq. (3.26a))
and much more (by more than half) their ultimate strain (via Eq. (3.26b)). More-
over, it predicts that a very low level of confinement (with ρfffu/fc < 0.07) reduces
the strength below the unconfined value.

Among the widely known proposals so far, the model in Lam and Teng (2003a,b)
has emerged from an independent comparison with the largest known database of
FRP-confined concrete under concentric compression (Vintzileou and Panagiotidou
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2007) as the most unbiased for ultimate strength and strain (with median value
of experimental-to-predicted or predicted-to-experimental ratio within a few per-
cent from 1.00), with acceptable overall scatter. Moreover, it is fairly complete: it
provides the full hardening σ -ε law of circular or rectangular FRP-confined sec-
tions, giving at the limit the one of unconfined concrete. The σ -ε curve consists of a
parabolic ascending branch followed by a linear one that intercepts (if extended) the
stress axis at the unconfined concrete strength, fc, and terminates to the following
ultimate strength and strain point:

f ∗
c

fc
= 1 + 3.3

(
b

h

)2

an
ρ f f f u

fc
(3.27a)

ε∗
cu

εco
= 1.75 + 12

√
h

b
an
ρ f f f u

fc

(
ε f u

εco

)0.45

(3.27b)

The parabolic first branch merges into the linear one at the same slope E2 = (fc∗

– fc)/εcu
∗ and at a strain equal to 2fc/(Ec – E2).

In Eqs. (3.27) b and h are the shorter and the longer of the two sides of the section
(b = h for circular sections). The confinement effectiveness factor, an, is given by
Eq. (3.22) for circular sections and by Eq. (3.28) below for rectangular ones. On
the basis of the measured hoop strains at failure of the FRP and the specimen, Lam
and Teng (2003a,b) have concluded that the effective FRP ultimate strength, fu,f, is
equal to fu,f = Efεfu, where εfu is on average about equal to 60% of the failure strain
of tensile coupons for CFRP and GFRP, or about 85% of the coupon failure strain
for AFRP (for GFRP or AFRP these percentages were estimated from very limited
data).

According to Lam and Teng (2003a,b), if ρfffu/fc< 0.07, the strength enhance-
ment in Eq. (3.27a) is neglected. However, this departure from Eq. (3.27a) may not
be sufficient for the realistic description of the behaviour of concrete for low levels
of FRP-confinement. In the model in Yan and Pantelides (2006, 2007) the expres-
sions for ultimate strength and strain under hardening behaviour (i.e., for ffutf/R
> 0.2fc) are supplemented with rules for softening behaviour (with ffutf/R < 0.2fc),
namely with expressions giving both the ultimate strain point in Fig. 3.16, fcu

∗, εcu
∗,

and the peak or ultimate strength one, fc∗, εc
∗. That σ -ε model is more complete in

this respect, but it has been fitted to limited data of tests carried out by its very pro-
posers. So, till an independent assessment of its performance for a wider database
of test results, the reader is referred to Yan and Pantelides (2006, 2007) for details.

An FRP jacket provides continuous confinement all along the length of its appli-
cation around the member. So, the confinement effectiveness factor in that direction
is as = 1 (cf. Eqs. (3.20) for confinement by steel ties).

Regarding the effectiveness of confinement by FRP within the section, for
circular members the FRP jacket is fully effective all along the perimeter. So, the
confinement effectiveness factor within the section is an = 1, as in circular steel
hoops or spirals (cf. Eq. (3.22) for confinement by steel ties).
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If the section is rectangular, the FRP jacket exerts confining forces only at the
corners and not at all in-between (similar to a perimeter tie). Primarily to enhance
the confinement effectiveness of the FRP jacket, but also to reduce stress concentra-
tions in it at the corner that may cause premature rupture, the corner of the section is
rounded into a quarter-circle of radius R before applying the FRP. Note that, when
a sheet of fibre-reinforced fabric of thickness t is applied around such a corner, a
strain of ε = 0.5t/R is locked in at the expense of the ultimate strain capacity of the
FRP. From this point of view, to achieve a target value of total tensile strength of the
FRP in the circumferential direction of a rectangular section, a larger number of thin
individual fibre-reinforced sheets – each with thickness t not more than a fraction of
a millimetre – is preferable to fewer but thicker sheets.

In rectangular sections, confinement by the FRP jacket is fully effective right
inside the rounded corners of the section. In-between the corners the parabolic arc
model in Sheikh and Uzumeri (1982) and Mander et al. (1988) may be applied as in
Fig. 3.17, giving in the end the following fraction of the original rectangular section
as confined (CEN 2005a, fib 2001, 2003):

an = 1 − (bx − 2R)2 + (by − 2R)2

3bx by
(3.28)

The long exposé above refers exclusively to concentric compression. Strictly
speaking it applies only in that case. It has been emphasised in Sections 3.1.2.2
and 3.1.2.3 that what matters for earthquake resistance is the compression zone
of members subjected to cyclic flexure with or without axial load and notably the
flexure-controlled ultimate deformation of the member,4 conveniently expressed by
the ultimate curvature of the section. By analogy to the development of Eqs. (3.16)
and (3.17) in Section 3.1.2.2, the ultimate curvature, ϕu, is calculated from first prin-
ciples according to the analysis in Section 3.2.2.4 modified to accept a parabolic-
trapezoidal σ -ε curve for the confined concrete, instead of the parabolic-rectangular
one used for unconfined concrete. In addition, the σ -ε model in Lam and Teng

Fig. 3.17 Confinement of
rectangular section by FRP
jacket

4See footnote no. 1 in Section 3.1.1.2 for the definition of ultimate deformation (see also Section
3.2.2.7).
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(2003a,b) is adopted, except that the ultimate strain, εcu
∗, is determined for opti-

mal fitting of available experimental results on ϕu of FRP-confined sections. It has
been found that such a fitting is unbiased (i.e., good on average) and associated
with acceptable scatter, if for cyclic loading Eq. (3.16b) is modified as follows for
confinement by FRP (Biskinis and Fardis 2009):

εcu
∗ = 0.0035 +

(
10

h

)2

+ 0.4an min

[
0.5;

ρ f fu, f

f ∗
c

]
aef f , j (3.29)

where:

– h is the full section depth in the plane of bending, in mm;
– an is the confinement effectiveness factor of the FRP, equal to an = 1 for circular

sections or given by Eq. (3.28) for rectangular ones;
– ρf = 2tf/b is the geometric ratio of the FRP in the direction of bending;
– ffu = Efεfu, with εfu as in Lam and Teng (2003a,b), i.e. about equal to 60% of

the failure strain of tensile coupons; note that in Lam and Teng (2003a,b) this
percentage value has been proposed only for CFRP or GFRP, while 85% was
given for AFRP, but on the basis of limited test results;

– aeff,j is an additional effectiveness factor for the FRP jacket, expressing that its
effectiveness is not proportional to the geometric ratio and stiffness of the FRP:

• aef f, j = 0.5

(
1 − min
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0.5;
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for CFRP, GFRP, (3.30a)

• aef f , j = 0.3
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ρ f fu, f

f ∗
c

])
for AFRP (3.30b)

Section 3.2.3.10 under Members with Continuous Bars gives details about the
outcome of the application of Eqs. (3.28), (3.29) and (3.30) for the estimation of the
ultimate flexural deformation of FRP-wrapped members.

Note that, if the FRP provides relatively light confinement compared to the trans-
verse reinforcement, the end section may survive rupture of the FRP jacket and
reach subsequently a larger ultimate curvature controlled by the confined concrete
core inside the stirrups, for which Section 3.1.2.2 applies.

3.1.2.5 Concrete Strength Requirements for Earthquake Resistant Buildings

Because the effect of concrete strength on member ductility and energy dissipa-
tion capacity seems to be beneficial in practically every respect (from the increase
of bond and shear resistance, to the direct enhancement of deformation capacity),
Eurocode 8 (CEN 2004a) sets a lower limit on the nominal cylindrical concrete
strength in primary seismic elements, equal to 16 MPa (concrete class C16/20) in
buildings of DC M, or 20 MPa (concrete class C20/25) in those of DC H. No upper
bound is set on concrete strength, as there is no experimental evidence that the
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lower apparent ductility of high strength concrete (due to which the values speci-
fied in Eurocode 2 for εco and εcu converge, from εco = 0.002 and εcu = 0.0035
for concrete class C50/60, to a single value of 0.0026 at C90/100) has any adverse
effect on member ductility and energy dissipation capacity. The above lower lim-
its on nominal concrete strength are consistent with the lowest concrete strengths
currently used in buildings of the more seismic prone European countries.

3.1.3 Interaction Between Reinforcing Bars and Concrete

3.1.3.1 Cyclic Shear Transfer Along Cracks Crossed by Reinforcement

Cracks in concrete take place at right angles to the direction of a principal tensile
stress. So, the crack plane is initially free of shear stresses. Owing to the change
in the stress field during cyclic loading, shear stresses later develop along the crack
plane. Due to such shear stresses one of the two faces of the crack tends to slip
with respect to the other. Unless the shear is accompanied by stresses normal to the
crack, slippage along the crack would be restrained only in the presence of reinforc-
ing bars crossing the crack – at right angles or at an inclination. The magnitude of
the slippage induced by a given shear stress (i.e., the effect of the crack on shear
stiffness) and the maximum shear force that can be transferred along the crack (the
shear resistance) depend on the diameter, spacing and inclination of the bars cross-
ing the crack and the tensile stress already in them due to other reasons (i.e. at zero
shear stress along the crack).

Rough cracks crossed by reinforcing bars can transfer shear by friction. In this
“interface shear transfer” or “aggregate interlock” mechanism, the clamping force
needed for the development of friction is provided by the reinforcing bars that cross
the crack and depends on their total cross-sectional area, inclination with respect to
the crack and tensile stress due to other reasons. These bars connect also the two
faces of the crack as “dowels”. Their effectiveness in this respect depends on their
diameter (more than on their cross-sectional area) and on the minimum concrete
cover in the direction of the shear stress on either side of the crack (or, if this cover
is small, by the engagement of the bar acting as dowel by transverse reinforcement
close to and almost parallel to the crack).

Significant shear forces can be transferred by aggregate interlock and dowel
action under monotonic loading (see virgin loading branches in Figs. 3.18 and 3.19).
However, both mechanisms are very sensitive to the cycling of the shear force and
of the associated slip along the crack. Cycling of the slip polishes the crack faces
and reduces the effectiveness of aggregate interlock. Bearing stresses under a bar
acting as dowel may crush locally the concrete and open a “gap” that may need to
be closed, for the bar to be re-engaged as a dowel in a subsequent load cycle. This is
evident from the cyclic shear force (or stress) v slip behaviour depicted in Fig. 3.18
for aggregate interlock and in Fig. 3.19 for dowel action. In both cases (but espe-
cially for aggregate interlock) unloading-reloading loops have an inverted-S shape,
with initially steep unloading and steep final reloading in the opposite direction.
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(a) (b)

Fig. 3.18 Increase of slip in aggregate interlock for cycles of about constant shear stress amplitude,
with the clamping reinforcement normal to the crack initially at: (a) zero tensile stress; or (b) 90%
of yield stress (Perdikaris 1980)

Fig. 3.19 Dowel force v slip loops for asymmetric cover of the dowel (adapted from Vintzeleou
1984)

In-between there is an intermediate phase of nearly unrestrained slippage, until hard
contact of the two polished faces of the cracks resumes in the cases of Fig. 3.18, or
till the bar bears against sound concrete again in that of Fig 3.18. Hysteresis loops
are narrow (especially for aggregate interlock), dissipating very little energy.

Note that not only dowel action, but also shear transfer by aggregate interlock is
a mechanism of concrete-steel interaction: the shear transfer by aggregate interlock
is essentially a friction mechanism (Fardis and Buyukozturk 1979). For slippage to
take place along a rough crack, asperities of one face have to ride over those on the
opposite face. So the crack opens-up, stretching the reinforcement that crosses it.
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The clamping force necessary for the friction is provided by compressive contact
forces that develop between asperities of the crack faces as reaction to the tension
that builds up in the reinforcement owing to the sliding and opening-up of the crack.
Witness in Fig. 3.18(b) the detrimental effect of high initial tension in the clamp-
ing reinforcement on the cyclic resistance and stiffness of the aggregate interlock
mechanism. Bars under high initial tension provide little clamping effect. Once they
yield, almost unrestrained slippage takes place along the crack. Similar is the detri-
mental effect of a high tensile stress in a bar that acts as a dowel: the combination of
this stress with the direct shear and bending stress due to dowel action precipitates
generalised yielding of the bar in the vicinity of the crack, diminishing its resis-
tance against further slippage. Therefore, the longitudinal bars in a plastic hinge of
a concrete element, which are expected to yield during the seismic response, cannot
contribute to interface shear transfer on the side.

The overall conclusion is that, under cyclic conditions the shear resistance and
stiffness along cracks crossed by reinforcement degrades fast and offers practically
no energy dissipation. So, one cannot rely on it for earthquake resistance.

3.1.3.2 Bond of Reinforcing Bars to Concrete

Smooth (plain) reinforcing bars were quite common until the mid-1960s (in the US)
to the mid-1980s (in some European countries). Nowadays only ribbed (deformed)
bars are used in concrete structures. Such bars are bonded to the surrounding con-
crete by bearing of their ribs against it. A characteristic parameter for the bond
properties of a ribbed bar is its relative rib area, which is defined as the ratio of
the projected area of the ribs on a plane normal to the bar axis to the lateral sur-
face area of the bar – both per unit length of the bar – and is roughly equal to the
rib height-to-distance ratio. A relative rib area value typical of turn-of-the-century
European production is around 0.06. Doubling it to 0.12 improves the bond by just
10% (Cairns 2006). For such values of the relative rib area, bond failure along bars
or laps having clear cover or clear mid-distance to the nearest anchored bar or lap
less than about three bar-diameters normally is in the form of concrete splitting
along planes through the axis of the bar(s), as in Figs. 3.20 and 3.21. Splitting is
caused by the circumferential tensile stress that develops in the concrete due to the
bursting action of the radial component of the bearing forces exerted by the ribs
on the concrete. For typical configurations of the surface of the ribs, the bursting
radial component is in the order of 25% of the longitudinal one (i.e., of the bond
force).

Bond resistance drops rather rapidly after splitting, as the slip of the bar with
respect to the surrounding concrete increases. Transverse reinforcement intercept-
ing the potential splitting crack(s), and/or transverse pressure on the bar – be it
active, due to external forces, or passive, thanks to confinement – delay splitting and
reduce the drop in bond resistance it entails; they can even prevent splitting. Split-
ting can also be prevented if the clear cover and the clear mid-distance to the nearest
anchored bar or lap are fairly large (at least three bar-diameters, for no transverse
reinforcement or pressure). If in such cases bond failure ultimately takes place, it
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Fig. 3.20 Splitting failures of lapped bars, with definition of k-factor in Eq. (3.31) and of the
number of bars or stirrup legs in Eq. (3.32) (adapted from Eligehausen and Lettow 2007)

has the form of bar pull-out (or -through) by shearing of the concrete around the bar
or the lap, all along a surface through the tops of the ribs. This failure mode is far
less brittle than by splitting: bond resistance is almost fully maintained until the bar
travels nearly the full clear distance between successive ribs – about 80% of the bar
diameter (Cairns 2006) – fully crushing the concrete between them.

Design codes consider bond as a uniform shear stress over the lateral surface of
the bar. To determine the minimum required length of anchorages or lap splices they
specify the design value of the ultimate bond stress, fbd, considering it as a material
property.5 In Eurocode 2 (CEN 2004b) and hence in Eurocode 8 (CEN 2004a) as
well, fbd is taken as 2.25 times the design value of concrete tensile strength, fctd =
fctk,0.05/γ c = 0.7fctm/γ c, where γ c is the partial factor for concrete and indices k,
0.05 and m to fct denote the lower characteristic and the mean value, respectively.
These Eurocode 2 values of fbd apply for “good” bond conditions, i.e. if the bar:

– is at an angle more than 45◦ to the horizontal; or
– is not more than 250 mm from the bottom of the concrete layer cast; or
– is at least 300 mm from the top surface of the concrete layer cast.

For all other positions of the bar during casting, bond conditions are considered
as “poor”, owing to the effects of laitance and consolidation of concrete during

5As we will see shortly, the concept of bond strength as a property of the concrete for given relative
rib area and position of the bar with respect to casting, albeit convenient, is not representative of
reality.
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Fig. 3.21 Splitting cracks
along corner bars due to bond

compaction. The Eurocode 2 value of fbd for “poor” bond conditions is 70% of that
applying under “good” conditions (CEN 2004b). So, fbd is finally equal to 0.315fck

2/3

for “good” bond conditions, or to 0.22fck
2/3 for “poor” conditions (with fck in MPa)

and for the recommended value of the partial factor for concrete γ c =1.5. For fck

between 16 and 30 MPa, the value of fbd is from 2 to 4.3 MPa under “good” bond
conditions and from 1.4 to 3 MPa for “poor” conditions.

The code-specified value of fbd is meant to correspond not to the real ulti-
mate bond stress, but to the monotonic bond stress causing a slip between the bar
and the surrounding concrete about equal to 0.1 mm. According to the CEB/FIP
Model Code 90 (CEB 1991), the real ultimate monotonic bond stress of ribbed bars
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corresponds to a slip of s = 0.6 mm. In unconfined concrete the ultimate bond stress
in CEB (1991) is about equal to 2

√
fc (units: in MPa) for “good” bond conditions, or

to
√

fc for “poor” (not incorporating the partial factor γ c). For fc from 16 to 50, the
CEB/FIP Model Code 90 ultimate bond stress ranges from 8 to 14 MPa in the for-
mer case, or from 4 to 7 MPa in the later. According to more recent results (Huang et
al. 1996, Oh and Kim 2007) the ultimate monotonic bond stress along elastic ribbed
bars occurs at a bond slip of about 1 mm and is higher than the CEB/FIP Model
Code 90 value. In Huang et al. (1996) it was found equal to 0.45fc for “good” bond
conditions (i.e., between 7.2 and 22.5 MPa, for fc from 16 to 50 MPa) and to half
that value (0.225fc) for “poor” conditions. In Oh and Kim (2007) the ultimate mono-
tonic bond stress (in MPa) was found equal to 2.5fc0.6 (fc in MPa) for “good” bond
conditions (i.e., between 13 and 26 MPa, for fc from 16 to 50 MPa).

Once the bar yields, the ultimate bond stress drops by about 80%, giving in the
end values of the ultimate monotonic bond stress in the range of those specified by
Eurocodes 2 and 8 and incorporating a partial factor γ c = 1.5.

Bond stress reduces gradually with increasing slip, after the real ultimate value is
reached, ending up at a very low residual value of about 15% of the ultimate stress,
or even less if there is little confinement.

The values quoted above for the bond resistance in unconfined concrete are for
splitting failure. For bond failure by pull-out (or -through) it is considered that
the above quoted ultimate stress values increase by at least 25% and the residual
strength to about 40% of the ultimate stress. As noted at the beginning of this sec-
tion, the slip for which the ultimate stress is retained before residual strength is
reached is of the order of the bar diameter.

The slip that accompanies bond stresses is irreversible, because it is due to local
micro-crushing of concrete against which the ribs of the bar bear. So, the residual
slip after unloading to zero bond stress is about equal to the peak slip attained.
Repeated loading, with the bond stress cycling without reversal between zero and
a peak value (as in bridges due to traffic loads) produces a gradual increase in slip,
similar to the accumulation of concrete strains in the right-hand part of Fig. 3.10.
However, unless the cumulative slip exceeds the value of (about) 1 mm associated
with the peak stress of the monotonic bond-slip curve, the ultimate monotonic bond
stress is not adversely affected by any previous cycles at lower bond stress levels
and is available in case of subsequent loading up to ultimate stress (Oh and Kim
2007).

The apparent conclusion from the above is that the value of the design bond
stress used for the design of anchorages and splices is but a small fraction of the
real ultimate stress. It is indeed about equal to the residual bond strength attained
well beyond the ultimate bond strength. However, what appears under monotonic
or repeated loading as a wide safety margin, is necessary in earthquake resistant
structures, because reversal and full cycling of the bond stress causes a large drop in
the effective bond strength and stiffness (Balázs 1991). This is evident from the test
results in Fig. 3.22, showing that for constant amplitude cycling of bond stress the
slip gradually increases. Hysteresis loops are narrow and pinched, dissipating very
little energy. The inverted-S shape of the loops is due to:
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Slip 
Monotonic curve (a) 

Force or bond 
stress (b)

Fig. 3.22 Bond stress v slip behaviour under cyclic loading in concrete with fc = 25 MPa (adapted
from Balázs 1989)

– the abrupt release of the bond stress upon reversal, with no recovery of the slip;
– the almost unstrained slippage of the bar until hard contact of the ribs with sound

concrete beyond the locally crushed volume of concrete, and
– the resistance of the newly contacted concrete to deformation.
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Such a shape of hysteresis loops suggests that the behaviour is controlled by
friction and sliding, as in aggregate interlock. The underlying mechanism is the
gradual disintegration of the volume of concrete on which the ribs bear. Micro-
cracks starting from the area of contact extend and join up with those that have
formed during loading in the opposite direction.

If sufficient anchorage or lap splice length is provided, the peak bond stress
demand is low and accumulation of slip as in Fig. 3.22 is limited. Moreover, seis-
mic loading does not cause full reversals of bond stress at bar anchorages or lap
splices. During the half-cycle that induces compression in the anchored or spliced
bar the bond demand is reduced, as the bar shares the compressive force with the
concrete around it and transfers part of its own share through bearing of its end. In
buildings designed for earthquake resistance it is generally easy to keep the peak
bond stress demand low, except along the length of the bar within beam-column
joints. Bond stress along that length reverses fully during seismic loading, while
the joint size is normally insufficient for the full anchorage length to develop (see
Section 3.3.2). Moreover, the top bars of the beams framing into a joint may have
yielded at its face and developed already significant inelastic deformations (see
Fig. 3.7). Just inside the face of the joint tensile stresses and strains in the bar
are lower, but still rather high and most likely beyond yielding. As bar slippage
with respect to the surrounding concrete is equal to the integral of the steel strains
along the bar (minus the normally negligible tensile strains in any still uncracked
concrete), large tensile strains in the bar imply also large slippage. This in turn
means that the bond stress conditions at that point of the bar will be at the tail of
the monotonic bond-slip relation, where bond resistance has dropped to low val-
ues. As a result, relatively high bond stresses can develop only well inside the joint,
where the concrete around the bars is well confined and can sustain high bond stress
with very little slippage of the bar. So, anchorage takes place only in the core of
the joint which is confined by the stirrups. Outside this core the bond is not suf-
ficient for the reduction of the tensile stress in the bar below the yield value. For
this reason, the outermost length of bars within joints, in the order of a few bar
diameters, is called “yield penetration depth” (see Section 3.2.2.9 and Eqs. (3.63)
there).

Implicit in the concept of ultimate bond stress as a concrete property (for given
relative rib area and position of the bar with respect to casting) is the notion that
the maximum force that can be transferred by bond from a bar to the surrounding
concrete is equal to the ultimate bond stress times the lateral surface area of the bar
within the length, lb, available for force transfer by bond (i.e., lb times the perimeter
of the bar, πdb). So, this force, and hence the maximum tensile stress in the bar
that can be transferred by bond, are taken as proportional to lb. Moreover, design
codes consider that force transfer by bond through the concrete from the straight
end of a bar to that of a nearby parallel one for lap-splicing is one-sided and hence
less effective than the force transfer from the straight end of a terminating bar to
the concrete. In Eurocode 2 (CEN 2004b) the loss in effectiveness ranges from 0 to
50%, if the lap-splicing of less than 25% to more than 50%, respectively, of the total
cross-sectional area of the bars overlaps along the member.
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In the context of the conventional wisdom above (Darwin et al. 2002a,b)
overviewed several empirical expressions developed in the USA – ACI Commit-
tee 408 (2001) included – for the minimum length lb required for full anchorage
or lap-splicing of straight ribbed bars. They evaluated also these expressions on the
basis of available test results on bond and anchorage. The bias (deviation in the
mean) for 325 tests ranges from 12 to 24% and the coefficient of variation about the
biased mean from 13 to 29%.

Against this background (Eligehausen and Lettow 2007) departed from the con-
ventional wisdom of a maximum bar tensile stress that can be transferred by bond
which is proportional to lb and fitted a model to the largest available experimental
database, comprising more than 800 tests for anchorage or lap-splicing of straight
ribbed bars. According to this most complete and accurate model in the current
State-of-the-Art, in “good” bond conditions the maximum possible tensile stress
that such a bar can develop, fsm, at a straight distance lb from its end is about
the same, no matter whether the bar is anchored or lap-spliced with a parallel
bar (for clear distance of the two bars not more than 4db). Its expected value is
equal to:

fsm(M Pa) = 51.2

(
lb

db

)0.55 ( fc(M Pa)

20

)0.25 ( 20

max(db; 20 mm)

)0.2

[(
cd

db

)1/3 (cmax

cd

)0.1

+ kKtr + 0.2p(M Pa)

]
≤ fy

(3.31)

where:

– db: bar diameter;
– cd = min [minc; a/2], limited in the range of db/2–3db (see Fig. 3.23),
– cmax = max [maxc; a/2], with an upper limit of 5cd, where:

• minc and maxc are the minimum and the maximum, respectively, clear cover
of the anchored or lap-spliced bars (see Fig. 3.23), and

• a is the clear distance between anchored bars or pairs of lapped bars (see
Fig. 3.23);

Ktr = 1

nbdb

nl Ash

sh
≤ 0.04 (3.32)

is the total cross-sectional area of reinforcement placed within the length lb trans-
verse to the axis of the anchored or lap-spliced bars and crossing the potential split-
ting crack, divided by nbdblb; in Eq. (3.32):

• nb: number of anchored bars or pairs of lapped bars on the plane of the poten-
tial splitting crack that reaches the concrete surface;

• nlAsh/sh: total cross-sectional area of legs of transverse reinforcement crossing
the splitting crack, per unit length of the lapped or anchored bar;
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Fig. 3.23 Definition of bar
distances for Eq. (3.31) (cd =
min[a/2; c1; c] ≥ db, cd ≤
3db, cmax = max[a/2; c1; c] ≤
5db)

Figure 3.20 shows examples of nb and nl from Cairns (2006).
– k = effectiveness factor, with the following values:

• k = 10, if the legs of transverse reinforcement are at right angles to the split-
ting plane (provided that the clear distance of all anchored bars or pairs of
lapped bars from the point where a leg of transverse reinforcement intersects
a splitting crack is less than 150 mm, see Fig. 3.20(a)), or in circular sec-
tions with a circular perimeter tie or spiral reinforcement, where the splitting
crack may either extend from the bar at right angles to the surface or develop
between the bars parallel to the perimeter (Fig. 3.20(b));

• k = 5, if the potential splitting extends from the bar to the surface and is
crossed by a straight leg of transverse reinforcement placed within the cover,
provided that the clear distance between anchored bars or pairs of lapped bars
is not less than three-times the cover (Fig. 3.20(c));

• k = 0, in all other cases (Fig. 3.20(c) and (d));

– p = “active” confining pressure normal to the axis of the anchored or lapped bars
due to external actions (e.g., a load applied to the surface of the member) or their
effects (e.g., the axial load of a column); the mean value of p across the section
of the member in the plane of the bar is used.

Implicit in Eq. (3.32) is a tensile stress in the transverse reinforcement equal to
the tensile strength of concrete, fct, times the ratio of Moduli, Es/Ec. This is because
the role of this reinforcement is to prevent cracking, not to make up for it. If splitting
failure nonetheless does occur, the yield stress of transverse reinforcement may be
mobilised to the benefit of the post-ultimate residual strength.

Equation (3.31) refers to splitting failure of bond along ribbed straight bars in
tension. Its applicability is defined by the range of parameters in the tests to which it
has been fitted in Eligehausen and Lettow (2007): fc from 10 to 117 MPa, relative rib
area between 0.05 and 0.07, lb not less than 12db, minimum clear cover at least 0.5db

but not more than 3db and clear distance between anchored bars or pairs of lapped
bars at least db. The coefficient of variation of the fitting is about 15%. The data
show that, for given values of the parameters at the right-hand side of Eq. (3.31),
the experimental value of fsm is on average about 5% larger for anchored bars than
for lap-splices, irrespective of the number of bars anchored or lapped at the same
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location. The difference may be neglected as statistically insignificant (Eligehausen
and Lettow 2007).

For the pull-out (or -through) mode of failure, Eq. (3.31) may still be applied,
with the confinement terms (1st and 2nd one in the last, bracketed term) replaced by
an upper limit value of 2.0.

If anchorage or lapping of ribbed bars in tension is supplemented with a hook, a
bend or an anchor plate at the end, or by welding to a transverse bar, then the anchor
force developed by these additional means, divided by the bar cross-sectional area
is added to the right-hand-side of Eq. (3.31).

Anchorage or lapping of ribbed straight bars in compression is assisted by bar
end bearing. Provided that the cover of the end in the direction of the bar axis is at
least 2db, the contribution of end bearing may be taken into account by adding to
the right-hand-side of Eq. (3.31) the product of 3fc and of the confinement term (the
last, bracketed one in Eq. (3.31)) (Cairns 2006). That term can be taken equal to 2,
if the bar end bears against a volume of very well confined concrete (e.g., at the tip
of a column bar bearing on the top surface of the floor slab).

FRP wrapping of the member over at least the full length lb contributes to con-
finement. In that case the following value of kKtr may be used in Eq. (3.31) (Biskinis
and Fardis 2007, 2008):

kKtr = 1

nbdb

(
ksnl Ash

sh
+ k f n f t f E f

Es

)
(3.32a)

where tf: total thickness of fibre sheets in the wrapping; Ef: Modulus of the
fibre material; ks: effectiveness factor of transverse steel (the k of Eq. (3.31) and
Fig. 3.20); nf: number of FRP wraps intersected by a potential splitting crack to the
surface and kf: their effectiveness factor. For example, if the members in Fig. 3.20
are wrapped with FRP, then: for Fig. 3.20(a) nf = 2, kf = 10; for Fig. 3.20(b) nf = 1,
kf = 10; for Fig. 3.20(c) and (d) nf = 1 with kf = 5 if a ≥ 3c or kf = 0 if a < 3c.

3.1.4 Concluding Remarks on the Behaviour of Concrete
Materials and Their Interaction Under Cyclic Loading

As pointed out in Section 1.3.6.1, of the two constituent materials of structural con-
crete, only steel is inherently ductile, with stable hysteresis loops and considerable
energy dissipation capacity up to very large deformations. And that only in tension,
as reinforcing bars may buckle in compression, shedding their force resistance and
risking subsequent fracture. Concrete is fairly brittle, but when it is well confined
it can sustain cycles of large compressive strains without appreciable drop in resis-
tance. Confined concrete, however, cannot dissipate significant energy by itself in
compressive stress cycles.

Under cyclic loading, the transfer of shear along cracks and the bond between
reinforcing bars and concrete are characterised by rapid degradation of resistance
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with cycling and little energy dissipation. The first of these mechanisms should not
be relied upon at all, whereas bond should be kept in the elastic range, possibly
through confinement.

The only way to dissipate significant energy during large amplitude deformation
cycles is by combining:

– reinforcing steel in the direction where tensile internal forces and stresses are
expected to develop; and

– concrete and reinforcement in the direction of compressive internal forces and
stresses, provided that closely spaced ties confine the concrete and restrain the
bars against buckling.

It is clear that this is feasible wherever in the member inelastic stresses and
strains invariably develop in the directions where reinforcement can be conveniently
placed. In essentially one-dimensional members, such as beams, columns and slen-
der walls, it is convenient to place the reinforcement in the longitudinal and the
(two) transverse direction(s). So concrete members can be designed to develop large
inelastic deformations and reliably dissipate significant energy, only in their regions
dominated by flexure (with or without axial load). These regions lend themselves
to effective use of reinforcing bars to take up directly the tension and to restrain
concrete and compression steel exactly at right angles to their compression stresses.
Even there energy dissipation takes place primarily – essentially only – in the rein-
forcement and not in the confined concrete.

3.2 Concrete Members

This part of Chapter 3 deals with the behaviour of individual members subjected to
cyclic flexure and shear of the type induced by seismic actions. Member types con-
sidered are those commonly used in earthquake resistant concrete buildings, notably
prismatic members with rectangular, L- or T-section. Connections between such
members are addressed at the end of the chapter.

3.2.1 The Mechanisms of Force Transfer in Concrete Members:
Flexure, Shear and Bond

In prismatic concrete members, such as beams or columns, it is convenient to work
with the centroidal member axis, x, and with cross-sections normal to it, and with
the resultant force and moments of the normal stresses acting on the section (normal
force N, bending moments My, Mz with respect to the centroidal principal axes y and
z of the cross section, respectively) and of the shear stresses acting on it (shear forces
Vy, Vz parallel to axes y, z, respectively, torsional moment T with respect to axis x).
It is then convenient to distinguish the “flexural” deformations as those attributed
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mainly to N, My and Mz and computed on the basis of the Navier-Bernoulli hypoth-
esis of plane sections remaining plane and normal to the x axis. Shear forces cause
additional (“shear”) deformations, which can be computed by relaxing the Navier-
Bernoulli assumption to allow cross-sections not to remain normal to the axis, while
they still remain plane. Interaction effects, i.e. the influence of shear forces on flex-
ural deformations and that of normal stress resultants on shear deformations, are
important in general and cannot be neglected, especially for inelastic cyclic loading.
However, if the bending moment is relatively high and the shear force low, flexural
deformations not only dominate, but can also be computed in good approximation
neglecting the influence of shear forces. The controlling factor is the shear span
ratio, M/Vh, defined as the ratio of the shear span, Ls = M/V, at the end of the mem-
ber where flexural yielding is expected, to the depth h of the cross-section within the
plane of bending. Indeed, even within the framework of linear elasticity, the ratio of
the maximum normal stress parallel to the member axis, σ x,max = M/W, to the maxi-
mum value of the shear stress, τ xy,max = 1.5V/A, in a rectangular cross-section under
uniaxial bending and shear, is equal to: σx,max

τxy,max
= 4 M

V h . So, even in the context of lin-
ear elasticity, the lower the shear span ratio, Ls/h, the more important are the shear
stresses vis-à-vis the normal ones.

Beams, columns and slender walls commonly have values of shear span ratio
above (about) 2.5. For such values of Ls/h the mechanisms of force transfer by flex-
ure (i.e. through forces and stresses parallel to the member axis) or shear (i.e. via
forces or stresses at right angles to the member axis) may be considered as practi-
cally uncoupled and independent. If Ls/h is less than (about) 2.5, as in squat walls or
columns and in short beams, these two mechanisms of force transfer tend to merge,
as the shear span itself becomes a two-dimensional element. If the member is still
considered for convenience as one-dimensional, the merger of the two force trans-
fer mechanisms is reflected in a reduction of the moment resistance due to the high
shear force and of the shear capacity due to the bending moment.

In members with Ls/h above (about) 2.5, the two practically independent mecha-
nisms of force transfer may be considered to act in series along the shear span, Ls,
in the sense that:

– internal forces need to be safely transferred by both mechanisms and failure of
one of the two precipitates failure of the member; and

– the overall deformations of the member are the sum of the individual (elastic or
inelastic) deformations of the two mechanisms.

As a matter of fact, capacity design of members in shear (see Section 1.3.6) is
based on the concept that these two mechanisms act in series, so that the overall
inelastic deformations and the deformation capacity of the member can be engi-
neered to come from the ductile flexural mechanism alone.

To the extent that the above mechanisms of force transfer require development
of (tensile) stresses in reinforcing bars, they require also transfer of forces from the
bars to the concrete and vice-versa through bond. Force transfer by bond is normally
considered as part of the afore-mentioned two main force transfer mechanisms,
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if it takes place within the shear span. It should be taken, though, as a separate
force transfer mechanism in series with the other two, if it takes place along that
part of the longitudinal bars extending beyond the ends of the shear span (notably
into the joints with other elements). So, for the shear span of a member, Ls, a
series system of the following force transfer mechanisms may be considered to
develop:

i. the flexural mechanism within the shear span
ii. the shear mechanism, again within the shear span; and

iii. the development of the (mainly tensile) forces in the longitudinal reinforcement
through bond beyond the end of the shear span.

The overall force capacity of the member is governed by the weakest of these
three mechanisms, while the overall deformation is the sum of those of the individ-
ual ones.

In members with Ls/h below (about) 2.5, it is understood that mechanisms (i) and
(ii) merge into one.

The concluding remarks of Section 3.1.4 imply that the design of a member and
the detailing of its reinforcement within the member and beyond (i.e., in its anchor-
age zone outside the shear span), should ensure that mechanisms (ii) and (iii) will
work in their elastic range, by designing mechanism (i) to have lower force capacity
than the other two.

3.2.2 Flexural Behaviour at the Cross-Sectional Level

3.2.2.1 Physical Meaning and Importance of Curvature in Concrete Members

There is experimental evidence that the Navier-Bernoulli plane section hypothesis
can be applied as a rough approximation to slender concrete members during prac-
tically all ranges of flexural behaviour: till and beyond concrete cracking, towards
yielding of the reinforcement and even further, almost up to the ultimate deforma-
tion of the member. The plane-section hypothesis lends itself to a very convenient
description of the flexural behaviour at the cross-sectional level through the rela-
tion of moment (M) to curvature (ϕ). It allows relating the normal strain ε to the
distance y from the neutral axis as ε = ϕy. Therefore, the strain of the extreme com-
pression fibres is: εc = ϕx, where x = ξd is the neutral axis depth; the strain of the
tension reinforcement is equal to εs1 = ϕ(d–x) = ϕ(1–ξ )d, while that of the com-
pression reinforcement at distance d1 from the extreme compression fibres is εs2 =
ϕ(x–d1) = ϕ(ξ–d1/d)d. Note that the curvature ϕ is the conjugate of the moment M,
in the sense that the integral of Mdϕ gives the flexural deformation energy per unit
length of the member.

The flexural behaviour of concrete members is commonly described in M–ϕ
terms, because for monotonic loading with constant axial force N the M–ϕ curve
can be easily established by calculation, even up to ultimate deformation. For given
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geometry of the cross-section and amount and layout of the longitudinal reinforce-
ment and for known material σ -ε laws, this is done in a stepwise manner:

– For a value of ϕ, the value of the neutral axis depth x is assumed, the strain
distribution across the section is derived as ε= ϕy (with y measured from the trial
location of the neutral axis) and the corresponding stress distribution is derived
from the material σ -ε laws. Force equilibrium in the axial direction, N =∫

σdA,
is checked and the value of x is revised, with calculations repeated until force
equilibrium is satisfied.

– The value of M corresponding to this value of ϕ (and N) is computed from
moment equilibrium: M =∫

σycgdA, where ycg is the distance from the centroid
of the section to which the value of M refers.

– For the next value of ϕ the calculations are repeated, starting the iterations with a
trial value of x equal to the one for which convergence to the value of N has been
achieved in the previous step.

This approach can be used to construct cyclic M–ϕ relations for a given history of
imposed curvatures, provided that the complete cyclic σ -ε relations of the materials
are known, including the rules applying after reversal of loading from any (σ , ε)
point.

Owing to its computational convenience, curvature is an appealing and very
popular measure of flexural deformations. However, in concrete members loaded
beyond cracking, the curvature loses its physical meaning. The reason is that con-
crete cracking, and later on cover spalling, bar buckling and concrete crushing, are
all of discrete nature. For this reason, in concrete members curvature is commonly
defined – and experimentally measured – as the relative angle of rotation Δθ of two
neighbouring sections, divided by their distance, Δx. This distance is not infinitesi-
mal but finite and should be of the order of:

– the typical distance of two adjacent flexural cracks, if the behaviour prior to yield-
ing is of interest, or

– the length over which concrete is expected to spall or crush and reinforcing bars
may buckle or even break.

The resulting value of ϕ = Δθ /Δx is a mean curvature that corresponds to the
mean moment within Δx. In experiments, values of Δx in the range of h/2–h are
commonly selected.

3.2.2.2 Moment-Curvature Relation up to Yielding Under Uniaxial Bending
with Axial Force

Cross-Sections with Rectangular Compression Zone

Until concrete cracks the M–ϕ relation is linear, with slope M/ϕ equal to the rigid-
ity, EcIt, of the uncracked transformed section, i.e. of a concrete section in which
any reinforcing bar of cross-sectional area As,i has been replaced by an equiv-
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alent concrete area, αAs,i, where α = Es/Ec is the ratio of Moduli of the two
materials. A flexural crack forms at the cracking moment Mcr (which is equal to Mcr

= (fctm+N/At)It/yt, where N is the axial force – positive for compression – At is the
cross-sectional area of the transformed section and yt the distance of the extreme
tension fibres from the centroid). The rigidity of the cross-section drops abruptly
then, remaining practically constant until the section finally yields.

The members of concrete buildings typically have rectangular, T-, L-, H- or U-
section (in beams monolithically connected with the slab, or in walls or columns
with non-rectangular section). If the compression zone of a non-rectangular section
falls within a single rectangular part of the section, the compression zone is rectan-
gular. This is the case considered here. The next section addresses cases with a T-,
L- or U-shaped compression zone.

If section yielding is identified with yielding of the tension steel, the yield
curvature is:

ϕy = fyL

Es
(
1 − ξy

)
d

(3.33a)

with fyL denoting the yield stress of the longitudinal bars and ξ y the neutral axis
depth at yielding (normalised to the section effective depth, d), given by:

ξy = (
α2 A2 + 2αB

)1/2 − αA (3.34)

in which α = Es/Ec denotes the ratio of elastic moduli (steel-to-concrete) and A, B
are given from Eqs. (3.35a) (Panagiotakos and Fardis 2001a):

A = ρ1 + ρ2 + ρν + N

bd fy
, B = ρ1 + ρ2δ1 + ρν (1 + δ1)

2
+ N

bd fy
(3.35a)

where ρ1 and ρ2 are the ratios of the tension and compression reinforcement and
ρv is the ratio of “web” reinforcement (i.e. of the reinforcement which is – almost
– uniformly distributed between the tension and the compression steel). The area of
any diagonal bars, times the cosine of their angle with respect to the member axis, is
added to the reinforcement area included in ρ1 and ρ2. All steel ratios are normalised
to bd. Further in Eq. (3.35a), b is the width of the compression zone, N the axial load
(with compression taken as positive) and δ1 = d1/d, where d1 is the distance of the
centre of the compression reinforcement from the extreme compression fibres.

Sometimes members with high axial load ratio, ν = N/Acfc, exhibit apparent
yielding as a distinct downwards curving of the moment-curvature diagram of the
end section, owing to significant nonlinearity of the concrete in compression before
the tension steel yields. A simple way to treat such apparent yielding is by iden-
tifying it with exceedance of a certain strain at the extreme compression fibres,
while still considering both steel and concrete as linear-elastic till that point. The
test results on members yielding under high axial load ratio suggest the following
value for this “elastic strain limit” (Panagiotakos and Fardis 2001a):
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εc ≈ 1.8 fc

Ec
(3.36)

Then apparent yielding of the member takes place at a curvature:

ϕy = εc

ξyd
≈ 1.8 fc

Ecξyd
(3.33b)

where the neutral axis depth at yielding, ξ y (again normalised to the section effective
depth, d), is still given by Eq. (3.34), but this time with A, B from Eqs. (3.35b):

A = ρ1+ρ2+ρν− N

εc Esbd
≈ ρ1+ρ2+ρν− N

1.8α bd fc
, B = ρ1+ρ2δ1+ρν (1 + δ1)

2
(3.35b)

The lower of the two ϕy values from Eqs. (3.33a) or (3.33b) is the yield curva-
ture. Then the yield moment, My, can be computed from equilibrium of the (plane)
section as:

My

bd3
= ϕy

{
Ec

ξ 2
y

2

(
1 + δ1

2
− ξy

3

)
+ Es (1 − δ1)

2

[(
1 − ξy

)
ρ1 + (

ξy − δ1
)
ρ2

+ ρν

6
(1 − δ1)

]}
(3.37)

It is noted that, by the time a strong earthquake shakes a building, practically
every end section of its beams, columns or walls are already cracked, owing to
the gravity loads combined with stresses due to the restrained shrinkage or thermal
strains or other imposed deformations. Normally such previous stresses are not suffi-
cient to cause cracking of columns and walls having significant axial load. However,
the construction joint at the base of these members in each storey and often at the
top as well (at the beam soffit) have little cohesion and will readily open in an earth-
quake. So, concrete members may be considered as already cracked at the time of
the earthquake and their M –ϕ diagram may be taken as linear up to yielding.

Sections with T Compression Zone

T-, L-, H-, U- or hollow rectangular sections are considered here to have a com-
pression flange with constant width and thickness, b and t, respectively, and total
thickness of the webs bw. The bending moment is about an axis parallel to the flange
and induces compression in it. Equations (3.34) and (3.35) may still be applied, but
if the outcome of Eq. (3.34) (significantly) exceeds the ratio of the flange thickness
to the effective depth: ξ y > t/d, the neutral axis falls in the web and the compres-
sion zone has T-, L- or U-shape. The neutral axis depth and the moment at yielding



3.2 Concrete Members 181

may then be obtained from an extension of the analysis in the previous sub-section
Cross-Sections with Rectangular Compression Zone, under the same assumptions
and yield criteria. The tension, the compression and the web reinforcement are again
normalised to bd, to give ratios ρ1, ρ2 and ρv, respectively. The counterparts of
Eqs. (3.35) are (Biskinis 2007, Biskinis and Fardis 2007):

– For section yielding because of yielding of the tension steel:

A = b

bw

(
ρ1 + ρ2 + ρν + N

bd fy

)
+ 1

α

t

d

(
b

bw
− 1

)
,

B = b

bw

(
ρ1 + ρ2δ1 + 0.5ρν (1 + δ1) + N

bd fy

)
+ 1

2α

(
t

d

)2 ( b

bw
− 1

)
(3.38a)

– For section yielding when the strain limit of Eq. (3.36) is reached at the extreme
compression fibres:

A = b

bw

(
ρ1 + ρ2 + ρν − N

εc Esbd

)
+ 1

α

t

d

(
b

bw
− 1

)
,

B = b

bw
(ρ1 + ρ2δ1 + 0.5ρν (1 + δ1)) + 1

2α

(
t

d

)2 ( b

bw
− 1

) (3.38b)

Equations (3.33) and (3.34) still apply, but the yield moment should be computed
from the following counterpart of Eq. (3.37) (Biskinis 2007, Biskinis and Fardis
2007):

My

bd3
= ϕy

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ec

[
ξ 2

y

2

(
1 + δ1

2
− ξy

3

)
bw

b
+
(

1 − bw

b

)(
ξy − t

2d

)(
1 − t

2d

)
t

2d

]
+

Es (1 − δ1)

2

[(
1 − ξy

)
ρ1 + (

ξy − δ1
)
ρ2 + ρV

6
(1 − δ1)

]
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.39)

Note that Eqs. (3.38) and (3.39) degenerate into Eqs. (3.35) and (3.37) respec-
tively, if bw equals b.

Comparison with Experimental Results and Empirical Expressions
for the Curvature

The outcome of Eqs. (3.37) and (3.39), with ϕy computed according to the two
sub-sections above: Cross-Sections with Rectangular Compression Zone or Sec-
tions with T Compression Zone, has been compared in Biskinis (2007) to the
“experimental yield moment”, estimated as the moment at the corner of a bilin-
ear M–θ (moment-chord rotation) curve fitted to the envelope of the measured M–θ
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hysteresis loops, taking into account P–Δ effects. The data come from tests of about
2050 beam/columns, 125 rectangular walls or 155 members with T-, H-, U- or
hollow rectangular section, all with shear span ratio and reinforcement such that
there were no flexure-shear interaction effects (see Section 3.2.5). The “experimen-
tal yield moment” exceeds the prediction of Eqs. (3.37) and (3.39) by an average
factor of: 1.025, 1.015 or 1.075 for beams/columns, rectangular walls or members
with T-, U- or hollow rectangular section, respectively (Biskinis 2007). The reason
for the difference is that the corner of a bilinear M–θ curve that envelops the mea-
sured hysteresis loops expresses global yielding of the member and hence is slightly
past the point where the extreme tension steel or compression fibres of the end sec-
tion “yield”. The factor of 1.025, 1.015 or 1.075 should be applied, as correction
factor, also to the value of ϕy obtained from Eqs. (3.33) for beams/columns, rect-
angular walls or members with T-, U- or hollow rectangular section, respectively.
The coefficient of variation of the test-to-prediction ratio for My is equal to 16.3,
14.8 and 12.6% for beams/columns, rectangular walls or members with T-, U- or
hollow rectangular section, respectively (Biskinis 2007). Test-to-test variability and
natural scatter of material properties (e.g., of the yield stress of specimen rebars
with respect to reported values from few coupons, or of the concrete strength rela-
tive to the reported mean values from test cylinders or cubes, etc.) or of geometric
parameters (e.g., of the effective depth to the tension or compression reinforcement,
etc.) correspond to a coefficient of variation of experimental-to-predicted My values
of about 5% (Biskinis 2007). The rest of the scatter is due to model uncertainty.
Assuming statistical independence, the corresponding coefficient of variation of the
test-to-prediction ratio for My is about equal to the values quoted above reduced by
just 1%.

The comparison above refers to members with ribbed bars. Bond along smooth
(plain) bars may not be sufficient for full mobilisation of their yield strength at
“apparent yielding” at the section of maximum moment. This may explain why the
mean and median of the test-to-prediction ratio in about 40 tests of beam/columns
with such bars is about 0.95.

The literature contains also experimental data on the yield curvature, ϕy, “mea-
sured” as relative rotation between the section of maximum moment and a nearby
one, divided by the distance between the two sections. In some of them measured
relative rotations include also the effect of reinforcement pull-out from its anchorage
zone beyond the section of maximum moment. Because:

– the “experimental yield moment”, My,exp, is established more accurately in a test
than the “measured” yield curvature, and

– the relation between ϕy and My, Eqs. (3.37) and (3.39), is well established, as
based on equilibrium and plane section analysis,

it is preferable to consider as “experimental yield curvature”, ϕy,exp, the value
derived from the “experimental yield moment”, My,exp, by inverting Eq. (3.37) or
(3.39). The theoretical yield curvature from Eqs. (3.33), (3.34), (3.35) and (3.38),
times the correction factor of 1.025, 1.015, or 1.075 for beams/columns, rectangular
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walls or members with T-, U- or hollow rectangular section, respectively, may be
considered to predict the ϕy,exp with a median test-to-prediction ratio of 1.0 and a
coefficient of variation equal to that of the test-to-prediction ratio for My, i.e. 12.5–
16%.

The following expressions have also been fitted to ϕy,exp (Biskinis 2007):

– for beams or columns:

ϕy ≈ 1.54 fyL

Esd
(3.40a)

– for rectangular walls:

ϕy ≈ 1.34 fyL

Esd
(3.40b)

– for T-, U- or hollow rectangular sections:

ϕy ≈ 1.47 fyL

Esd
(3.40c)

or alternatively:

– for beams or columns:

ϕy ≈ 1.75 fyL

Esh
(3.41a)

– for rectangular walls:

ϕy ≈ 1.44 fyL

Esh
(3.41b)

– for T-, U- or hollow rectangular sections:

ϕy ≈ 1.57 fyL

Esh
(3.41c)

Being empirical, Eqs. (3.40) and (3.41) predict ϕy,exp without any bias (i.e., with
median value of 1.0 for the ratio test-to-prediction). However, as important param-
eters (e.g., the axial load level and the ratios and layout of longitudinal reinforce-
ment) are neglected, these expressions give a larger coefficient of variation of the
test-to-prediction ratio than Eqs. (3.33) (3.34), (3.35) and (3.38): 17.5, 18.4 and
16.2% for Eqs. (3.40a), (3.40b) and (3.40c), respectively, or 29.2, 17.9 and 17.9%
for Eqs. (3.41a), (3.41b) and (3.41c) (Biskinis 2007).
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3.2.2.3 Fixed-End Rotation Due to Bar Pull-Out from the Anchorage Zone
Beyond the Section of Maximum Moment – Value at Yielding

If there is complete symmetry of the member and its loading with respect to the
section of maximum moment (as at mid-span of a beam subjected to symmetric
loading), or if the longitudinal reinforcement is anchored by welding right next to
this cross-section, there is no slippage (pull-out) of the longitudinal reinforcement
from the region beyond the section of maximum moment. However, such slippage
takes place from the anchorage of longitudinal bars within a joint or footing where
the member frames, contributing to the transverse deflections of the entire shear
span by a rigid-body rotation, θ slip. The effect of this rotation is included in the
measurement of transverse deflections and of chord-rotations of a test specimen
with respect to the base or the joint into which it frames.

If s denotes the slippage of the tension reinforcement from its anchorage beyond
the section of maximum moment, θ slip is equal to θ slip= s/(1–ξ )d, where ξ is the
neutral axis depth, normalised to the effective depth, d. The value of s is equal to the
sum of:

– the slip of the bar with respect to the surrounding concrete at the far end of
its straight embedment length (which is non-zero only if there is a hook, bend
or anchor plate at that end, in which case the slip there is equal to the local
deformation of the concrete due to the contact pressure under the hook, bend or
anchor plate); plus

– the elongation of the bar between the far end of its straight embedment length
and the section of maximum moment of the member.

Note that the value of M at the section of maximum moment is roughly pro-
portional to the force in the tension reinforcement and that this force is the resul-
tant of bond stresses along the anchorage length. So, the M–θ slip relation reflects
the bond-slip behaviour with its strongly pinched shape of the hysteresis loops.
To the extent that the total chord-rotation θ is due to θ slip, the apparent flexibility
of the member increases and the shape of the overall M–θ loops includes certain
pinching.

Fixed-end rotation due to bar pull-out equals the slip from the anchorage zone
divided by the depth of the tension zone, (1–ξ )d (Fig. 3.24). Assuming that bond
stresses are uniform over a length lb of the tension bars beyond the end section, the
stress increases linearly along lb from zero at the end of the bar to the bar elastic steel
stress at the end section of the member, σ s. Bar slippage from its anchorage equals
0.5σ slb/Es. The ratio σ s/Es to (1–ξ )d is the curvature, ϕ. The length lb is proportional
to the force in the bar, Asσ s, divided by its perimeter, πdb (i.e. to dbLσ s/4 where dbL

is the mean tension bar diameter) and inversely proportional to bond strength, i.e.,
in good approximation, to

√
fc. Setting at yielding of the end section: ϕ = ϕy, taking

the mean bond stress in MPa along lb equal to fc(MPa) (which is about 50% or
40% of the bond stress corresponding to a slip equal to s = 0.6 mm of about 2

√
fc in

unconfined or confined concrete, respectively, for “good” bond conditions according
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Fig. 3.24 Fixed-end rotation, θ slip, due to slippage of longitudinal bars from their anchorage within
a joint in which the member frames

to CEB (1991)) and setting for simplicity σ s = fyL (even when ϕy is obtained from
Eq. (3.33b)), the “fixed-end rotation” of the end section at yielding is:

θy,sli p = ϕydbL fyL

8
√

fc
( fyL and fc in MPa) (3.42)

Equation (3.42) has been calibrated to about 160 cases in the literature where cur-
vature was measured as relative rotation between the section of maximum moment
and a nearby one, divided by the distance between the two sections, including the
effect of reinforcement pull-out from its anchorage zone beyond the section of max-
imum moment (including a few cases where the rigid-body rotation due to bar pull-
out, θ slip, was directly measured). The ratio of the (experimental) yield curvature
from the measured relative rotations including the effect of pull-out from the speci-
men base, to the theoretical one from Eqs. (3.33) (3.34), (3.35) and (3.38) times the
correction factor of 1.025, 1.015 or 1.075, plus the value from Eq. (3.42) divided by
the gauge length over which relative rotations are measured, does not exhibit any
systematic effect of the gauge length in these 160 cases and has a median value of
1.00 and a coefficient of variation of 33.9% (Biskinis 2007).

3.2.2.4 Ultimate Curvature of Sections with Rectangular Compression Zone
Under Uniaxial Bending with Axial Force

Definitions and Assumptions

The ultimate curvature ϕu of a section is commonly (and conventionally) identified
with a distinct change in the pattern of the moment-curvature response:
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– In monotonic loading, with a noticeable drop of the moment resistance after the
peak (at least 20% of the maximum resistance).

– In cycling loading, with an abrupt and distinct reduction of the reloading slope,
or of the area of the hysteresis loops, or of the peak moment of the cycle, com-
pared to those of the preceding cycle(s). Such abrupt degradation phenomena
are typically associated with a drop in the maximum possible resisting moment
of at least 20% of the maximum ever resisting moment. Whenever such abrupt
and distinct degradation phenomena cannot be identified, the conventional rule
of a maximum possible resisting moment less than 80% of the maximum ever
moment resistance is used to define the ultimate deformation. Section 3.2.2.7
discusses in more detail this conventional definition of ultimate deformation.

The calculation of ϕu can be based on a plane section analysis but with nonlinear
σ -ε laws, described below under (i) and (ii).

A section will reach its ultimate condition under increasing deformations when
one of the following takes place:

a. The tension reinforcement reaches its ultimate elongation, εsu, and ruptures. This
gives an ultimate curvature equal to:

ϕsu = εsu

(1 − ξsu) d
(3.43)

where ξ su is the neutral axis depth (normalised to d) when the ultimate curvature
of the section is attained due to steel rupture.6 This case is the subject of the sub-
section below titled Failure of the Full Section Due to Rupture of Tension Rein-
forcement Before Spalling of the Concrete Cover.

b. The compression zone disintegrates and sheds (most of) its compressive force.
This takes place when the concrete of the extreme compression fibres reaches its
ultimate strain, εcu, giving an ultimate curvature of:

ϕcu = εcu

ξcud
(3.44)

This case is dealt with in the sub-section below on Curvature at Spalling of the
Concrete Cover.

Depending on:

– the value of the axial load on the section,
– the amount and location of longitudinal bars, and
– the confinement of the compression zone by transverse reinforcement, etc.,
– failure mode (a) or (b) may take place either:

6Equation (3.43) has already appeared in Section 3.1.1.4 as Eq. (3.1).
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1. before, or at spalling of the unconfined concrete cover, i.e. at the level of
the full section (sub-sections Failure of the Full Section Due to Rupture of
Tension Reinforcement Before Spalling of the Concrete Cover and Curvature
at Spalling of the Concrete Cover), or

2. in the confined core, after spalling of the unconfined concrete cover (sub-
section Ultimate Curvature of the Confined Core, After Spalling of the Cover);
then Eqs. (3.43) and (3.44) are applied with: the effective depth of the full
section, d, replaced by that of the confined core, dc; the neutral axis depth, ξ ,
referring to the confined core and normalised to dc; and the ultimate strain of
confined concrete, εcu

∗, used in Eq. (3.44) in lieu of εcu.

The following σ -ε laws of the materials are adopted here:

1. Unconfined concrete has a parabolic σ -ε law up to the ultimate strength of fc and
the corresponding strain, εco. Beyond that point the σ -ε law is horizontal until a
strain εc≤ εcu.

7 Then the compression zone contributes to the axial compressive
force with a force equal to ξ (bdfc)(1–εco/3εc).

2. The σ -ε law of reinforcing steel is elastic-perfectly plastic at relatively low
strains, as those at section ultimate conditions due to crushing of the concrete
(failure mode (b) above). At the large steel strains accompanying section failure
due to steel rupture (failure mode (a)), the steel is considered to strain-harden
after the yield plateau at the yield stress fy. Strain-hardening is linear, starting
from the yield stress fy at a strain εsh, till the ultimate strength ft of steel at an
elongation of εsu. The σ -ε parameters (fy, εy = fy/Es, εsh, ft, εsu) of tension,
compression and web reinforcement are indexed by 1, 2 or v, respectively.

The ultimate curvature of sections with rectangular compression zone is com-
puted according to the multi-step procedure of sub-sections Failure of the Full Sec-
tion Due to Rupture of Tension Reinforcement Before Spalling of the Concrete Cover,
Curvature at Spalling of the Concrete Cover, Ultimate Curvature of the Confined
Core, After Spalling of the Cover and Flow Charts 3.1 and 3.2. Symbols used in the
analysis are:

– ν = N/bdfc: axial load ratio, positive for compression;
– ω1 = ρ1fy1/fc, ω2 = ρ2fy2/fc, ωv = ρvfyv/fc: mechanical reinforcement ratios of

tension, compression and web reinforcement, respectively, with ρ1, ρ2, ρv nor-
malised to bd;

– δ1 = d1/d : the distance of compression reinforcement from the extreme com-
pression fibres, (normalised to d).

7This is the σ -ε law used in CEN (2004b) and CEB (1991) for the calculation of the resistance of
cross-sections.
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Flow Chart 3.1 Calculation of ultimate curvature for the full section before spalling of the
concrete cover (LHS: left-hand-side, RHS: right-hand-side)
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Flow Chart 3.2 Calculation of ultimate curvature for the confined core of the section after spalling
of the concrete cover

Section 3.2.2.4 applies also to sections with more than one rectangular parts in
two orthogonal directions, with the width b taken as that of the section at the extreme
compression fibres, provided that the so-computed depth x = ξd of the compression
zone does not exceed the other dimension (depth) of the rectangular part to which b
belongs.
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Failure of the Full Section Due to Rupture of Tension Reinforcement Before
Spalling of the Concrete Cover

Failure of the full section by rupture of the tension reinforcement at an elongation
of εsu takes place before the extreme fibres of the concrete cover reach the crushing
strain of unconfined concrete, εcu, if the neutral axis depth (normalised to d) ξ is:
ξ < εcu/(εcu+εsu). Such a failure may also occur before yielding of the compression
reinforcement, if ξ satisfies the inequality: ξ < (εy2+εsuδ1)/(εy2+εsu). So, the full
section may fail by steel rupture after yielding of the compression reinforcement, if
the distance of the compression reinforcement from the extreme compression fibres,
δ1 = d1/d (normalised to d), meets the condition:

δ1 ≤ εcu − εy2

εcu + εsu
(3.45)

If Eq. (3.45) is satisfied and the axial load ratio, ν, fulfills the inequality:

δ1εsu + εy2 − (1 − δ1) εco
3

εsu1 + εy2
+ ω2 − ω1

ft1

fy1
− ωv

εsu1 + εy2[
εsu1 − εy2 + 1

2
(εsu1 − εshv)

(
1 + ftv

fyv

)]
≡ νs,y2 ≤ ν ≤

νs,c ≡ εcu − εco
3

εcu + εsu1
+ ω2 − ω1

ft1

fy1
− ωv

(1 − δ1) (εsu1 + εcu)[
δ1 (εsu1 + εcu) − (εsu1 − εcu) + 1

2
(εsu1 − εshv)

(
1 + ftv

fyv

)]
(3.46)

failure of the full section by rupture of the tension reinforcement takes place with the
compression reinforcement already beyond yielding. Then, plane-sections analysis
gives the following value of ξ su to be used in Eq. (3.43):

ξsu ≈
(1 − δ1)

(
ν + ω1

ft1

fy1
− ω2 + εco

3εsu

)
+
(
1 + δ1 + 1

2

(
1 − εshv

εsu1

) (
1 + ftv

fyv

))
ωv

(1 − δ1)
(
1 + εco

3εsu1

)
+
(
2 + 1

2

(
1 − εshv

εsu1

) (
1 + ftv

fyv

))
ωv

(3.47)

If the condition of Eq. (3.45) is met, but the axial load ratio, ν, is less than the
limit value νs,y2 defined at the left-hand-side (LHS) of Eq. (3.46), then the full sec-
tion fails by steel rupture not only before spalling of the concrete cover but also
before the compression reinforcement yields. In that case, the value of ξ su for use in
Eq. (3.43) is the positive root of the equation:
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[
1 + εco

3εsu
+ ωv

2(1 − δ1)

(
1 + ftv

fyv

(
1 − εshv

εsu1

)
+ εshv − 3εyv

εsu1
− εsu1

εyv

)]
ξ 2

−
[
1 + ν + 2εco
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+ ω1

ft1
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+ ω2

εsu1
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+ ων
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)
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− δ1
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3εsu
+ ω1

ftv
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+ ω2δ1

εsu

εy2

+ ων

2(1 − δ1)

(
1 + ftv

fyv

(
1 − εshv
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)
+ εshv − 3εyv
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− δ2

1
εsu1

εyv

)]
= 0

(3.48)

If Eq. (3.45) is met and the axial load ratio, ν, exceeds the limit value νs,c defined
at the right-hand-side (RHS) of Eq. (3.46), spalling of the concrete cover when its
outermost fibres reach the crushing strain of unconfined concrete, εcu, will precede
rupture of the tension reinforcement, but will take place with the compression rein-
forcement already beyond yielding. Then the procedure in sub-section Curvature at
Spalling of the Concrete Cover should be followed.

If the condition of Eq. (3.45) is not met, the limit value νs,y2 defined at the left-
hand-side of Eq. (3.46) is greater than the limit value νs,c given by the right-hand-
side of that inequality. The implication is that the compression reinforcement will
already have yielded, when the tension reinforcement ruptures before spalling of
the concrete cover. Then, if the axial load ratio, ν, is less than the limit value νs,c at
the left-hand-side of Eq. (3.46), the value of ξ su to be used in Eq. (3.43) is still the
positive root of Eq. (3.48). If, by contrast, the axial load ratio, ν, exceeds the limit
value νs,c, the concrete cover will spall before the tension reinforcement ruptures,
but with the compression reinforcement already beyond yielding. The procedure
in sub-section Curvature at Spalling of the Concrete Cover should be followed in
that case.

Curvature at Spalling of the Concrete Cover

When the outermost fibres reach the crushing strain of unconfined concrete, εcu,
and the concrete cover spalls, the moment resistance of the section drops – be it
temporarily. To see what happens after cover spalling, the following moment resis-
tances should be computed:

– the moment resistance of the full unspalled section, neglecting any effect of con-
finement on the concrete properties, MRc,

– the moment resistance of the confined core of the section (conventionally defined
to the centreline of the perimeter stirrup), after spalling of the concrete cover,
MRo.

The moment capacity of the confined core, MRo, is determined on the basis of
the strength fc∗ and ultimate strain εcu

∗ of confined concrete and of the dimensions
bc, dc, dc1 of the confined core; dc and dc1 are obtained by subtracting from d or d1,
respectively, the sum of the cover and of half the diameter of transverse reinforce-
ment; bc is obtained by subtracting twice this sum from b.
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If : MRo ≤ 0.8MRc (3.49a)

spalling of the concrete cover can be taken as the ultimate condition of the section.
Then, the ultimate curvature is given by Eq. (3.44), where the value of the neutral
axis depth, ξ cu (normalised to d), may be determined from Eqs. (3.52), (3.53), (3.54)
or (3.56).

If ξ < εcu/(εcu+εy1), then the tension steel has already yielded by the
time the extreme compression fibres reach the crushing strain of unconfined
concrete εcu.

When εcu is reached at the outermost compression fibres, the compression steel
will still be elastic if ξ < δ1εcu/(εcu–εy2). By contrast, if ξ > δ1εcu/(εcu–εy2) the
compression steel will be beyond yielding at crushing of the extreme compres-
sion fibres. It follows from this and the previous paragraph that a range of ξ val-
ues exists for which both the tension and the compression reinforcement have
yielded before εcu is reached at the extreme compression fibres, provided that εcu/
(εcu+εy1) > δ1εcu/(εcu–εy2), i.e. if:

δ1 ≤ εcu − εy2

εcu + εy1
(3.50a)

If Eq. (3.50a) is not met, there can never be a range of ξ values for which both
the tension and the compression reinforcement yield before the crushing strain of
concrete is reached at the outermost compression fibres. Instead, a range of ξ values
exists where both the tension and the compression reinforcement will still be elastic
when the extreme compression fibres reach a strain of εcu. This latter situation does
not lend itself to ductile behaviour of the cross section. In the sequel, two distinct
cases are considered:

i. Equation (3.50a) is satisfied, or
ii. The following condition is fulfilled instead:

δ1 >
εcu − εy2

εcu + εy1
(3.50b)

Case i is considered first, as more common in practice (and more desirable too).
Values of ξ between εcu/(εcu+εy1) and δ1εcu/(εcu–εy2) correspond to the following

range of values for the axial load ratio, ν:

ω2 − ω1 + ωv

1 − δ1

(
δ1
εcu + εy2

εcu − εy2
− 1

)
+ δ1

εcu − εco
3

εcu − εy2
≡ vc,y2 ≤ ν <

νc,y1 ≡ ω2 − ω1 + ωv

1 − δ1

(
εcu − εy1

εcu + εy1
− δ1

)
+ εcu − εco

3

εcu + εy1

(3.51)
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Within this range the value of ξ cu to be used in Eq. (3.44) is:

ξcu = (1 − δ1) (v + ω1 − ω2) + (1 + δ1)ωv

(1 − δ1)
(
1 − εco

3εcu

)
+ 2ωv

(3.52)

For values of ν greater than the limit value νc,y1 defined at the right-hand-side of
Eq. (3.51) the extreme compression fibres reach the crushing strain of concrete, εcu,
after yielding of the compression reinforcement, but with the tension reinforcement
elastic. Then the value of ξ cu to be used in Eq. (3.44) is the positive root of the
equation:

[
1 − εco

3εcu
− ωv

2(1 − δ1)

(
εcu − εyv

)2

εcuεyv

]
ξ 2 +

[
ω2 + ω1

εcu

εy1
− v + ωv

1 − δ1

(
εcu

εyv
− δ1

)]
ξ

−
[
ω1

εy1
+ ωv

2 (1 − δ1) εyv

]
εcu = 0

(3.53)

Finally, if ν is less than the limit value νc,y2 defined at the left-hand-side of
Eq. (3.51), the outermost compression fibres reach the strain εcu after the tension
reinforcement yields, but with the compression reinforcement still elastic. In that
case the value of ξ cu to be used in Eq. (3.44) is the positive root of the equation:

[
1 − εco

3εcu
+ ωv

2(1 − δ1)

(
εcu + εyv

)2

εcuεyv

]
ξ 2 −

[
v + ω1 − ω2

εcu

εy2
+ ων

1 − δ1

(
1 + εcuδ1

εyv

)]
ξ

−
[
ω2

εy2
− ωvδ1

2 (1 − δ1) εyv

]
εcuδ1 = 0

(3.54)

Case ii, where Eq. (3.50b) is fulfilled, is not so desirable. Fortunately it is rare in
practice, as the right-hand-side of Eqs. (3.48) is in the order of 0.15–0.2, implying
that the compression steel is at a distance to the extreme compression fibres of over
15–20% of the section depth, which is uncommon. At any rate, if Eq. (3.50b) is
met, for values of the axial load ratio between νc,y1 and νc,y2, in Eq. (3.55), both the
tension and the compression reinforcement are still elastic by the time the extreme
compression fibres reach the crushing strain of concrete:

ω2

εy2

(
(1 − δ1)εcu − δ1εy1

) − ω1 + ωv

2εyv

(
εcu − 1 + δ1

1 − δ1

)
+ εcu − εco

3

εcu + εy1
≡ νc,y1 ≤ v <

νc,y2 ≡ ω2 − ω1

εy1

(1 − δ1)εcu − εy2

δ1
+ ωv

δ1εyv

(
1 + δ1

1 − δ1
εy2 − εcu

)
+ δ1

εcu − εco
3

εcu − εy2
(3.55)
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Within this range of ν the value of ξ cu to be used in Eq. (3.44) is the positive root
of: [

1 − εco

3εcu

]
ξ 2 −

[
v −

(
ω1

εy1
+ ω2

εy2
+ ων

(1 − δ1)εyv

)
εcu

]
ξ

−
(
ω1

εy1
+ δ1ω2

εy2
+ ων(1 + δ1)

2(1 − δ1)εyv

)
εcu = 0

(3.56)

For values of ν greater than the limit value νc,y2 defined at the right-hand-side
of Eq. (3.55) the extreme compression fibres reach the crushing strain of concrete
after yielding of the compression reinforcement, but with the tension reinforce-
ment still elastic. The value of ξ cu to be used in Eq. (3.44) is the positive root of
Eq. (3.53) above. If, by contrast, ν is less than the limit value νc,y1 defined at the
left-hand-side of Eq. (3.55), the extreme compression fibres reach a strain of εcu

after yielding of the tension reinforcement, but with the compression reinforcement
still elastic. In that case the value of ξ cu to be used in Eq. (3.44) is the positive root
of Eq. (3.54).

The expressions above for ξ (i.e., Eqs. (3.47), (3.48), (3.52), (3.53), (3.54) and
(3.56)) are derived from the equivalence of the normal stress resultant on the sec-
tion to the axial force N. The plane sections hypothesis and the nonlinear σ -ε laws
outlined in points (i) and (ii) at the end of sub-section Definitions and Assumptions
are also used. Equation (3.52) is derived below for illustration, with the tension
reinforcement not considered to go into strain-hardening.

Because the tension and the compression reinforcement are both past yielding,
their joint contribution to the axial compressive force is equal to (As2–As1)fy=(ω2–
ω1)bdfc. For a neutral axis depth equal to ξd the web reinforcement, taken as
uniformly distributed over a length (1–δ1)d between the compression and tension
steel, contributes to the axial compression with a force of [(ωvbdfc)/(1–δ1)][(ξ–
δ1)–(1–ξ )]=(ωvbdfc)(2ξ–1–δ1)/(1–δ1). Equilibrium gives: ν = N

bd fc
= ω2 − ω1 +

ωv(2ξ−1−δ1)
1−δ1

+
(
1 − εco

3εcu

)
ξ , from which Eq. (3.52) is derived.

Ultimate Curvature of the Confined Core, After Spalling of the Cover

If

MRo > 0.8MRc (3.49b)

then the confined core of the section recovers from spalling of the concrete shell
around it. It ultimately fails either by rupture of the tension reinforcement or by
disintegration of the extreme compression fibres of the core itself.

The analysis in sub-sections Definitions and Assumptions, Failure of the Full
Section Due to Rupture of Tension Reinforcement Before Spalling of the Concrete
Cover and Curvature at Spalling of the Concrete Cover applies for the calculation
of the ultimate curvature of the confined core after spalling of the cover, provided
that:
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– dimensions b, d and d1 are replaced by bc (equal to b minus the diameter
of transverse reinforcement and twice the cover), dc (equal to d minus the
cover and half the diameter of transverse reinforcement) and dc1 (equal to half
the diameter of transverse reinforcement plus half that of longitudinal bars),
respectively;

– N, ρ1, ρ2, ρv are normalised to bcdc, instead of bd, and
– the σ -ε parameters of confined concrete, fc∗, εcu

∗, are used, in lieu of fc, εcu.

Note that dc1 is small compared to d1 above. So, the conditions of Eqs. (3.45)
and (3.50a) are always met in the confined core. Then, only Eqs. (3.46), (3.47),
(3.48), (3.51), (3.52), (3.53) and (3.54) in sub-sections Failure of the Full Section
Due to Rupture of Tension Reinforcement Before Spalling of the Concrete Cover
and Curvature at Spalling of the Concrete Cover are meaningful for the ultimate
curvature of the confined core.

3.2.2.5 Moment Resistance of Concrete Sections with Rectangular
Compression Zone

The moment resistance of the confined core and of the unspalled section, MRo, MRc,
respectively, for use in Eqs. (3.49), may be estimated as uniaxial moment resistances
of concrete sections with rectangular compression zone, through dimensioning tools
(tables, diagrams, analytical expressions or computer codes) available for the Ulti-
mate Limit State of such sections under uniaxial bending with axial force. When
such design tools are utilised, the actual (or expected) value of material strengths
should be used, instead of the design values:

– for reinforcing steel, use fym or fy in lieu of fyd=fyk/γ s;
– for concrete, instead of fcd=fck/γ c, the value fcm or fc should be used before

spalling and the value fcm
∗ or fc∗ for the confined concrete core after spalling

(for MRo); if the design tools used include a reduction factor on fcd due to long
term or other effects, e.g. a reduction factor of 0.85, this factor should be removed
by using the value fc/0.85 or fc∗/0.85 for fcd.

– for the moment corresponding to rupture of the tension reinforcement at the full
section before spalling (and to the ultimate curvature ϕsu), or at the confined core
afterwards (and to ϕsu

∗), the cross-sectional area of tension reinforcement should
be taken equal to As1ft/fy (i.e., ω1 should be multiplied by ft/fy).

As an alternative, the flexural resistance may be calculated analytically, as
described below for MRc (see also Flow Charts 3.1 and 3.2). The value of MRo can
be calculated similarly, using the geometric and strength parameters of the confined
core.

For failure of the section due to rupture of the tension steel (i.e., when the axial
load ratio, ν, is less than the minimum of the limit values νs,y2, νs,c defined in
Eq. (3.46) of sub-section Failure of the Full Section Due to Rupture of Tension
Reinforcement Before Spalling of the Concrete Cover), we consider first the usual
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case when Eq. (3.45) is met. Then, for ν less than the limit value νs,y2 defined at the
left-hand-side of Eq. (3.46), the compression reinforcement is elastic while the ten-
sion reinforcement is at ultimate strength. With ξ given by Eq. (3.48), the moment
resistance of the section is:

MRc

bd2 fc
= (1 − ξ )

[
ξ

2
− εco

3εsu1

(
1

2
− ξ + εco

4εsu1
(1 − ξ )

)]

+ (1 − δ1)

2

(
ω1

ft1

fy1
+ ω2

ξ − δ1

1 − ξ

εsu1

εy2

)

+ ωv

6(1 − δ1)

{[
1 − δ1 + ξ

(
1 − εyv

εsu1

)][
1 + εsu1

εyv

(
ξ − δ1

1 − ξ

)]
[

1 − δ1

2
− (1 − ξ )

εyv

εsu1

]
+
[

2(1 − δ1)

3
−
(

1 − εshv

εsu1

)
(1 − ξ )

]
(

1 − εshv

εsu1

)(
ftv

fyv
− 1

)
(1 − ξ )

}

(3.57)

If, by contrast, ν satisfies Eq. (3.46), the compression reinforcement is beyond
yielding but not yet in strain-hardening. Then, with ξ from Eq. (3.47), the section
moment resistance is:

MRc

bd2 fc
= (1 − ξ )

[
ξ

2
− εco

3εsu1

(
1

2
− ξ + εco

4εsu1
(1 − ξ )

)]

+ (1 − δ1)

2

(
ω1

ft1

fy1
+ ω2

)
+ ωv

1 − δ1

{
(ξ − δ1)(1 − ξ ) − 1

3

(
(1 − ξ ) εyv

εsu1

)2

+
[

(1 − δ1)

4
−
(

1 − εshv

εsu1

)
1 − ξ

6

](
1 − εshv

εsu1

)(
ft1

fy1
− 1

)
(1 − ξ )

}
(3.58)

If Eq. (3.45) is not met, but the axial load ratio, ν, is still less than the limit value
νs,c defined at the right-hand-side of Eq. (3.46), the compression reinforcement is
still elastic while the tension reinforcement is at ultimate strength. Then the moment
resistance of the section is again given by Eq. (3.57), with ξ from Eq. (3.48).

For section failure due to concrete crushing (i.e., for axial load ratio, ν, greater
than the minimum of the limit values νc,y2, νc,y1 defined at the left-hand-side of
Eqs. (3.51) and (3.55), respectively, in sub-section Curvature at Spalling of the
Concrete Cover), we consider first the case of Eq. (3.50a) being met. Then, if ν
is less than the limit value νc,y2 at the left-hand-side of Eq. (3.51), the compression
reinforcement is elastic while the tension reinforcement is beyond yielding but not
yet in strain-hardening. With ξ given by Eq. (3.54), the moment resistance of the
section is:
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MRc

bd2 fc
= ξ

[
1 − ξ

2
− εco

3εcu

(
1

2
− ξ + εco

4εcu
ξ

)]

+ (1 − δ1)

2

(
ω1 + ω2

ξ − δ1

ξ
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+ ωv
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ξ
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(
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(3.59)

If ν satisfies Eq. (3.51), the tension and the compression reinforcement are both
beyond yielding but not in strain-hardening. The moment resistance of the section
is then:

MRc

bd2 fc
= ξ

[
1 − ξ

2
− εco

3εcu

(
1

2
− ξ + εco

4εcu
ξ
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2
+ ων
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(
ξεyv

εcu

)2
]

(3.60)
with ξ given by Eq. (3.52). If, by contrast, ν exceeds the limit value νc,y1 at the right-
hand-side of Eq. (3.51), the tension reinforcement is elastic while the compression
reinforcement is beyond yielding but not in strain-hardening. With ξ from Eq. (3.53)
the moment resistance is:

MRc
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= ξ
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2
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(3.61)

We consider next the rare case when Eq. (3.50b) is met. If ν is less than the
limit value νc,y1 at the left-hand-side of Eq. (3.55), the compression reinforcement is
elastic and the tension reinforcement is beyond yielding but not strain-hardening yet.
The moment resistance of the section is given by Eq. (3.59), with ξ from Eq. (3.54).
If ν satisfies Eq. (3.55), the entire reinforcement of the section is elastic and the
moment resistance is:

MRc

bd2 fc
= ξ

[
1 − ξ

2
− εco

3εcu

(
1

2
− ξ + εco

4εcu
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ω2
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+ ων(1 − δ1)2

12ξ

εcu

εyv

(3.62)

with ξ from Eq. (3.56). If ν exceeds the limit value νc,y2 defined at the right-
hand-side of Eq. (3.55), the tension reinforcement is elastic and the compression
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reinforcement is beyond yielding but not in strain-hardening. The moment resis-
tance of the section is given by Eq. (3.61), with ξ from Eq. (3.53).

Equations (3.57), (3.58), (3.59), (3.60), (3.61) and (3.62) are derived from
moment equilibrium of the normal stresses acting on the section with respect to
its centroid, taken to be at mid-distance between the tension and the compression
reinforcement. The plane section hypothesis and the nonlinear σ -ε laws outlined in
points (i) and (ii) at the end of sub-section Definitions and Assumptions are used
also. As an illustration, the derivation of Eq. (3.60) is given below, with the tension
reinforcement not considered to be in strain-hardening.

The tension and compression longitudinal reinforcement, with mechanical ratios
ω1 and ω2, each at a distance h/2–d1=(d–d1)/2 to the centroid of the section, con-
tribute to its moment resistance a moment of (ω1+ω2)bd2fc(1–δ1)/2. When the
strain of the outermost compression fibres is equal to εcu, the “web” reinforce-
ment, distributed between ω1 and ω2 and having mechanical ratio ων, contributes
to the flexural resistance a moment about the centroid of the section equal to
ωνbd2fc/(1–δ1)[(ξ–δ1)(1–ξ )–(ξ fy/Esεcu)2/3]. With respect to the same point and for
a parabolic-rectangular σ -ε diagram, the compression zone contributes a moment
equal to bd2fcξ [(1–ξ )/2–(1/2–ξ+ξεco/4εcu)(εco/3εcu)]. Adding all three contribu-
tions, Eq. (3.60) is obtained.

3.2.2.6 Flexural Behaviour Until Failure Under Cyclic Loading

Let’s consider the following load history, which is quite commonly part of the load
history applied in experimental studies of the cyclic behaviour of concrete members:

– reversal of loading into unloading at a value of curvature ϕr past flexural yielding;
– continuation of unloading into reloading in the opposite direction, up to a curva-

ture of about –ϕr
8

;

– new unloading from –ϕr towards the original direction of loading, until and past
the peak curvature reached in the previous cycle, ϕr;

– new unloading from a peak curvature greater than ϕr.
– The experimental behaviour is shown in:
– Fig. 3.25 for a rectangular section with symmetric reinforcement and zero axial

load;
– Fig. 3.26 for a rectangular beam with less reinforcement at the bottom (corre-

sponding in Fig. 3.26 to negative moment) than at the top and zero axial load.

Measured curvatures in these two figures do not include the effect of bar pull-out
from the anchorage zone beyond the end section. Figure 3.26 is typical of a frame
beam, which at the face of the column usually has greater top reinforcement than

8Symmetric deflection cycles, i.e. from a deflection δr to –δr; as commonly applied on test speci-
mens, produce almost but not quite symmetric curvature cycles at the member end where yielding
takes place.
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Fig. 3.25 Experimental M-(mean) ϕ curves of symmetrically reinforced member in cyclic bending
(Ma et al. 1976)

at the bottom. In an actual beam the cross-section is not rectangular, but T or L,
with different effective flange width in tension or compression. As pointed out in
Sections 1.3.4 and 2.2.1, in beams integral with the slab the effective flange width
increases with increasing end moment and deformation, especially after the yielding
of the longitudinal bars placed within the width of the web mobilises the strength
and stiffness of the flange and spreads the nonlinearity into the slab further away
from the web.

In both cases the cyclic behaviour exhibits the following features:

1. In the monotonic branch before any unloading (i.e., during primary or virgin
loading) flexural cracking is followed by a gradual softening of the response.
If the reinforcement is concentrated near the extreme tension and compression
fibres of the section, yielding of the tension bars shows up as a rather abrupt
softening of the overall moment-curvature response. After yielding the resisting
moment keeps increasing, initially because the reduction of the neutral axis depth
due to the large post-yield elongation of the tension reinforcement increases the
internal lever arm, and then because strain hardening of the tension bars starts.
When the concrete cover spalls at a compressive strain equal to the εcu-value of
unconfined concrete, the resisting moment drops momentarily. Depending on the
magnitude of its strains, the compression steel will most likely yield at that point
and may not contribute further to the increase of the resisting moment. These
effects are usually more than offset by the increase of the strength and stiffness
of the core concrete effected by the mobilisation of confinement.

2. During unloading from the post-yield branch of the primary loading curve, the
unloading stiffness is initially high, about equal to the ”elastic” (post-cracking)
stiffness. The unloading branch gradually softens, especially as the applied
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(a)

(b)

Fig. 3.26 Experimental M–(mean) ϕ curves of asymmetrically reinforced member in cyclic bend-
ing: (a) next to the member end; (b) a short distance from the member end (Ma et al. 1976)

moment approaches zero. Overall, and throughout the unloading branch until the
horizontal axis, M = 0, the unloading slope is less than the “elastic” secant stiff-
ness to the yield-point, My/ϕy and decreases with increasing value of the peak
curvature where unloading started, ϕr. This reduction is part of the so-called
”stiffness degradation”, which is a characteristic feature of the cyclic flexu-
ral behaviour of concrete members. When the applied moment becomes zero,
there is a significant residual deformation, mainly due to the permanent inelastic
strains locked in the tension bars and to the residual slip between the bars and the
concrete. Owing to this residual slip, at zero applied moment the cracks remain
open.
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3. Right after the applied moment changes sign, the slope (“stiffness”) of the branch
of loading in the opposite direction (“reloading”) considerably decreases. The
reduction in stiffness is due to the fact that, when the applied moment changes
sign, the crack is open throughout the depth of the section, including the (new)
compression side. The reason is that the bars of that side – now in compres-
sion – have previously yielded in tension and have a certain plastic elongation
locked-in. So, the applied moment is resisted only by the force couple of the ten-
sion and compression reinforcement. So long as the steel couple alone resists the
moment, the M–ϕ diagram resembles that of the σ -ε diagram of steel in cyclic
loading, including the Bauschinger effect for yielding in the opposite direction
(cf. Fig. 3.1 in Section 3.1.1.1). Moreover, the slope (tangent stiffness) of the
M–ϕ diagram is considerably less than the slope of unloading to the horizontal
axis. For the crack to close at the (newly) compressed side and for the concrete to
be activated again there, the compression reinforcement needs to develop com-
pressive stresses sufficiently large to suppress its (plastic) tensile strains (or to
buckle). Once this takes place, the crack closes and the slope (tangent stiff-
ness) of the reloading branch increases again, tending to a roughly constant
value, which is maintained until the previous maximum curvature, ϕr, in the
current direction of (re)loading is reached. As a result, the unloading-reloading
branch has an inverted-S shape. If the section is symmetrically reinforced with
all the reinforcement concentrated at the two ends of the section,9 the shape
of unloading-reloading branches resembles an inverted-S for both directions of
loading (cf. Fig. 3.25) The inverted-S shape of one or both unloading-reloading
branches produces hysteresis loops that are “pinched” at the middle. In sec-
tions with asymmetric reinforcement, i.e. with ρ1+ρv > ρ2 as in Fig. 3.26, the
unloading-reloading branch exhibits a clear pinching only when reloading takes
place from a state with the less reinforced side (that with ratio ρ2) in tension
towards one with this reinforcement in compression. Being less than that of the
other side, this reinforcement yields soon in compression, allowing the crack to
close at the compression side. For reloading in the reverse direction, with the
more heavily reinforced side (that with ratio ρ1) going from tension to com-
pression, the reinforcement of the opposite side (with ratio ρ2) is not sufficient
to drive the reinforcement with the large ratio (ρ1) to yielding in compression.
This delays closure of the through-depth crack. As shown in Fig. 3.7, at the
more heavily reinforced side of the section compressive strains are relatively
low and the concrete is not heavily stressed, because the reinforcement there
can resist the full compression force even without yielding. So, in asymmet-
rically reinforced sections, unloading-reloading branches have the shape of an
inverted-S only when reloading takes place in the direction towards the larger

9If a large fraction of the reinforcement is distributed between the top and the bottom of the section,
e.g., along the two sides that are parallel to the plane of bending, as in large columns or walls, most,
if not all, of this reinforcement is normally in tension, because the compression zone is limited to
(much) less than half of the effective section depth. So, the tension reinforcement is always more
than the compression reinforcement and can easily drive it to yielding and beyond.
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moment resistance. Reloading in the reverse direction always takes place at
a lower stiffness, namely that developed by the steel couple alone. This stiff-
ness is the same as the initial reloading stiffness in the reverse direction, before
the concrete is engaged in compression and the tangent stiffness increases. An
external compressive force on the section helps close the crack on the compres-
sion side and reduces the length of the branch exhibiting low stiffness. Large
axial compression does not let the crack remain open throughout the depth.
Then the stiffness along the unloading-reloading branch decreases steadily and
smoothly.
If the continuation of unloading into (re)loading in the reverse direction happens
to be a first-time post-elastic loading in that direction, it may be considered as
virgin loading. The softening that follows the stiffening at the end of the pinch-
ing (due to yielding of the bars at the side currently in tension) is more gradual
than during first loading in the original direction, because the bars now yielding
in tension have in all likelihood yielded in compression previously and exhibit
the Bauschinger effect. The same effect causes the bars on the compression side,
that have previously yielded in tension, to start yielding early and gradually,
contributing to the gradual softening of reloading. After the yielding of both the
tension and the compression bars is complete, the moment-curvature response
in further loading is like primary post-elastic loading in the current loading
direction, as affected by possible spalling of the concrete cover on the newly
compressed side and by strain-hardening of the steel bars on the side newly in
tension.

4. In addition to the degradation of resistance with increasing lateral displace-
ments, which is due to the increased deformations imposed on concrete and steel,
cycling of the deformations per se even at constant amplitude normally causes
degradation of strength with respect to the envelope provided by the primary
loading curve. The sources of this ”strength degradation” are many. First, alter-
nating opening and closing of cracks causes degradation of strength and stiff-
ness of the concrete in compression, because small shear sliding, flaking off or
debris accumulation along a crack prevents its faces from returning to even and
full contact. Second, cyclic deterioration of the bond-slip behaviour along the
bars (cf. Fig. 3.22) gradually increases the crack width and reduces the tension-
stiffening effect (i.e. the activation of the concrete in tension around the bar).
Third, apart from the gradual deterioration with cycling of the shear behaviour
per se (i.e., of aggregate interlock, dowel action, etc.), the transfer of the shear
force by dowel action along open full-depth cracks when the steel couple alone
resists the applied moment, causes concrete splitting along the longitudinal bars
(the “dowels”) and subsequent further bond deterioration and stiffness degra-
dation, or even spalling of the concrete cover and deterioration of both flex-
ural strength and stiffness. Well designed and detailed members exhibit little
degradation of strength with cycling. Moreover, for constant amplitude cycling
of either force or deflection, the deterioration is noticeable between the 1st and
the 2nd cycle but diminishes almost to zero thereafter, leading to very stable hys-
teretic behaviour. Lack of such stabilisation is a sign of imminent failure under
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cyclic loading. Increasing the transverse steel reduces strength degradation with
cycling, as it enhances confinement. However, increasing the longitudinal steel
seems to increase also the degradation of strength and stiffness with cycling,
because the concrete, which is the main source of the degradation, becomes more
critical.

Besides the absence of strong pinching in reloading towards the direction of
the lower moment resistance, the prime difference of the cyclic flexural behaviour
between the cases of symmetric (Fig. 3.25) and asymmetric cross-section and
reinforcement (Fig. 3.26) is in the stiffness and strength exhibited by the enve-
lope (and primary loading) curve in the two directions of bending, positive or
negative.

3.2.2.7 Failure of Members Under Cyclic Flexure

Flexural damage is physically concentrated in the end region of the member and
entails one or more of the following (see Fig. 3.27 for examples):

– spalling of the concrete cover, often extending to disintegration of the concrete
core inside the reinforcement cage;

– buckling of reinforcing bars (especially of the corner ones);
– rupture of one or more reinforcing bars.

Members detailed for earthquake resistance normally do not fail abruptly under
cyclic loading. Their failure in flexure is typically gradual, governed by the pro-
gressive deterioration of the compression zone. Damage starts with spalling of the
cover concrete and normally continues with buckling of the bars that lose their lat-
eral support and finally with disintegration of the core concrete. Lightly reinforced
members may fail suddenly by fracture of one or more tension bars. Such a frac-
ture often takes place at a minute crack in the bar caused by buckling during the
previous half-cycle. The reduction in moment resistance caused by a bar fracture
shows up in the moment-curvature response as an abrupt drop in the moment, often
considered as failure. When there are no such clear signals of failure, the mem-
ber may be considered to have failed if, from a certain point on, the pattern of the
response changes. For example, when, during constant amplitude cycling the peak
force drops disproportionately from one cycle to the next (“strength decay”), com-
pared to previous cycles at the same or smaller deformation amplitude. Another
example is an entire hysteresis loop that tilts or shrinks relative to the previous
ones. The column in Fig. 1.2(b) exhibits both these features during the last cycles
of the response. Such changes in the macroscopic behaviour signify a marked loss
of stiffness, strength or energy dissipation capacity and may be taken to signal fail-
ure. Examples in this chapter include Fig. 3.5(a) and (b) (for reinforcing bars), the
shear failures of specimens No. 1, 3 and 4 in Fig. 3.36(a), the ductile shear failure
in Fig. 3.38(c) and (f) and the subassembly failure in Fig. 3.46(c).
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(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 

Fig. 3.27 Examples of flexural damage or failure in the lab or in the field: (a), (b) horizontal
crack at column top, concrete spalling at the corners, buckling of corner bars; (c) complete loss of
cover, partial disintegration of concrete and buckling of bars in horizontal zone near the column
top; (d) full loss of cover, partial disintegration of concrete and buckling of bars in horizontal zone
just above column base; (e) loss of cover, partial disintegration of concrete core and bar buckling,
with tie opening-up on one side of a column above the base; (f) full disintegration of concrete and
buckling of bars in a lapping region at floor level; (g) through-depth cracking near the support of a
T-beam with extension of the cracks into the slab at the top flange; (h) local crushing of concrete
and bar buckling at the bottom of a T-beam; (i) disintegration of concrete and bar buckling at the
bottom of a T-beam, with through-depth flexural cracks extending into the slab at the top flange
(See also Colour Plate 7 on page 721)
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No matter whether the loss of strength, stiffness or energy dissipation capacity is
abrupt or gradual, a conventional definition of member failure under cyclic loading
is necessary. A definition covering both the abrupt and the gradual change in the
force-deformation response has been proposed in French and Schultz (1991) and
Saatcioglou (1991). According to it, failure is taken to occur when it is not possible
to increase the force resistance above 80% of the maximum resistance attained dur-
ing the test, even though the imposed deformation keeps increasing. In the examples
of Figs. 1.2(b), 3.5(a) and (b), 3.36 (no. 1, 3 and 4), 3.38(c) and (f) and 3.46(c), the
conventional identification of failure with a 20%-drop in post-ultimate resistance
coincides with a rather abrupt change in the cyclic force-deformation response. By
contrast, the column of Fig. 1.2(c), the material behaviour in Figs. 3.3(right), 3.6(b)
and 3.10 and the subassembly in Fig. 3.46(b), exhibit a very gradual deterioration of
peak resistance with cycling and failure can be defined only conventionally (as the
20% drop in post-ultimate resistance).

If the qualitative definition of failure as a change in the hitherto pattern of
behaviour is applied to monotonic loading, then failure may be identified with the
peak force resistance (ultimate strength, see Fig. 1.2(a) and monotonic conclusion
of the tests in Figs. 3.6(a) and (b), 3.7 and 3.36(b) (specimen No. 8)). On the other
hand, identification of failure with inability to increase the force resistance above
80% of its hitherto peak value, coincides with the frequently used convention of
identifying failure under monotonic loading with a force point on the falling branch
of the force-deformation response at 80% of the ultimate strength. In Figs. 1.2(a),
3.6(b) and 3.7, the drop in post-peak resistance by at least 20% is clearly meaningful
as failure.

If the section and the reinforcement are symmetric, flexural damage (in a cyclic
test or in the field during an earthquake) is also nearly symmetric at the two sides
of the section. In an asymmetric cross-section the two sides may experience differ-
ent failure modes under cyclic loading. Failure with the stronger side in tension is
typically gradual, with progressive disintegration of the weaker compression side
and crushing of the concrete there. Failure with the weaker side in tension may be
abrupt, owing to fracture of the steel bars there, possibly after buckling in a previ-
ous half-cycle. Often steel fracture on the weaker side is preceded by a significant
drop in strength (called, conventionally or not, failure) during a half-cycle with the
stronger side in tension. So, under displacement-controlled cyclic load histories,
failure of asymmetric sections typically occurs with the stronger side under tension.

3.2.2.8 Effect of Axial Force on the Cyclic Flexural Behaviour

If the axial load ratio, ν = N/Acfc, is low, zero or negative (tensile) and the com-
pression zone is well confined, repetition of a full cycle between equal and opposite
values of peak curvature produces fairly stable hysteresis loops, with no degradation
of the peak resistance from cycle to cycle.

Some axial compression on the cross-section helps close the cracks in the final
phase of unloading and the first stage of reloading in the reverse direction, by pro-
moting yielding in compression of the bars that have previously yielded in tension



206 3 Concrete Members Under Cyclic Loading

and now go into compression. As a result, never during the loading cycle are the
cracks open through the section depth or is the applied moment carried by the steel
couple alone. So, the moment-curvature behaviour does not exhibit strong pinching
of the loops. However, high axial compression has adverse effects on the behaviour,
especially if the normalised axial force, ν, approaches the value at balance load
(which coincides with νc,y1, defined at the right-hand-side of Eq. (3.51) if the con-
dition of Eq. (3.50a) is met, or with νc,y1, defined at the left-hand-side of Eq. (3.55),
if it is not). For high axial compression the compression zone may disintegrate with
cycling and the peak resistance may drop from cycle to cycle, giving shallower and
narrower hysteresis loops. Failure then may be abrupt, unless the concrete core is
very well confined.

The axial load in frame columns does not always stay constant during the seismic
response. The seismic overturning moment produces an axial force (mainly) in the
exterior columns, compressive on the “leeward” side of the building, tensile on the
“windward” one (see Eq. (2.13) in Section 2.2.1.5). Seismic axial forces are largest
at the bottom storey. The variation of axial compression during the cyclic response
may significantly affect the column inelastic behaviour, so long as the column stays
below its balance load,10 as described below.

An increase in the axial compression increases the yield and ultimate moments
(cf. Eqs. (3.37), (3.39), (3.57), (3.58), (3.59), (3.60), (3.61) and (3.62)), the ordinates
of the envelope curve of the hysteresis loops under cyclic loading, and the stiffness in
virgin loading, unloading and reloading, as the larger neutral axis depth increases the
contribution of concrete to the flexural resistance and stiffness. By contrast, when
the axial compression decreases, all its strength and stiffness properties decrease.
So, a history of symmetric displacement cycles with variation of the axial force
during the cycle produces asymmetric hysteresis loops, with strength and stiffness
distinctly higher in the direction of increasing axial compression (that of negative
moments in Fig. 3.28) than in the opposite one (for positive moments in Fig. 3.28).
Therefore, during the seismic response the “leeward” exterior columns exhibit an
increase in stiffness (increasing momentarily their share in the seismic shear) and
yield moment. The “windward” exterior columns exhibit the reverse effects.

So long as the response is elastic, the seismic axial force in the columns varies in
proportion both to the column moment and to the column deformation. This propor-
tionality does not apply anymore, once plastic hinging and inelastic response start
developing in the frame. So long as the column end section of interest is still in the
elastic range, its seismic axial force will vary less than proportionally to the column
moment and deformation. In the post-yield range of the column end section, and
provided that the mechanism developing in the frame is closer to the beam-sway
type (cf. Fig. 1.3(b)–(e)), the column’s seismic axial force will keep varying with
the column deformation (not the moment) but again less than proportionally to it.
If a soft-storey type of mechanism tends to form (as in Fig. 1.3(a)), the column’s

10If the value of the axial force varies around the column balance load, there is no clear-cut effect
of this variation on the column flexural behaviour.
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(a) (b)

Fig. 3.28 Moment-chord rotation response of column with axial force varying in proportion: (a)
to the moment; (b) to the deformation (adapted from CEB 1996a)

seismic axial force will stay essentially constant during post-yield primary loading
but vary again with the column moment during unloading or reloading.

Tests on columns with the axial load varying about its mean value in proportion to
the moment (Abrams 1987) demonstrate (Fig. 3.28(a)) that the effect of axial load on
post-elastic stiffness in virgin loading or reloading shows up gradually, accelerating
the softening in that direction of loading in which the axial compression decreases
with increasing moment (i.e., for positive moments in Fig. 3.28(a)) but reducing
it for loading in the opposite direction (toward negative moments in Fig. 3.28(a)),
even to the point of producing an overall stiffening effect. An axial force that varies
with the applied moment will remain essentially constant after column yielding. The
different final values of axial force for the two directions of loading just cause dif-
ferent yield moments in these directions. The post-yield behaviour follows closely
the envelope associated with the corresponding constant axial force value.

If the axial load varies about its average value in proportion to the deformations
(Fig. 3.28(b)), yielding in the direction of decreasing axial force (i.e., for positive
moments in Fig. 3.28(b)) is followed by a drop in the moment resistance, as this
decreases with decreasing axial load (Abrams 1987). In the other direction of load-
ing (towards negative moments in Fig. 3.28(b)), the increase of axial load with the
post-yield deformation increases the yield moment further, showing up initially as
an apparent but significant increase in the post yield stiffness. However, this post
yield stiffening is soon followed by a strength decay, which may eventually lead to
failure.

No matter whether the axial force varies with the moment or with the deforma-
tion, failure by rupture of the tension steel (Section 3.2.2.4 under Failure of the Full
Section Due to Rupture of Tension Reinforcement Before Spalling of the Concrete
Cover) is reached sooner for decreasing axial compression, while that by concrete
crushing (Section 3.2.2.4 under Curvature at Spalling of the Concrete Cover) hap-
pens earlier for increasing axial load. As the ultimate curvature is much lower for
the latter failure mode than for the former, the “leeward” exterior columns typically
fail before the “windward” ones.
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3.2.2.9 Fixed End-Rotation at Member Ultimate Curvature, Due to Bar
Pull-Out from the Anchorage Zone Beyond the Section
of Maximum Moment

If the anchorage of the longitudinal bars beyond the member end is insufficient, it
will fail, normally by pull-out. Such a failure may well pre-empt yielding of these
bars and flexural yielding of the member’s end section. It will certainly prevent
that section from developing its full moment resistance, Eqs. (3.57), (3.58), (3.59),
(3.60), (3.61) and (3.62). Figure 3.29 shows examples of wide residual cracks at the
ends of beams with short bar anchorage in corner joints, suggesting very large fixed-
end rotations there during the response. In concrete buildings with well designed
and detailed members, anchorage failures of this type do not take place. Instead, the
fixed-end rotation due to bar pull-out from the anchorage zone will keep increasing
from its value at yielding of the end section, Eq. (3.42), while the member heads
towards its ultimate flexural deformation.

Strain hardening of the tension bars at the section of maximum moment does not
increase markedly the bond stress demand along their anchorage past that section.
The increase of the fixed-end rotation from yielding till the ultimate flexural defor-
mation is due to penetration of inelastic strains into the initial part of the anchorage
length of these bars (see Section 3.1.3.2). Bar anchorage beyond this “yield penetra-
tion length”, ly,p, remains intact and the fixed-end rotation produced by bar pull-out
from the anchorage zone is still given by Eq. (3.42). However, steel elongation along
the “yield penetration length” shows up as additional slippage of the tension bars at
the section of maximum moment. If these bars are perfectly-plastic along the yield

Fig. 3.29 Pull-out of beam bars from short anchorage in corner joint has produced fixed-end
rotation during the response and wide residual cracks (See also Colour Plate 8 on page 722)
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penetration length, their strain is practically constant along that length and equal to
the steel strain, εs, at the section of maximum moment. It produces then an addi-
tional slippage of εsly,p and an additional fixed-end-rotation, Δθu,slip = ϕuly,p, by
the time of the ultimate curvature, ϕu, of the end section. If the tension bars are
considered as linearly strain-hardening all along the yield penetration length, their
strain may be taken to increase linearly along that length from the yield strain, εy,
to the value εs at the section of maximum moment. In that case we have: Δθu,slip =
(ϕy+ϕu)ly,p/2.

Biskinis (2007) used about 465 measurements of relative rotations near the end of
the member at the time of member ultimate deformation, 120 of which included the
fixed-end rotation due to reinforcement pull-out. On the basis of these tests the addi-
tional fixed-end rotation between yielding and ultimate curvature can be inferred as
equal to:

– for cyclic loading:

Δθu,sli p = 5.5dbLϕu (3.63a)

– for monotonic loading:

Δθu,sli p = 9.5dbLϕu (3.63b)

or

– for cyclic loading:

Δθu,sli p = 10dbL
(
ϕy + ϕu

)
/2 (3.63c)

– for monotonic loading:

Δθu,sli p = 16dbL
(
ϕy + ϕu

)
/2 (3.63d)

A slightly better fit to the data is achieved with Eqs. (3.63c) and (3.63d) than with
Eqs. (3.63a) and (3.63b): the coefficient-of-variation is 45.5% v 47.5%.

Note, in this connection, that according to Eurocode 8 (CEN 2004a) the anchor-
age length of beam or column bars in beam-column joints of DC H buildings should
be measured starting 5-bar-diameters inside the joint for reasons of yield penetra-
tion. This length is quite consistent with Eq. (3.63a).

The value of ϕu in Eqs. (3.63) is calculated according to Section 3.4.4.2, using
Eqs. (3.4), (3.5), (3.10), (3.16) or (3.17), (3.20), (3.21), (3.22), (3.23), (3.24)
and (3.25) for the properties of concrete, including the confined core, as well as
Eqs. (3.64) of Section 3.2.2.10 for the strain at which the tension bars rupture.
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3.2.2.10 Experimental Ultimate Curvatures and Comparison with Predictions
for Various Confinement Models

The most important parameters in the approach of Section 3.2.2.4 for the calculation
of ultimate curvature, ϕu, are the ultimate strain of concrete, confined or not, and the
available elongation of the tension reinforcement.

Equations (3.16) or (3.17) in Section 3.1.2.2 give the ultimate strain of concrete,
confined or not, to be used together with Eqs. (3.4), (3.5), (3.10), (3.20), (3.21),
(3.22), (3.23), (3.24) and (3.25) for the prediction of ultimate curvature. Biskinis
(2007) has developed Eqs. (3.16) and (3.17) on the basis of about 465 measure-
ments of relative rotations near the end of the member at the time of member ulti-
mate deformation. About 120 of these measurements included fixed-end rotation
due to reinforcement pull-out and were corrected for its effect using Eqs. (3.63).
The first two terms of Eqs. (3.16) and (3.17) have been derived from 65 cases with
almost no confinement, where the ultimate curvature had been reached at spalling
of the concrete cover. The resulting predictions for ϕu give a test-to-prediction ratio
with a median of 0.925 and a coefficient-of-variation of 55.5%. The 3rd term in
Eqs. (3.16) and (3.17) has been derived from 105 monotonic and about 80 cyclic
tests that reached ultimate curvature by crushing of the confined concrete core. The
resulting ϕu-values give a test-to-prediction ratio with median of 1.02 or 0.99 and
a coefficient-of-variation of 51.9% or 52.6%, for these monotonic or cyclic tests,
respectively. Finally, about 115 monotonic and 100 cyclic tests, reported or inferred
to have reached ultimate curvature by rupture of the tension reinforcement, lead
to the conclusion that the available elongation of tension reinforcement at ultimate
curvature is on average equal to the following fraction of the nominal bar strain
at maximum stress, εsu,nominal, as obtained from coupon tests of the bars (Biskinis
2007, Biskinis and Fardis 2009):

– for monotonic loading:

εsu,mon = (7/12)εsu,nominal (3.64a)

– for cyclic loading:

εsu,cy = (3/8)εsu,nominal (3.64b)

The adverse effect of cyclic loading on steel bars (e.g., surface cracking upon
buckling, etc.) is the main reason for the large difference of εsu,cy from εsu,nominal, in
Eq. (3.64b). By contrast, the prime reason for the (smaller, albeit significant) differ-
ence of εsu,mon from εsu,nominal in Eq. (3.64a) is not mechanical but statistical, similar
to the well known statistical size effect that decreases strength with increasing spec-
imen size. The 115 monotonic tests that reached ultimate curvature by rupture of
the tension reinforcement had from 1 to 20 tension bars (on average 5). Unlike the
cyclic test results, which do not exhibit a statistically significant effect of the num-
ber of bars on εsu,cy, the monotonic ones show clearly that when the number of
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bars increases, the actually available elongation of tension reinforcement, εsu,mon,
decreases. This is consistent with control of failure by the minimum value of εsu

among the bars. Normally, the probability distribution of the minimum value of εsu

among N bars is taken to follow a Type I extreme value distribution of the small-
est values. The parameters of that probability distribution depend on the functional
dependence of the lower tail of the underlying distribution of the value of εsu of the
individual bars, on εsu. A reasonable form of dependence is an exponential of the
negative of an increasing function of the deviation of εsu from its mean value, taken
as εsu,nominal (Benjamin and Cornell 1970). If that function is taken proportional to
(εsu–εsu,nominal)2, the mode (i.e., most likely value) of the minimum value of εsu

among N bars is a linear function of
√

lnN (Benjamin and Cornell 1970). Then, as
Eq. (3.64a) corresponds to an average of 5 tension bars in the 115 monotonic tests
with rupture of tension reinforcement, it can be generalised as follows:

– For monotonic loading:

εsu,mon =
(

1 − 1

3

√
ln Nb,tension

)
εsu,nominal (3.64c)

where Nb,tension is the number of bars in the tension zone. Equation (3.64c) gives
εsu,mon = εsu,nominal if Nb,tension = 1 and εsu,mon ≈ (7/12)εsu,nominal for the average
value of Nb,tension = 5 in the tests. When Eqs. (3.64c) and (3.64b) are used, the test-
to-prediction ratio for ϕu has a median of 1.00 or 1.01 and a coefficient-of-variation
of 44.8% or 34.7%, for these monotonic or cyclic tests, respectively.

Overall, in about 465 ultimate curvature values derived from measurements of
relative rotation, the test-to-prediction ratio for ϕu has a median of 0.995 and a
coefficient-of-variation of 49.8% (or 1.01 and 0.985, and 53.2 and 44.6% sepa-
rately for monotonic and cyclic loading, respectively) (Biskinis 2007). Natural and
test-to-test variability contributes to the scatter a coefficient of variation of about
18.5% in practically identical specimens. After subtracting this source of the scat-
ter, model uncertainty corresponds to a coefficient of variation equal to the values
quoted above, reduced by 3.3% for the larger values to 5.2% for the smaller ones.
The overall statistics, as well as those for the individual failure modes, are slightly
worse if the ultimate concrete strain is given by a single expression, Eq. (3.17), both
for monotonic and cyclic loading, instead of the two different ones of Eqs. (3.16).

After correcting the “experimental” value of ϕu for any fixed-end rotation due to
reinforcement pull-out from its anchorage beyond the section of maximum moment
according to Eqs. (3.63), its magnitude does not exhibit any systematic effect of the
gauge length over which the relative rotation had been measured (Biskinis 2007).

Notwithstanding the large scatter, the above statistics demonstrate that ϕu-values
based on Eqs. (3.4), (3.5), (3.10), (3.16), (3.17) and (3.64) agree much better with
test results than the ϕu-values obtained from alternative well known or widely used
models, namely:
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a. From the model in informative Annex A of Part 3 of Eurocode 8 (CEN 2005a).
According to it, the ultimate strain of longitudinal reinforcement, εsu, to be used
for cyclic loading can be taken equal to the following values, higher than those
of Eq. (3.64b):

• the lower limit values specified in Eurocode 2 (CEN 2004b) for the 10%-
fractile strain at maximum force, εuk, if the steel class is A or B (for class B,
this is the minimum value for DC L or M in Table 3.1 of Section 3.1.1.4); and

• 6% for steel class C (i.e., steel meeting the requirements for DC H in Table 3.1
of Section 3.1.1.4).

According to CEN (2005a), the parameters of confined concrete, including the
effect of confinement, may be obtained either:

i. from Eqs. (3.4), (3.5), (3.10) and (3.18), or
ii. from Eqs. (3.8), (3.9) and (3.13) (i.e., according to CEN (2004b) and CEB

(1991)).

For confinement model (i) the test-to-prediction ratio of ϕu has a median of 1.04
or 0.94 and coefficient-of-variation of 67.2% or 47.3% for monotonic or cyclic
loading, respectively. Overall (for monotonic and cyclic loading) the median is
0.985 and the coefficient-of-variation 62.9%.
For confinement model (ii) the median and the coefficient-of-variation of the
test-to-prediction ratio of ϕu is 1.37 or 1.3, and 70.6% or 51.3% for mono-
tonic or cyclic loading, respectively, and overall (monotonic and cyclic) 1.33
and 65.6% (Biskinis 2007). If the ultimate strain of steel, εsu, is taken from Eqs.
(3.64) instead, the median improves to 1.39, 1.14 and 1.27, for monotonic, cyclic
loading and overall (monotonic and cyclic), respectively, without a significant
increase of the scatter.

b. From Mander et al. (1988) and Paulay and Priestley (1992) regarding confine-
ment, i.e., from Eqs. (3.4), (3.6) and (3.10) and either Eq. (3.14) (Mander et al.
1988), or Eq. (3.15) (Paulay and Priestley 1992) for the ultimate strain of con-
fined concrete.
Best average agreement of these models with tests is obtained if the ulti-
mate strain of longitudinal reinforcement, εsu, is taken according to Part 3 of
Eurocode 8 (CEN 2005a). Then the ultimate strain model of Eq. (3.14) (Man-
der et al. 1988) gives a median of 1.015 or 1.155 for the test-to-prediction ratio
of ϕu and a coefficient-of-variation of 71.5% or 52.4%, for monotonic or cyclic
loading, respectively, and overall a median ratio of 1.035 and a coefficient-of-
variation of 64.5%. If the ultimate strain model of Eq. (3.15) (Paulay and Priest-
ley 1992) is used instead, the test-to-prediction ratio of ϕu has a median of 0.95
or 0.89 and a coefficient-of-variation of 74.5% or 53% for monotonic or cyclic
loading, respectively. Overall the median is 0.925 and the coefficient-of-variation
68.4%.
When the ultimate strain of longitudinal reinforcement, εsu, is taken from
Eqs. (3.64), the ultimate strain model of Eq. (3.14) (Mander et al. 1988) gives
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for the test-to-prediction ratio of ϕu a median equal to 0.895 or 0.945, and a
coefficient-of-variation of 78.3% or 44.2%, for monotonic or cyclic loading,
respectively, and a median of 0.92 and a a coefficient-of-variation of 68.3%
overall. If the ultimate strain model of Eq. (3.15) (Paulay and Priestley 1992)
is used instead, the test-to-prediction ratio of ϕu has a median of 0.87 or 0.835
and a coefficient-of-variation of 84.2% or 47.1%, for monotonic or cyclic load-
ing, respectively. Overall the median is 0.835 and the coefficient-of-variation
75.1%.

3.2.2.11 Curvature Ductility Factor

Equations (1.1) and (1.2) in Section 1.2 relate:

– the behaviour factor q by which the elastic force demand on the structure as a
whole is divided, in order to obtain the design force (base shear) that the system
should be designed to resist at the ULS, to

– the global (lateral) displacement ductility factor, μδ, of the system, defined as
ratio of the displacement demand at the top or at the point of application of
the resultant lateral force, to the displacement at the same point at global yield-
ing (i.e., at the corner of an elastoplastic curve fitted to the force displacement
response)

The importance of μδ arises from its relation with q through Eqs. (1.1) and (1.2).
As noted in Section 1.3 with reference to Fig. 1.3, if the plastic mechanism of

the response is known, member deformation demands (conveniently expressed as
chord rotation demands at member ends, see Figs. 1.3 and 1.4) can be related to
the global displacement demand on the building and evaluated from it. Accordingly,
these member deformation demands are also normalised to the corresponding value
at yielding of the member (i.e., to θy, if the chord rotation θ is used), i.e. as member
deformation (e.g. chord rotation) ductility factors (e.g. μθ = θ /θy). This practice
is extended to the curvature of sections, for which the curvature ductility factor is
defined as μϕ = ϕ/ϕy.

There is always a demand value for any ductility factor, deriving from the seismic
action, and a supply value, characterising the corresponding deformation capacity
(at ultimate deformation) of the section, member or system. The demand value of
the curvature ductility factor is:

μϕ = ϕ

ϕy
(3.65a)

and its supply (or available) value is:

μϕu = ϕu

ϕy
(3.65b)
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where ϕy can be obtained according to Section 3.2.2.2 and ϕu from Section 3.2.2.4,
using Eqs. (3.16) or (3.17) in Section 3.1.2.2 for the ultimate strain of concrete,
confined or not, together with Eqs. (3.4), (3.5), (3.10), (3.20), (3.21), (3.22), (3.23),
(3.24) and (3.25), as well as Eq. (3.64) for the available elongation of the tension
reinforcement

The importance of μϕ derives mainly from the possible link of its available value
from Eq. (3.65b) to a supply value of the member chord rotation ductility factor,
μθ. The link is via Eq. (3.71) in Section 3.2.3.4 and certain approximations. In the
end it relates μϕ to μδ and hence to q through Eqs. (1.1) and (1.2) (see Section 5.1,
Eqs. (5.1) and (5.2)).

3.2.3 Flexural Behaviour at the Member Level

3.2.3.1 Chord Rotations from Member Tests

The chord rotation at a member end has been introduced in Section 1.3 with refer-

ence to Figs. 1.3 and 1.4. The chord rotations θA =
x B∫
x A

ϕ(x)(x B − x)dx/ (x B − x A) ,

θB =
x B∫
x A

ϕ(x)(x A − x)dx/ (x B − x A) at the two ends A and B of a member are the

angles between the chord connecting the ends in the deformed configuration of the
member and the normal to the cross-section at A and B, respectively. The relative

rotation θAB of these two sections is: θAB =
x B∫
x A

ϕ(x)dx = θA − θB .

The chord rotation at a member’s end is the most important and convenient defor-
mation measure for concrete members, for the following reasons:

– Both in the elastic and inelastic range, chord rotations at member ends are equal
to the nodal rotations there, after subtracting the rigid-body displacements of the
member axis. Therefore, it is in terms of them that the stiffness or flexibility rela-
tion of the member is formulated in member-type models (see Sections 4.10.1.2
and 4.10.1.4). For example, in the elastic range the moments at ends A and B
are derived from the chord rotations there as: MA = (2EI/L)(2θA+θB), MB =
(2EI/L)(2θB+θA). The chord rotations due to flexure determine the distribution
of bending moments along the full length of the member.

– Unlike curvatures, which lack physical meaning and are hard to measure experi-
mentally, deflections are reliably measured or controlled. So, test results, mostly
from single- or double-cantilever specimens, are typically presented as a lateral
force-deflection diagram, F–δ, at the point of application of the lateral load and
reflect the overall load-displacement response of the specimen. Normally the
deflection δ is at the end B of the shear span, Ls = M/V, and is measured with
respect to the original axis of the specimen, which coincides with the normal to
the section A of maximum moment. The F–δ diagram can be translated into an
end moment-chord rotation (or “drift”) diagram, M–θ , of the member, by multi-
plying the shear force by Ls and dividing δ by Ls. Such a diagram refers to the
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Fig. 3.30 Contribution of chord rotations of columns and beams to the angular distortion of a
frame bay

entire shear span and is closely linked to its length. Note that it is the deflection
at point B (where the load is applied) with respect to the tangent at the section A
of maximum moment, that gives the chord-rotation at A, θA.

– The angular distortion of a frame bay with beams and columns in skew symmetric
bending (θA = θB) is equal to the sum, θ c + θb, of the chord rotations of a column
and a beam around the bay, plus the (average) shear distortion of the joint panel, γ
(Fig. 3.30). In design for earthquake or wind, damage to non-structural elements
filling the frame panel, such as partition walls, etc., is limited by limiting this
angular distortion, usually termed drift angle or drift ratio. The term “drift” is
also used for the chord rotation in single- or double-cantilever member tests.

Tests are the main source of information for the cyclic behaviour of concrete
members up to failure. Recall that energy dissipation and inelastic action should
take place mostly in the beams, which should be weaker than the columns they frame
into. In buildings beams are normally subjected to uniaxial bending with practically
zero normal force, whereas columns, in general, may be subjected to biaxial bend-
ing with axial force. So, most of the experimental research on the cyclic behaviour
of reinforced concrete members has addressed the simplest case of uniaxial flex-
ure without axial force. However, although in practice only beams are subjected to
uniaxial bending and zero axial force, in most tests the specimen has rectangular
cross-section and symmetric reinforcement, as in columns. There are few tests on
specimens with T-section and asymmetric reinforcement. But even in them another
source of asymmetric behaviour is missing: the shear span is maintained constant
during testing, whereas in a beam carrying gravity loads and belonging in a frame
subjected to seismic loading the shear span varies during the response. It is mini-
mum, and hence the effect of shear on behaviour is greatest, when the moment and
the shear due to the seismic loading act in the same sense as those due to gravity
loads (i.e., introducing tension to the top flange).

In the most common test setup the specimen cantilevers from a large concrete
base and is subjected to a cyclic lateral force at the tip under displacement con-
trol. Then the shear span is the distance of the point of application of the force to
the top of the base. In another setup, more representative of frame members (espe-
cially of columns), the specimen is fixed against rotation at both ends and sub-
jected to skew symmetric counter-flexure. Then the shear span is half the specimen
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length. In both setups there is slippage (partial pull-out) of the longitudinal bars
from their anchorage in the concrete block(s) at the end(s) of the specimen, that
macroscopically shows up as “fixed-end rotation” of the member’s end section(s)
(see Sections 3.2.2.3 and 3.2.2.9). In yet another setup the specimen is a simply
supported beam subjected to cyclic deflections at mid-span. The symmetry with
respect to the section of maximum moment in principle prevents slippage of the
reinforcement towards either side of that section. This is essentially a test of two
specimens simultaneously, namely of the two halves. From a certain point on dur-
ing the test symmetry is destroyed by unavoidable differences in the behaviour of
the two halves (with one of them reaching ultimate strength or deformation before
the other), the mid-span section rotates and deflection measurements there become
difficult to use and interpret.

3.2.3.2 Member Chord Rotation at Flexural Yielding of the End Section
in Uniaxial Loading

Of interest is the drift ratio of the shear span of a member, Ls, at yielding of the end
section of the shear span. This is the chord rotation at the yielding end, θy.

“Tension stiffening”, i.e., the contribution of the concrete in tension between
cracks to stiffness, is relatively small in members with longitudinal reinforcement
ratios as high as those typical of members designed for earthquake resistance. More-
over, this contribution depends heavily on the bond along the bars between the
cracks, which degrades with cyclic loading. So, as the member has normally been
subjected to one or more elastic load cycles by the time its end section yields, the
(anyway small) effect of concrete in tension on the overall flexural deformations
of the member at yielding is negligible. Therefore, the part of the chord rotation at
yielding which is due to purely flexural deformations is: θy = ϕyLs/3.

Inclined cracking and shear deformations along the shear span increase the mag-
nitude of θy. Diagonal cracking near the yielding end of the member spreads yield-
ing of the tension bars up to the point where the first diagonal crack from the end
section intersects them (Fig. 3.31). This is the “shift rule” in dimensioning of the ten-
sion reinforcement for the Ultimate Limit State in bending with axial force. Accord-
ing to it the value of the force in the tension reinforcement is shifted from the section
to which it corresponds on the basis of the moment and axial force diagrams, to one
where the moment is lower (i.e. further away from the member end). The shift is due
to diagonal cracking and its magnitude depends on the inclination of the diagonal
cracks to the member axis and on the amount of transverse reinforcement. However,
usually a default value is taken for the shift equal to the internal lever arm, z. Such
a shift increases the value of θy which is theoretically due to flexural deformations,
from ϕyLs/3 to about ϕy(Ls+z)/3.11 Of course, such an increase would not take place

11Strictly speaking the increase is to a value of ϕy[(Ls–z)(1–z/Ls)(1+0.5z/Ls)/3+z(1–0.5z/Ls)], but
the difference from ϕy(Ls+z)/3 is practically insignificant.
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Fig. 3.31 Shift of yielding of
tension reinforcement along
the member due to diagonal
cracking (Biskinis 2007)

unless diagonal cracking precedes flexural yielding at the end section. So, the term
z should be added to Ls only if the shear force that causes diagonal cracking, VRc, is
less than the shear force at flexural yielding of the end section, VMy = My/Ls.

Any fixed-end rotation due to reinforcement pull-out from its anchorage zone
beyond the yielding end contributes to θy with the fixed-end-rotation, θy,slip, from
Eq. (3.42). However, the sum of ϕyLs/3 (or ϕy(Ls+z)/3 if there is diagonal cracking)
and of the fixed-end-rotation (if any) from Eq. (3.42) on average falls short of the
“experimental” chord rotation at flexural yielding, taken at the corner of a bilinear
M–θ curve fitted to the envelope of the experimental M–θ hysteresis loops, including
P–Δ effects (cf. Section 3.2.2.2 under Comparison with Experimental Results and
Empirical Expressions for the Curvature). The shortfall can be empirically corrected
via the 2nd term of Eqs. (3.66), fitted to “experimental” chord rotations at flexural
yielding of members with shear span ratio and reinforcement such that there are
no flexure-shear interaction effects on yielding (see Section 3.2.5) (Biskinis 2007,
Biskinis and Fardis 2004):

– For beam/columns with rectangular section (about 1560 tests):

θy = ϕy
Ls + aV z

3
+ 0.0014

(
1 + 1.5

h

Ls

)
+ asl

ϕydbL fy

8
√

fc
(3.66a)

– For walls (rectangular or not) and hollow rectangular members (about 250 tests):

θy = ϕy
Ls + aV z

3
+ 0.0013 + asl

ϕydbL fy

8
√

fc
(3.66b)
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where:

– ϕy in the 1st term is the “theoretical” yield curvature from Eqs. (3.33), (3.34),
(3.35) and (3.38) times the correction factor of 1.025, 1.015 or 1.075, for
beams/columns, rectangular walls, or members with T-, U-, H- or hollow rect-
angular section, respectively;

– av is a zero-one variable:

• av = 0, if VRc > VMy = My/Ls, with VRc taken here from Eurocode 2 (CEN
2004b), Eq. (3.67);

• av = 1, if VRc ≤ VMy = My/Ls;

– z is the length of the internal lever arm, taken as:

• z = d–d1 in beams, columns, or members with T-, H-, U- or hollow rectangular
section, and:

• z = 0.8h in walls with rectangular section.

– asl is a zero-one variable:

• asl = 1 if slippage of longitudinal bars from the anchorage zone beyond the
end section is possible, or

• asl = 0 if slippage is not possible.

– as in Eq. (3.42), fy and fc in the last term are in MPa.

The shear force at diagonal cracking of the member, VRc, is taken here equal to
the shear resistance of members without shear reinforcement, given in Eurocode 2
(CEN 2004b) as:

VR,c =
⎧⎨
⎩max

⎡
⎣180 (100ρ1)

1/3 , 35

√
1 +

√
0.2

d
f 1/6
c

⎤
⎦(

1 +
√

0.2

d

)
f 1/3
c + 0.15

N

Ac

⎫⎬
⎭ bwd

(3.67)

With ρ1 denoting the tension reinforcement ratio and the axial load N taken pos-
itive for compression (but if N is tensile, then VR,c = 0), Eq. (3.67) gives the value
of VR,c in kN when bw (width of the web) and d are in m, fc is in MPa and N in kN.

Annex A of Part 3 of Eurocode 8 (CEN 2005a) has adopted an earlier version of
Eqs. (3.66a) and (3.66b) (Biskinis and Fardis 2004) with a coefficient of 0.13 instead
of 1/8 = 0.125 in the 3rd term and with Eq. (3.66b) applicable only to walls and its
2nd term replaced by 0.002[1–0.125Ls/h]. It has also adopted an alternative form
of these expressions where the pullout of tensile reinforcement at the yielding end
section, 0.5fylb/Es, has been translated to fixed-end rotation by dividing it by the dis-
tance between the tension and the compression bars in the section, (d–d1), instead of
the depth of the tension zone at yielding, (1–ξ y)d (Biskinis 2007, Biskinis and Fardis
2004). The 3rd term of the alternative expressions uses εydbLfy/[6(d–d1)

√
fc] (with

εy = fy/Es being the yield strain of longitudinal bars) instead of ϕydbLfy/(8
√

fc). This
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alternative fits the data almost as well as Eqs. (3.66), but is probably easier to apply
in that the 3rd term is independent of ϕy, whose calculation is harder and more prone
to errors.

Equations (3.66) give a median of 1.01 or 0.995 for the test-to-prediction ratio
of θy, and a coefficient-of-variation of 32.1% or 33.7%, for beams/columns or
walls/hollow rectangular members, respectively. Natural and test-to-test variabil-
ity contributes to the scatter a coefficient of variation of about 10% in practically
identical specimens. The rest of the scatter is mainly due to model uncertainty and
corresponds to coefficients of variation equal to the values above reduced by about
1.5%. The variants of Eqs. (3.66a) and (3.66b) adopted in Part 3 of Eurocode 8
(CEN 2005a) (with the value 0.13 used in the 3rd term instead of 1/8) give as good
or even slightly better fit to the data.

The comparison above refers to tests with ribbed bars. In about 20 tests of
beam/columns with smooth (plain) bars the mean or the median of the test-to-
prediction ratio are about 0.98. So, the poorer bond along such bars does not seem
to increase member deformations at yielding.

A prime use of the prediction of θy from Eqs. (3.66) is for the calculation of the
effective member stiffness at incipient yielding from Eq. (3.68) in Section 3.2.3.3.
So, the fitting of Eqs. (3.66) to the experimental values of θy aims at accuracy
in the median, as much for θy, as for the effective stiffness at yielding from Eq.
(3.68) in Section 3.2.3.3. So, any mismatch in the median between the experimen-
tal and the predicted values of θy should not be seen independently of the median
agreement or mismatch between the effective stiffness from Eq. (3.68) and the test
values.

3.2.3.3 Effective Stiffness of Members at Incipient Yielding: Importance
and Estimation

A fundamental simplification underlying the provisions of force-based seismic
design using elastic forces reduced by the behaviour factor q is that the global inelas-
tic response of the structure to monotonic lateral forces is bilinear, close to elastic-
perfectly-plastic. Then, the stiffness used in the elastic analysis should correspond
to the stiffness of the elastic branch of such a bilinear global force-deformation
response. So, the full elastic stiffness of uncracked concrete in the analysis is not
the proper value to use. Eurocode 8 (like US codes) requires concrete buildings be
designed using in the seismic analysis stiffness values for members that take into
account the effect of cracking and correspond to the initiation of yielding of the
reinforcement (secant stiffness to the yield-point). Unless more accurate modelling
is used, Eurocode 8 follows US codes in allowing to derive that stiffness from 50%
of the uncracked gross section rigidity, EcIc, neglecting the effect of reinforcement.

Within the force- and strength-based seismic design philosophy of current seis-
mic design codes, a high estimate of the effective stiffness gives safe-sided results,
as it increases the period(s) and therefore the corresponding spectral acceleration(s)
and design forces. The use of 0.5EcIc serves exactly that purpose, as the experi-
mental secant stiffness of concrete members at incipient yielding is generally much
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lower. Only the lateral drifts and the P–Δ effects computed from these overly high
stiffness values may be (seriously) underestimated. As a matter of fact, Eurocode 2
(CEN 2004b) specifies as follows the effective stiffness for the calculation of 2nd-
order effects in concrete structures:

– as equal to the stiffness EsIs of the section reinforcement with respect to the
centroid of the section, plus the minimum of 0.2EcIc and 0.3νEcIc (where ν =
N/Acfc is the axial load ratio),

– 0.3EcIc if the reinforcement ratio exceeds 1% (although its exact value is not
known in this stage of the design).

Clause 10.11.1 of ACI (2008) specifies the effective stiffness for the magnifica-
tion of moments in compression members and frames due to 2nd-order effects as
follows:

– 0.35EcIc for beams and cracked walls,
– 0.70EcIc for columns and uncracked walls,
– 0.25EcIc for flat plates or slabs.

Clause 10.12.3 of ACI (2008), by contrast, gives the following effective stiffness
for the calculation of moment magnification due to 2nd-order effects in non-sway
frames:

– the stiffness EsIs of the reinforcement with respect to the centroid of the section,
plus 0.2EcIc (i.e., as in the Eurocode 2 rule, except that the fraction of EcIc is not
taken as 0.3ν = 0.3N/Acfc, if this value is smaller than 0.2); or

– 0.2EcIc, as a simpler approximation.

Note that, using in the analysis a low-side estimate of effective stiffness increases
2nd-order effects, which is safe-sided in the context of design for non-seismic
actions, as with Eurocode 2 or Clause 10 of the ACI 318 code.

As elaborated in Chapter 6, seismic assessment and retrofitting of existing
buildings is nowdays fully displacement-based, with direct or indirect verifica-
tion of member deformation capacities against the inelastic deformation demands.
So it needs a relatively accurate estimation of inelastic deformation demands
throughout the structure, which in turn requires realistic values of the effective
cracked stiffness of concrete members at yielding. The use of a member stiffness
of 0.5EcIc for displacement-based seismic assessment and retrofitting of existing
structures is unsafe: member seismic deformation demands will be seriously
underestimated.

The most realistic estimate of the effective elastic stiffness of the shear span, Ls =
M/V, in a bilinear force-deformation model of a concrete member under monotonic
loading, is the secant stiffness of the shear span to the member yield-point:



3.2 Concrete Members 221

E Ief f = My Ls

3θy
(3.68)

where My is the yield moment in the bilinear M–θ model of the shear span and θy

the chord rotation at the yielding end, both by calculation (from Sections 3.2.2.2 and
3.2.3.2, respectively).

The “experimental effective stiffness” at member yielding is obtained by using
experimental values of My and θy in Eq. (3.68). Its ratio to the value obtained
from Eq. (3.68), using the My and θy values from Sections 3.2.2.2 and 3.2.3.2,
respectively, has a median of 1.01 or 0.99 and a coefficient of variation of 32.3%
or 47.1% for beams/columns, or walls/hollow rectangular members, respectively.
Natural and test-to-test variability contributes to the scatter with a coefficient of
variation of about 10% in practically identical specimens. If Eqs. (3.66a) and
(3.66b) are replaced by their variants in Part 3 of Eurocode 8 (CEN 2005a) for
the calculation of θy, the agreement with the data is almost the same (Biskinis
2007, Biskinis and Fardis 2004). These comparisons refer to tests with ribbed
bars. In about 20 tests of beam/columns with smooth (plain) bars the mean test-
to-prediction ratio of the secant stiffness to yield point is about 1.03, implying that
the poorer bond along these bars does not seem to adversely affect the member
stiffness.

The specimens in the large database used for the calibration of the expressions for
My and θy in Sections 3.2.2.2 and 3.2.3.2, have “experimental effective stiffness” at
member yielding on average equal to 22% or 15% of the stiffness of the uncracked
gross section, EcIc, for beams/columns, or walls and members with hollow rectangu-
lar section, respectively. The coefficients of variation of the experimental effective
stiffness with respect to this average are about twice the values from the application
of Eq. (3.68).

For Eq. (3.68) to be applied using the values of My and θy, the amount and layout
of the longitudinal reinforcement should be known. In displacement-based seismic
assessment of existing buildings this information is available before the analysis.
If it is not, as in displacement-based seismic design of new structures, a purely
“empirical effective stiffness” would be more convenient, if it is expressed in terms
of geometric, etc., characteristics of the member known before dimensioning its
reinforcement. The following expression has been fitted in Biskinis (2007) to the
“experimental effective stiffness” at member yielding:

EIeff

EcIc
= a

(
0.8 + ln

[
max

(
Ls

h
; 0.6

)])(
1 + 0.048 min

(
50 M Pa;

N

Ac

))
(3.69)

where N/Ac is in MPa, and

– a = 0.081 for columns;
– a = 0.10 for beams;
– a = 0.115 for rectangular walls; and
– a = 0.09 for members with T-, U-, H- or hollow rectangular section.
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Equation (3.69) refers to the – common in practice – case where slip of the lon-
gitudinal bars from their anchorage beyond the member’s end section is physically
possible (asl = 1 in Eqs. (3.66)). If it isn’t (i.e., if asl = 0 in Eqs. (3.66)), the effective
stiffness increases by one-third, i.e. the values above should be multiplied by 4/3.

Being purely empirical, Eq. (3.69) achieves a median of 1.00 for the test-to-
prediction ratio. However, neglecting the dependence of effective stiffness on the
amount and layout of longitudinal reinforcement increases the scatter: the coef-
ficient of variation of the test-to-prediction ratio is 37.6, 58.7 and 42.6%, for
beams/columns, rectangular walls and members with T-, U-, H- or hollow rectan-
gular section, respectively. More serious than the larger scatter is the lack-of-fit of
Eq. (3.69) with respect to the amount of longitudinal reinforcement. Equation (3.69)
has been fitted to a database of mainly seismically detailed members, with total
reinforcement ratio between 0.1 and 7% (2% on average) and tension reinforcement
ratio between 0.1 and 4.8% (on average 0.9%). So it overpredicts the experimental
value by 10% on average for members with reinforcement ratio at the lower end of
the range and underpredicts it by 40% on average at the upper end.

One would expect the empirical effective stiffness to be a decreasing function
of dbLfy/(h

√
fc), which is proportional to the last term in Eqs. (3.66) and is known

before dimensioning of the longitudinal reinforcement if its diameter has been cho-
sen. However, the increase of the “experimental effective stiffness” with the tension
reinforcement ratio – which does not appear in Eq. (3.69) and is proportional to the
square of dbL/h– fully masks its dependence on dbLfy/(h

√
fc) in the cases when slip

from the anchorage beyond the member’s end takes place.

3.2.3.4 Flexure-Controlled Ultimate Chord Rotation Under Uniaxial
Loading: Calculation from Curvatures and the Plastic Hinge Length

The ultimate condition in terms of deformations is commonly defined convention-
ally, as described in Sections 3.2.2.4 and 3.2.2.7 for the ultimate curvature. The ulti-
mate chord rotation occurs at the same time as the ultimate curvature and is defined
similarly.

The most common model for the ultimate chord rotation at the member end (let’s
say A) where the moment is maximum (Fig. 3.32) uses the yield and ultimate cur-
vatures at section A and assumes that at ultimate conditions the plastic part of the
curvature is constant and equal to ϕu–ϕy over a length Lpl next to the end section at
A. This means that the real distribution of plastic curvatures, which is nearly trian-
gular over the length of plastification lpl, is replaced by a uniform plastic curvature
over a shorter length Lpl ≈ 0.5lpl. Lpl is called “plastic hinge length” and is a con-
ventional quantity. The plastic rotation that has developed in the plastic hinge length
by the time the ultimate condition is reached is equal to θpl,u = (ϕu–ϕy)Lpl. It takes
place with respect to the centre of the plastic hinge length and produces a plastic part
of the deflection at the end B of the shear span equal to θpl(Ls–Lpl/2). If the entire
deflection at B is attributed to flexure, its elastic part is equal to ϕyLs

2/3. Therefore,
the ultimate chord rotation at end A is equal to θA = δB/Ls, i.e. to:
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Fig. 3.32 Actual
plastification length, lpl and
plastic hinge length Lpl in the
shear span

θu = ϕy
Ls

3
+ (
ϕu − ϕy

)
L pl

(
1 − L pl

2Ls

)
(3.70a)

A variant of Eq. (3.70a) may give the chord rotation at end A, θ , when the cur-
vature ϕ at A is between yielding and ultimate:

θ = ϕy
Ls

3
+ (
ϕ − ϕy

)
L pl

(
1 − L pl

2Ls

)
(3.70b)

If the behaviour is postulated to be purely flexural, the chord rotation at yielding
equals θy = ϕyLs/3. So, the chord rotation ductility factor, μθ = θ /θy, is linked to
the curvature ductility factor of the end section of the shear span, μϕ = ϕ/ϕy, as:

μθ = 1 + (
μφ − 1

) 3L pl

Ls

(
1 − L pl

2Ls

)
≈ 3L pl

Ls
μφ (3.71)

The formulation in Eqs. (3.70) and (3.71) offers the following advantages:

– it represents a mechanical and physical model (inelasticity is considered as
lumped in the plastic hinge and uniformly spread within the plastic-hinge length),
and

– ϕy and ϕu can be expressed through plane section analysis in terms of cross-
section and material properties, as in Sections 3.2.2.2 and 3.2.2.4, respectively.

This formulation normally deals indirectly with any effects of shear, bond-slip,
etc., through Lpl, which is not a physical but a conventional quantity, such that
Eq. (3.70a) is satisfied when the ultimate deformation is attained.
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Notwithstanding its mechanical and physical appeal, the real criterion for the
value of Eq. (3.70a) is its ability to predict the experimental ultimate drift ratio or
chord rotation, θu. Empirical expressions for Lpl needed to this end cannot be devel-
oped independently of the models used for the other variables in Eq. (3.70a), notably
for ϕu and ϕy. To maintain the apparent rationality of Eq. (3.70a), priority should be
given to models based on rational mechanics. A natural choice for ϕy is the model in
Section 3.2.2.2, based on first principles and calibrated for good average agreement
with test results. Regarding ϕu, a good choice is the model in Section 3.2.2.4 (also
based on first principles) in conjunction with the proposals developed/calibrated in
Section 3.2.2.10 on the basis of a large volume of test data. Those proposals include
the use of the confinement model of Eqs. (3.4), (3.5), (3.10), (3.16) or (3.17) and of
the ultimate steel strain, εsu, from Eqs. (3.64).

A better overall fit of Eq. (3.70a) to the data on θu is possible, if the chord at
yielding, θy, from Eqs. (3.66) in Section 3.2.3.2 is used in lieu of the flexural term,
ϕyLs/3, alone. Besides, to recognise the contribution of the fixed-end rotation due
to bar pull-out from the anchorage zone beyond the end of the member where fail-
ure takes place, we should add to the right-hand-side of Eq. (3.70a) the fixed-end
rotation that takes place between yielding and ultimate curvature of the end section,
from Eqs. (3.63) in Section 3.2.2.9. The final expression is:

θu = θy + aslΔθu,sli p + (ϕu − ϕy)L pl

(
1 − L pl

2Ls

)
(3.72)

The 1st term in Eq. (3.72) is the chord rotation at yielding from Eqs. (3.66). The
2nd one is the fixed-end rotation from yielding to ultimate due to bar slippage from
the anchorage zone beyond the member end where flexural failure takes place. It
may be calculated from Eqs. (3.63), with asl = 0 if bar slippage from the anchorage
zone beyond the member end is not physically possible, or with asl = 1 if it is (cf. 3rd
term in Eqs. (3.66)). The 3rd term is the plastic deformation of the flexural plastic
hinge.

The same empirical expression for Lpl cannot fit both the monotonic and the
cyclic data. Best among the possible simple expressions for Lpl seem to be a linear
combination of the shear span, Ls, and of the section depth, h. Under the conditions
outlined above for the calculation of ϕy, ϕu, θ y, the following expressions provide
optimal overall fit to θu at flexural failure of rectangular beams, columns and walls
and for members with T-, H-, U- or hollow rectangular section, in monotonic or
cyclic loading (about 300 or 1050 tests, respectively):

– if the ultimate concrete strain is given by the two separate expressions of
Eqs. (3.16) for monotonic and cyclic loading (Biskinis 2007):

• for monotonic loading, regardless of detailing for earthquake resistance:

L pl,mon = h

(
1.1 + 0.04 min

(
9;

Ls

h

))
(3.73a)
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• for cyclic loading, but with member detailing for earthquake resistance:

L pl,cy = 0.2 h

(
1 + 1

3
min

(
9;

Ls

h

))
(3.73b)

– if the ultimate concrete strain is given by the same expression for monotonic and
cyclic loading, Eq. (3.17):

• for monotonic loading, regardless of detailing for earthquake resistance:

L pl,mon = h

(
1.2 + 0.04 min

(
9;

Ls

h

))
(3.74a)

• for cyclic loading, but with member detailing for earthquake resistance:

L pl,cy = 0.2 h

(
1 + 3

8
min

(
9;

Ls

h

))
(3.74b)

If Eqs. (3.16) and (3.73) are used, the test-to-prediction ratio of Eq. (3.72) has a
median of 1.00 and coefficient of variation of 66.8, 44.8 and 51.7%, for monotonic,
cyclic loading and overall (monotonic and cyclic), respectively. Better overall agree-
ment is achieved if Eqs. (3.17) and (3.74) are used instead of Eqs. (3.16) and (3.73):
the median of the test-to-prediction ratio is also 1.00 and the coefficient of varia-
tion 65.6, 43.5 and 50.5%, for monotonic, cyclic loading and overall (monotonic
and cyclic), respectively. Besides, the median is 1.07 and 1.03 for the sub-groups
of rectangular walls and members with T-, H-, U- or hollow rectangular section,
compared to medians of 1.08 and 1.05 for these two sub-groups if Eqs. (3.16) and
(3.73) are used. Natural and test-to-test variability contributes to the scatter a coeffi-
cient of variation of about 18% in practically identical specimens. After subtracting
this source of scatter, the coefficient of variation due to model uncertainty is equal
to the values quoted above, reduced by 2.5% for the larger of these values to 3.5%
for the smaller ones. But even after this reduction, the variance of the cyclic data
with respect to Eq. (3.72) is still about 80% of their total variance if Eqs. (3.16) and
(3.73b) are used, or about 75% of its value if Eqs. (3.17) and (3.74b) are applied.
The picture is only slightly better for the monotonic data.

Well known or widely used alternatives for the plastic hinge length can be eval-
uated on the basis of the data used for the fitting of Eqs. (3.73) and (3.74). Each
expression for Lpl is applied here as proposed in its source, i.e., with its accompany-
ing models for the calculation of ϕu and Eq. (3.70a) (or variations thereof) instead
of Eq. (3.72), as slippage of reinforcement from its anchorage zone is reflected by a
separate term in these expressions for Lpl, in lieu of the 2nd term at the right-hand-
side of Eq. (3.72).

I. The first two expressions evaluated here are those given in Annex A of Part 3 of
Eurocode 8 (CEN 2005a) for cyclic loading of members detailed for earthquake
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resistance. According to CEN (2005a) these expressions are meant to be used in
Eq. (3.70a), but with the full expression for θ y from Eqs. (3.66) instead of the
flexure-only yield term, ϕyLs/3. The ultimate steel strain values specified in CEN
(2005a) for the calculation of ϕu have been given at the end of Section 3.2.2.10
under point (a). A different expression is given in CEN (2005a) for Lpl, for each
one of the two alternative concrete confinement models in CEN (2005a):

i for the model of Eqs. (3.4), (3.5), (3.10) and (3.18):

L pl = Ls

30
+ 0.2 h + asl

0.11dbL fyL√
fc

( fyL and fc in MPa) (3.75)

ii. for the model of Eqs. (3.8), (3.9) and (3.13) (i.e., according to CEN (2004b),
CEB (1991)):

L pl = 0.1Ls + 0.17 h + asl
0.24dbL fyL√

fc
( fyL and fc in MPa) (3.76)

Options (i) and (ii) produce a median test-to-prediction ratio for θu in over 1000
cyclic tests of rectangular beams, columns, walls and members with T-, H-, U- or
hollow rectangular section under cyclic loading equal to 0.90 and 0.79, respec-
tively. The corresponding coefficients of variation are 52.5 and 62.1% (Biskinis
2007). The poorer performance of option (ii) (which includes also a certain lack
of fit for high experimental values of θu) is mainly due to its serious handicap in
the prediction of ultimate curvature (see Section 3.2.2.10, point (a)).

II. The other model evaluated here is the widely used and quoted expression (Paulay
and Priestley 1992):

L pl = 0.08Ls + asl (0.22dbL fyL ) ( fyL in MPa) (3.77)

It is used in Eq. (3.70a), along with the σ -ε models and parameters for the cal-
culation of ϕu outlined at the end of Section 3.2.2.10 under point (b), namely:

• the two concrete confinement models in Mander et al. (1988) and Paulay and
Priestley (1992) and

• the two ultimate steel strain options for which the ultimate curvature predic-
tions resulting from the above confinement models have been evaluated at the
end of Section 3.2.2.10 under point (b), namely:

a. the ultimate steel strain in Annex A of Part 3 of Eurocode 8 (CEN 2005a)
and described in Section 3.2.2.10, point (a); this is the strain used in the
evaluation above pertaining to Part 3 of Eurocode 8 (CEN 2005a), for both
options (i) and (ii); or

b. the values from Eqs. (3.64) in Section 3.2.2.10; used also above in the
calculation of θu from Eq. (3.72) together with Eqs. (3.73) and (3.74) and
the concrete ultimate strain models of Eqs. (3.16) and (3.17), respectively.
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The confinement model in Mander et al. (1988) combined with options (a) or (b)
for steel give a median test-to-prediction ratio for θu in over 1000 cyclic tests of
rectangular beams, columns, walls or members with T-, H-, U- or hollow rectan-
gular section equal to 0.96 or 1.14, respectively. The corresponding coefficient
of variation is 74.9% or 65.5% (Biskinis 2007). The median and the coefficient
of variation of the test-to-prediction ratio for the confinement model in Paulay
and Priestley (1992) used with options (a) or (b) for steel are 0.83 or 1.035 and
83.6% or 70.9%, respectively (Biskinis 2007). These four options give a median
test-to-prediction ratio for the approximately 300 monotonic tests between 1.7
and 1.85.

Note that, for all options considered in I and II above the variance of the cyclic
data with respect to Eq. (3.72) is not less than their total variance, even after remov-
ing the contribution of natural and test-to-test variability from the scatter. So, none
of these options seems to be of much value for the prediction θu.

3.2.3.5 Flexure-Controlled Ultimate Chord Rotation Under Uniaxial
Loading: Empirical Calculation

The scatter of the predictions of Eq. (3.72), used together with Eqs. (3.73) and (3.74)
and the corresponding ultimate concrete strains, Eqs. (3.16) and (3.17), respectively,
is significant. Even larger is that of Eq. (3.70a), used together with Eqs. (3.75),
(3.76) and (3.77) and the corresponding concrete confinement and steel ultimate
strain models. In view of this, purely empirical expressions for the chord rotation at
flexural failure, θu, have been developed in Panagiotakos and Fardis (2001a). That
work has shown:

– that θu depends on whether loading to failure is monotonic or fully-reversed
(cyclic), but is rather insensitive to the number of major deflection cycles pre-
ceding failure;

– that monotonic test data should be distinguished from the cyclic, but used
together in regressions for θu, as complementary: monotonic tests in the literature
cover many members with asymmetric reinforcement and/or less ductile steel,
but few walls or members with T-, H-, U- or hollow rectangular section and no
diagonally reinforced elements; the reverse applies for the available cyclic tests;

As a follow up and improvement over (Panagiotakos and Fardis 2001a), a
larger databank of test results has been used in Biskinis (2007) and Biskinis and
Fardis (2004, 2007) to develop three alternative – and almost equivalent – expres-
sions for the chord rotation at flexure-controlled failure, θu, of members with rect-
angular compression zone and detailing for earthquake resistance (including the
use of continuous ribbed bars for the longitudinal reinforcement). The first one,
Eq. (3.78a), is for the total ultimate chord rotation, θu. Equations (3.78b) and (3.78c)
by contrast separate θu into its elastic component, θy, given by Eqs. (3.66), and the
plastic one, θu

pl = θu–θy.
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θu = ast (1 − 0.43acy)
(
1 + asl

2

) (
1 − 0.42aw,r

) (
1 − 2

7
aw,nr

)
(0.3ν)

[
max (0.01; ω2)

max (0.01; ω1)
fc

]0.225 [
min

(
9;

Ls

h

)]0.35

25

⎛
⎝aρs fyw

fc

⎞
⎠

1.25100ρd

(3.78a)

θu = θy + θ pl
u = θy + a pl

st (1 − 0.52acy)(
1 + asl

1.6

) (
1 − 0.44aw,r

) (
1 − aw,nr

4

)
(0.25)ν

(
max(0.01; ω2)
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(3.78b)

θu = θy + θ pl
u = θy + ahbw

st (1 − 0.525acy)

(1 + 0.6asl )

(
1 − 0.052 max

(
1.5; min

(
10,

h

bw

)))
(0.2)ν
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max(0.01; ω2)
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h
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c 25
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⎞
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1.225100ρd

(3.78c)

where:

ast, apl
st, ahbw

st: coefficients for the steel type: ast = apl
st = 0.0185 and ahbw

st

= 0.022 for ductile hot-rolled or heat-treated (Tempcore) steel; ast = 0.0115,
apl

st = 0.009 and ahbw
st = 0.0095 for cold-worked steel;

acy: zero-one variable for the type of loading, equal to acy = 0 for monotonic
loading and to acy = 1 for cyclic loading;

asl: zero-one variable for slip, equal to asl = 1 if there is slip of the longitudinal
bars from their anchorage beyond the section of maximum moment, or to
asl = 0 if there is not (cf. Eqs. (3.66) and (3.72));

aw,r: zero-one variable for rectangular walls, aw,r = 1 for rectangular walls,
aw,,r = 0 otherwise;

aw,nr: zero-one variable for non-rectangular walls, aw,nr = 1 for walls with T-,
H-, U- or hollow rectangular section and aw,nr = 0 for other members;

ν = N/bhfc, with b = width of compression zone, N = axial force, positive for
compression;

ω1 = (ρ1+ρv)fyL/fc: mechanical reinforcement ratio of tension and “web” lon-
gitudinal reinforcement;

ω2 = ρ2fyL/fc: mechanical reinforcement ratio of compression longitudinal rein-
forcement;

fc: uniaxial (cylindrical) concrete strength (MPa);
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Ls/h = M/Vh: shear span ratio at the section of maximum moment;
ρs = Ash/bwsh: ratio of transverse steel parallel to the loading direction;
fyw: yield stress of transverse steel;
a: effectiveness factor for confinement by transverse reinforcement from

Eq. (3.24) (using Eqs. (3.20c) and (3.21));
ρd: steel ratio of diagonal reinforcement in each diagonal direction.
bw: width of one web, even in cross-sections with one or more parallel webs

(for Eq. (3.78c) which distinguishes walls and members with T-, H-, U- or
hollow rectangular section only through the aspect ratio, h/bw, of each web).

Annex A of Eurocode 8, Part 3 (CEN 2005a) has adopted the special case of
Eqs. (3.78a) and (3.78b) for cyclic loading (acy = 1) and slippage of the longitudinal
bars from their anchorage beyond the section of maximum moment (asl = 1), but
with a different value of the coefficient multiplying aw,r for walls: 0.40, in lieu of
0.42 or 0.44.

The dependence of θu on h/bw according to Eq. (3.78c) suggests that the lower
ultimate deformation of non-rectangular walls and mainly of rectangular ones, com-
pared to beams or columns with more compact section, may be due to lateral
instability.

Equations (3.78b) and (3.78c) can be extended more easily than Eq. (3.78a)
to variations of the standard case of unretrofitted members with continuous lon-
gitudinal bars. Lap-splicing of longitudinal bars within the plastic hinge region
(see Section 3.2.3.9) and/or wrapping of the end region with an FRP jacket (see
Section 3.2.3.10) affect differently the elastic and the plastic part of the ultimate
chord rotation and should be accounted for accordingly.

For the subsets of 300 monotonic and 1040 cyclic tests available, as well as over-
all, each one of Eqs. (3.78) give a median test-to-prediction ratio for θu of (effec-
tively) 1.00. The coefficient of variation of the test-to-prediction ratio in the mono-
tonic tests is 53.3%. In the 1040 cyclic tests the corresponding values are 37.4, 37.3
and 38%. For the overall 1340 monotonic or cyclic tests the coefficient of vari-
ation of the test-to-prediction ratio is 42.4%. For the subgroup of 62 rectangular
walls, Eq. (3.78a), (3.78b) or (3.78c) give a median test-to-prediction ratio of 1.00
and a coefficient of variation of 33.6, 33.1 and 37.5%. For 55 members with T-,
H-, U- or hollow rectangular section, either Eq. (3.78a) or (3.78b) give a median
test-to-prediction ratio of 1.00 and coefficients of variation of 33 and 31.5%, while
Eq. (3.78c) gives a median of 1.07 and a coefficient of variation of 28.6%.

Although Eqs. (3.78) give a fairly uniform scatter throughout the full range of
all independent variables, they underpredict high values of θu, especially for mono-
tonic loading, and overpredict low ones. They share this lack of fit with any model
in Section 3.2.3.4 based on curvatures and the plastic hinge length. In all cases
Eqs. (3.78) give a less biased and more accurate estimate of θu than anyone of the
models in Section 3.2.3.4. The scatter of the test-to-prediction ratio is much less,
notably not much larger than that of Eqs. (3.66) for the chord rotation at yield-
ing, and not unduly large compared to the contribution of the natural or test-to-test
variability, which gives a coefficient of variation of about 18% for θu of practically
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identical specimens. After subtracting this source of scatter, the coefficient of varia-
tion due to model uncertainty is equal to the values quoted above, reduced by about
3% for the larger of these values to 5% for the smaller ones. After this reduction, the
variance of the cyclic data with respect to Eqs. (3.78a), (3.78b) or (3.78c) is 36.5%,
41.5% or 41%, respectively of their total variance. The corresponding variances of
the monotonic data values are 43, 44.5 and 46%, respectively. So, Eqs. (3.78) per-
form better than any of the models in Section 3.2.3.4.

The few data for members without detailing for earthquake resistance (e.g., not
closed stirrups), but with continuous ribbed (deformed) longitudinal bars, show that
their chord rotation at flexure-controlled failure may be obtained by the following
modification of Eqs. (3.78) (Biskinis 2007):

θu,old = θu,Eq.(3.78a) / 1.2, or (3.79a)

θu,old = θy + θ
pl
u,Eq.(3.78b) or Eq.(3.78c) / 1.2 (3.79b)

Annex A of Eurocode 8, Part 3 (CEN 2005a) has adopted a version of Eqs. (3.79)
with factor 1/1.2 = 0.833 replaced by 0.825.

For about 50 cyclic tests of members without detailing for earthquake resistance
but with continuous ribbed longitudinal bars, Eq. (3.79a) and (3.79b) (the latter
with θu

pl from Eq. (3.78c)) give a median of 1.00 for the test-to-prediction ratio and
a coefficient of variation of 30.8%. The corresponding values for Eq. (3.79b) with
θu

pl from Eq. (3.78b) are 0.99 and 32.2% (Biskinis 2007). The Eurocode 8-Part 3
versions give medians higher than the above by 0.01.

Few (about 30) available cyclic tests of members without detailing for earthquake
resistance and continuous smooth (plain) longitudinal bars suggest the following
expression for the chord rotation at flexure-controlled failure, giving a median of
1.00 and a coefficient of variation of 32.7% for the test-to-prediction ratio:

θu,smooth = 0.95 θu,Eq.(3.79) (3.80)

3.2.3.6 Member Axial Deformations Due to the Flexural Response

When the curvature increases from zero to ϕ, the axial strain at mid-depth of a
section changes by:

Δεo = |ϕ|(0.5 − ξ )d (3.81)

If the axial load on the cross-section is zero or low (as in beams or in walls,
respectively), the neutral axis depth, normalised to the effective depth d as ξ ,
is less than 0.5. It may even become negative during the phase of the response
when the cracks are open through the depth and the steel couple alone resists the
applied moment. Because ξ increases with increasing axial force ratio, ν, the higher
the value of ν, the lower is the additional elongation (as a comparison between
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(a) (b)

Fig. 3.33 Axial strain at section mid-depth due to cycling of the lateral displacement: (a) column
with low axial force that does not fail; (b) column with high axial load ultimately failing in bending

Fig. 3.33(a) and (b) shows). If ν exceeds the balance load, the value of ξ exceeds
0.5 and the axial strain at mid-depth of the cross-section turns into shortening.

At each displacement cycle an axial extension normally accompanies the devel-
opment of curvature, regardless of the sign of curvature. Except during the phase
when cracks are open through the depth, the value of ξ is approximately constant
along the member and the total additional axial displacement between two sections
A and B of the member is equal to:

Δδx = ∫
l
Δεo dx = (0.5 − ξ )d ∫

l
|ϕ|dx = (0.5 − ξ )θABd (3.82)

where θAB is the relative rotation of sections A and B.12 Equation (3.82) shows that
the maximum additional axial extension takes place when relative rotation attains
its peak value and is proportional to it.

The axial extension given by Eqs. (3.81) and (3.82) is additional to any axial
deformation that may exist during the “neutral” part of the loading cycle, i.e. when
the section curvature, ϕ, is (about) zero. At that stage through-depth cracks may be
open and the total axial strain at mid-depth of the section, εo, is the average of the
permanent strains locked in the tension and the compression reinforcement. These
permanent strains are normally tensile (see the values of strain in Figs. 3.5, 3.6 and
3.7 at zero stress, after several load cycles). In beams, or in columns and walls with
low axial load, the tensile strain at mid-depth of the section may be significant in
magnitude and increase in a ratcheting manner during cycling of the deflection (see
evolution of axial displacements at the bottom left diagram of Fig. 3.34). In columns,
after the cover spalls, the concrete core partially disintegrates and/or vertical bars
buckle, the mean compressive stress of the concrete increases and normally turns the
axial strain, εo, at section mid-depth during the “neutral” part of the loading cycle
from extension to shortening. Axial shortening accelerates as failure due to cyclic

12If moments and curvatures change sign between sections A and B, θAB is not the angle between
the tangent to the member axis at these two sections, but the sum of the absolute values of relative
rotations between section A and the point of inflection and between the point of inflection and
section B.
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Fig. 3.34 Column biaxial deflection paths (a), (b), resulting biaxial force paths (c), (d), force-
deflection loops in the two lateral directions (e), (f), evolution of axial displacement (g), (h) (Bou-
sias 1993)
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loading approaches (Fig. 3.33(b)). So, what has started as accumulation of tensile
axial strains at the axis of the column may at the end of the cyclic load history revert
into net shortening (see evolution of axial displacements at the bottom right diagram
of Fig. 3.34). Moreover, if the axial load ratio ν has intermediate values (e.g., above
0.2), from the very beginning of the cyclic loading the ratcheting axial strain at mid-
depth of the column section, εo, during the “neutral” part of the loading cycle is
shortening instead of elongation (Fig. 3.33(b)).

Unlike the axial strain of Eq. (3.81) that may refer to the full length and pro-
duces a net axial elongation at the peak of the lateral displacement cycle accord-
ing to Eq. (3.82), ratcheting axial strains that develop during the “neutral” (low-
displacement) part of the load cycle according to the previous paragraph take place
only within the plastic hinge. Therefore, their overall effect on the length of the
member is normally smaller than the additional net elongation of Eq. (3.82) at the
peaks of the cyclic lateral displacement history.

There is another facet of the coupling between flexural and axial behaviour,
notably the effect of the variation of axial force on flexural deformations: for con-
stant moment, the reduction of flexural deformation due to an increase in the axial
compression is less than its increase due to an axial force reduction by the same
amount. So, cycling of the axial force causes a ratcheting increase of flexural defor-
mations. Their cumulative magnitude is significant in comparison to the residual
flexural deformations due to cycling of the moment itself (Bousias et al. 1992,
1995). The build-up of flexural deformations due to an axial force that varies concur-
rently with the bending moments amounts to a gradual, albeit significant, apparent
degradation of flexural stiffness.

According to Eq. (3.82) walls with large effective depth, d, develop large net
elongation at the centroid of the section concurrently with the peaks of their lateral
displacements response. We have seen in Section 2.2.2.4 that the effects of such
elongation on the response and performance of wall or wall-equivalent dual systems
are beneficial.

Compared to walls, columns have much shorter effective depth, d, and larger
values of ξ . So, the peaks of their lateral displacement response are accompanied
by small additional elongation according to Eq. (3.82). This additional elongation
brings about an increase in the axial compression of those columns that have larger
size (effective depth, d), smaller ξ -value (i.e., lower axial load ratio, ν) and/or
larger deformation response (relative rotation between sections, θAB) than the other
columns, especially their neighbouring ones. The increase in axial compression of
these columns will be counterbalanced by a reduction in the others, effected through
shear forces in the beams connecting the columns in the 3D frame structural system.
Although small, the increase in axial compression is detrimental for the performance
of large, lightly loaded columns with the larger deformation response, as it reduces
their ultimate flexural deformation. By contrast, the net shortening of the columns
with fairly heavy axial load (with axial load ratio well above 0.2), or of any col-
umn that approaches its ultimate deformation capacity, has a beneficial effect, as it
causes part of the axial load to be transferred – via shear forces in the beams – to
other columns of the system.
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Beams have about the same effective depth, d, as columns but much smaller ξ -
values. So, the additional net elongation according to Eq. (3.82) accompanying the
peaks of their flexural response is larger. The columns into which a beam frames
restrain this axial extension through shear forces translated into a compressive axial
force in the beam. This compressive force will not only tend to reduce its axial exten-
sion, but will also affect its flexural behaviour, increasing its stiffness and strength,
etc.

The three paragraphs above have pointed out the coupling between the flexural
and the axial behaviour of the members of real frames or dual structural systems.
This coupling is not taken into account explicitly in practical seismic design. To
account for it in a nonlinear seismic response analysis, a member model should
capture not only the flexural behaviour, but also the axial one, including its coupling
with the flexural response. Fibre models, described in Section 4.10.1.2, have this
capability.

3.2.3.7 Flexural Behaviour Under Cyclic Biaxial Loading

The behaviour of axially loaded concrete members under biaxial moment histories
is important, as in general the seismic response of columns in concrete frames is in
three dimensions (3D). Biaxial flexure reduces the moment resistance in any of the
two principal directions of bending and increases cyclic strength degradation com-
pared to uniaxial loading. By contrast, the beams of 3D frame systems are subjected
to uniaxial flexure and do not suffer from the adverse effects of biaxial loading. So,
biaxial column moments and the 3D response work against strong-column/weak-
beam behaviour and reduce the effectiveness of the relevant criterion, Eq. (1.4),
applied separately in two orthogonal horizontal directions in 3D frames.

Test results on axially loaded members under biaxial bending moment histories
are limited. So, as the manner in which the histories of bending moments in the two
orthogonal directions are combined adds considerably to the complexity of the prob-
lem, current knowledge of the inelastic behaviour of columns under biaxial cyclic
moments is well behind our understanding of their behaviour in uniaxial cyclic flex-
ure with axial load.

The available test results point to the conclusion that after flexural yielding there
is strong coupling of the behaviour in the two orthogonal directions of bending.
The M–ϕ and M–θ response in one of these directions is affected by the magnitude
and the history of the moment and/or deformation in the orthogonal direction. The
main effects of this coupling on the M–ϕ and M–θ behaviour in each of the two
orthogonal directions of bending are the following:

1. The apparent resistance and stiffness in each individual direction decrease, owing
to a concurrent deformation in the orthogonal direction. So, the moment compo-
nent required to maintain a given deformation in the same direction drops (Fig.
3.34). Similarly, the moment increment necessary for an increment in deforma-
tion decreases. Ratcheting flexural deformations in the direction of a moment
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component that is maintained constant are induced by cycling of the deforma-
tion in the orthogonal direction (Bousias 1993, Bousias et al. 1992, 1995).

2. The hysteretic energy dissipation increases, as hysteresis loops in each individual
direction become broader (e.g., when the peak resistance in a cycle drops under
constant deformation in its own direction, owing to an increase in moment and
deformation in the orthogonal direction, Fig. 3.34). If the response is described
in terms of a path in the 2D space of the two components of bending moment
and the concurrent path in the 2D space of the two deformation components,
the deformation vector always trails the moment vector by a “phase lag”, ψ
(Fig. 3.34). The increase in hysteretic energy dissipation due to the coupling of
the two components can be expressed as an equivalent viscous damping ratio
equal to sinψ (Bousias et al. 1992, 1995). The “phase lag”, ψ , increases with
inelasticity, i.e. with the magnitude of the post-yield excursion, especially when
column failure is imminent.

3. The deformation capacity in each individual direction decreases. When a flexure-
controlled ultimate deformation is reached (i.e., when the resultant of the two
moment components cannot increase above 80% of the peak moment resultant
reached so far during the biaxial response) the individual deformation compo-
nents are lower than they would had been, if flexure-controlled ultimate defor-
mation were attained by uniaxial loading in the corresponding lateral direction.

Effects no. 1 and 3 are adverse, but effect no. 2 is beneficial.
The additional axial extension accompanying biaxial flexural deformations

roughly follows Eqs. (3.81) and (3.82) in Section 3.2.3.6 and is independent of
the direction of the lateral displacement. The same applies for the ratcheting axial
strains (extension for low values of axial load ratio, shortening for medium or high
ones) that accumulate due to cycling of the deflections. The axial displacements at
the bottom of Fig. 3.34 increase in a ratcheting manner during cycling of the lateral
displacement. At the diagram on the right the axial extension turns at the end of the
load history to shortening as failure due to cyclic loading approaches.

Loading along the diagonal of the cross-section may be considered as simulta-
neous equal biaxial loading parallel to the sides of the section. When presented in
terms of moment and deformation components along the sides of the cross-section,
the behaviour appears to give a reduced (by about

√
2) strength and stiffness com-

pared to uniaxial loading and accordingly reduced energy dissipation. If presented,
however, in terms of the resultant moment and deformation along the single direc-
tion of loading, hysteresis loops are similar to those in uniaxial loading, with about
the same or even sometimes enhanced strength and energy dissipation capacity. This
applies in general for any loading in a single transverse direction oblique to the sides
of the section.

Except when the axial load varies near the balance load, the variation of the axial
force with both components of the biaxial moment/deformation affects the flexural
response in both lateral directions as in the uniaxial case. When the axial compres-
sion increases, the instantaneous resistance and stiffness increase, strength decay
with cycling accelerates and deformation capacity is reduced. Reduction of the
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axial compression has the opposite effects. Variation of the axial load only with one
component of the moment/deformation affects the resistance, stiffness and cyclic
strength decay, mainly in the corresponding lateral direction.

3.2.3.8 Flexural Yielding and Flexure-Controlled Ultimate Chord Rotation
Under Cyclic Biaxial Loading

Test results of columns under cyclic biaxial bending with axial force are sparse,
owing to the practical difficulties of such testing. Yielding in such tests may be
identified with the corner of a bilinear M–θ envelope of the experimental mono-
tonic M–θ curve or of the M–θ hysteresis loops, separately for each one of the two
directions of bending, y and z. The so-determined components, Myy,exp and Myz,exp,
of the experimental yield moment in 35 flexure-dominated biaxial tests in which
yielding had taken place under biaxial loading, have been compared with the com-
ponents of the biaxial moment resistance. These components have been computed
from plane-section analysis, using an elastic-perfectly plastic σ -ε law for the rein-
forcing bars (at their exact location in the section) and a parabolic-rectangular one
for the concrete, up to a compressive strain of 0.0045 at one corner of the cross-
section.13 Both of the so-computed components of moment resistance gave a mean
test-to-prediction ratio of 1.0, which is better than what has been achieved for uni-
axial bending in Section 3.2.2.2, where section yielding was identified with yielding
of the extreme tension bars or with a fixed concrete strain at the extreme compres-
sion fibres for linear-elastic concrete in compression. This confirms that the cor-
ner of a bilinear M–θ envelop of the measured hysteresis loops, expressing overall
section yielding is slightly past yielding of the extreme corner bar or compression
fibre.

The uniaxial chord rotations in the two directions of bending, θyy,uni, θyz,uni, have
also been computed from Eqs. (3.66) for these 35 biaxial tests. The experimental
values at section yielding, θyy,exp, θyz,exp, give ratios θyy,exp/θyy,uni and θyz,exp/θyz,uni

that on average exceed by a little more than 10% a circular interaction diagram of
the form:

(
θyy,exp

θyy,uni

)2

+
(
θyz,exp

θyz,uni

)2

= 1 (3.83)

The prime role of θy is for the calculation of the effective stiffness to yield point
via Eq. (3.68). Using the values of Myy,exp, θyy,exp, and Myz,exp, θyz,exp at the corner
of a bilinear envelope M–θ of the experimental monotonic M–θ curve or of the
M–θ hysteresis loops, 35 pairs of the “experimental” effective stiffness have been

13Except for the value of the terminal strain, these assumptions are the same as those made for
the calculation of the uniaxial moment resistance in Section 3.2.2.5. The computed components of
the biaxial moment resistance were found to be fairly insensitive to the precise value of this limit
strain.
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computed from Eq. (3.68), separately in each direction of bending, y or z. They have
been compared to:

i. the corresponding effective stiffness computed from Eq. (3.68) separately
from Myy,uni, θyy,uni and Myz,uni, θyz,uni, using the uniaxial yield moment from
Section 3.2.2.2 and the chord rotation at yielding from Eq. (3.66), and

ii. the “empirical” effective stiffness from Eq. (3.69),

in the transverse direction, y or z, of interest (Biskinis 2007). The test-to-prediction
ratios suggest that the “experimental” effective elastic stiffness in each one of the
two directions is about 10% less, on average, than the uniaxial theoretical effective
stiffness calculated in (i), i.e. theoretically from Eq. (3.68). By contrast, it exceeds
by about 7% the “empirical effective stiffness” in (ii). These trends are opposite and
hence inconclusive. However, as the theoretical effective stiffness is more reliable
and unbiased than the “empirical” one, the limited test results may be considered
to suggest that biaxial loading reduces slightly the effective elastic stiffness in each
one of the two directions of loading.

Biaxial tests carried to flexure-controlled failure are also few (about 35). The
components of chord rotation along the sides of the section at ultimate in these tests,
θuy,exp and θuz,exp, may be normalised to the corresponding ultimate chord rotations
in uniaxial loading from:

(a) the semi-empirical procedure of Section 3.2.3.4 (i.e. Eqs. (3.72) and (3.73),
together with curvatures according to Sections 3.2.2.4 and 3.2.2.10); and

(b) the purely empirical procedure of Section 3.2.3.5 and Eqs. (3.78).

The test-to-prediction ratio exceeds, on average, the circular interaction diagram:

(
θuy,exp

θuy,uni

)2

+
(
θuz,exp

θuz,uni

)2

= 1 (3.84)

by about 5% if the uniaxial ultimate chord rotations are calculated according to Eqs.
(3.72) and (3.73), etc. or by about 16% if Eqs. (3.78) in Section 3.2.3.5 are used
instead (Biskinis 2007, Bousias et al. 2002). Therefore, Eq. (3.84) is safe-sided for
the verification of the ultimate chord rotations under biaxial bending, with uniaxial
ultimate chord rotations estimated according to Sections 3.2.3.4 or 3.2.3.5.

3.2.3.9 Members with Ribbed Longitudinal Bars Lap-Spliced in the Plastic
Hinge Region

Effect of Lap-Splicing on the Yield Properties

It is still common in many parts of the world – including Europe – to lap-splice
all vertical bars of columns or walls at floor levels, for convenience of bar fixing.
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The seismic parts of the US follow nowadays the good practice of splicing longitu-
dinal bars of vertical elements outside their end regions where plastic hinges may
develop. But even there, short lap splices at floor levels are typical of vertical mem-
bers in existing substandard construction, adversely affecting their resistance and
cyclic deformation capacity.

Provided that the lap length is sufficient (i.e., greater than the value giving fsm = fy
in Eq. (3.31) of Section 3.1.3.2, or greater than the limit value in Eq. (3.85) below),
the yield moment and the moment resistance of columns with ribbed (deformed)
longitudinal bars lapped starting at the column base is clearly higher than in similar
members with continuous longitudinal bars (Biskinis and Fardis 2004, Fardis et al.
2005, Bousias et al. 2005a,b). This is thanks to end bearing of a compression bar
stopping at the base section against the very well confined concrete beyond (i.e.,
the concrete at the top of a footing or at the face of 3D joint, etc.), which seems
sufficient for the build-up of a compressive stress in that bar almost as high as in its
companion bar in the lap that continues beyond the end section. Compatibility of
longitudinal strains between these two bars and the concrete surrounding them near
the member’s end section contributes to this effect. The measured yield moment
of such columns compares better with the outcome of Eq. (3.37) in Section 3.2.2.2
under Cross-Sections with Rectangular Compression Zone (after correction with the
calibration factors given in Section 3.2.2.2 under Comparison with Experimental
Results and Empirical Expressions for the Curvature), if in the calculation of My

both bars in any pair of lapped compression bars count towards the compression
reinforcement ratio within the lap splice.

The measured secant stiffness to the yield-point is also higher than in a similar
member with continuous longitudinal bars. It compares better with the outcome of
Eq. (3.68) in Section 3.2.3.3, if in Eq. (3.68):

i. the value of My is based on the yield curvature, ϕy, calculated from Eqs. (3.33),
(3.34), (3.35) and (3.36) in Section 3.2.2.2 under Cross-Sections with Rectan-
gular Compression Zone, including in the compression reinforcement ratio both
bars of any pair of lapped bars in the compression zone, and

ii. θy is calculated from Eqs. (3.66) with the 1st and 3rd terms there based on the
value of ϕy in (i) above and with the 2nd term multiplied by the ratio of the
yield moment My modified for the lap splicing, to the value of My outside the
lap splice; moreover, to determine whether aV = 1 in the 1st term of Eqs. (3.66),
LsVRc is compared to the value of My accounting for the effect of lapping.

The recommendations above, adopted also in Part 3 of Eurocode 8 (CEN 2005a),
refer to lapped bars in compression. Regarding the lapped tension bars, Eqs. (3.31)
and (3.32) in Section 3.1.3.2 may be applied for their maximum possible stress to be
used in the calculation of My and ϕy. If this is done for over 100 tests on members
with rectangular or hollow rectangular section and ribbed bars lapped starting at the
section of maximum moment, the test-to-prediction ratio for the yield moment has a
median of 0.995 and a coefficient of variation of 11.7% (Biskinis and Fardis 2007).
Equations (3.66) may also be applied for the chord rotation at yielding according
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to rule (ii) of the previous paragraph. Then, the test-to-prediction ratio of the chord
rotation at yielding in over 80 tests has a median of 1.04 and a coefficient of variation
of 20.5%. The corresponding statistics for the secant stiffness to the yield-point are
0.935 and 25.4%.

A simpler rule has been proposed in Biskinis and Fardis (2004, 2007) for the
maximum possible stress of lapped tension bars and adopted in Part 3 of Eurocode
8 (CEN 2005a). According to it, if the straight lap length, lo, is less than a minimum
value of lap length, loy,min, required for the full transfer of the yield stress of a lapped
bar in tension to the continuing one, My and ϕy should be calculated with the yield
stress of the tension bars, fyL, multiplied by lo/loy,min. The value of loy,min is given by
the following expression (Biskinis and Fardis 2004, 2007, CEN 2005a):

loy,min = 0.3dbL fyL√
fc

( fyL and fc in MPa) (3.85)

where dbL and fyL are the mean diameter and the yield stress of longitudinal bars,
respectively. Again, Eqs. (3.66) are applied for the chord rotation at yielding accord-
ing to rule (ii) above (Biskinis and Fardis 2004, 2007, CEN 2005a). The test-to-
prediction ratio for the so-computed yield moment has a median of 1.00 and a coef-
ficient of variation of 11.6%, that for the chord rotation at yielding a median of 1.05
and a coefficient of variation of 19.9% and the one of the secant stiffness to the
yield-point a median of 0.935 and a coefficient of variation of 25.6%. Note that, if
lo ≥ loy,min, the value of My from Eq. (3.37) and of the secant stiffness to the yield-
point from Eq. (3.68) increase owing to the lapping. If lo < loy,min, both My and the
secant stiffness to the yield-point decrease with decreasing lo.

There is very little experimental information about members with short anchor-
age of the longitudinal bars beyond the end section. Section 3.1.3.2 has pointed out,
though, that Eq. (3.31) applies equally well either to a single ribbed bar with straight
anchorage length lb or to two bars lap-spliced over the same length. On this basis,
My, ϕy and θy at an end section with insufficient anchorage length lb of its longitu-
dinal bars beyond the end section may be estimated applying the rules above for the
calculation of the tensile stress in the tension bars, using lb instead of lo.

Effect of Lap-Splicing on the Flexure-Controlled Ultimate Deformation

A column with ribbed vertical bars lapped starting at its base exhibits higher flexure-
controlled ultimate deformation than a similar one with continuous vertical bars,
provided that the lapping is at least equal to a certain minimum lap length, lou,min,
given by the following expression (Biskinis and Fardis 2004, 2007), adopted also in
Part 3 of Eurocode 8 (CEN 2005a):

lou,min = dbL fyL(
1.05 + 14.5al,s

ρs fyw

fc

)√
fc

( fyL, fyw, fc in MPa) (3.86)
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where:

– ρs is the ratio of the transverse steel parallel to the plane of bending, and

al,s = (1 − 0.5sh/bo)(1 − 0.5sh/ho)nrestr/nnot, (3.87)

with

• sh: stirrup spacing,
• bo, ho: dimensions of the confined concrete core to the hoop centreline,
• ntot: total number of lapped longitudinal bars along the perimeter of the section

and
• nrestr: number of lapped bars which are engaged by a stirrup corner or a cross-

tie.

To reflect this finding, the ultimate curvature or chord rotation, monotonic or
cyclic, calculated according to the pertinent models in Sections 3.2.2.4, 3.2.3.4 and
3.2.3.5, should include in the compression reinforcement ratio both bars of any pair
of lapped bars in the compression zone.

Tests to flexural failure of rectangular members with ribbed longitudinal bars
lap-spliced starting at the section of maximum moment suggest that the flexure-
controlled ultimate deformation decreases with decreasing lap length, lo, if lo <
lou,min. With the effect of lapping on the chord rotation at yielding, θy, quantified
according to the sub-section above on the Effect of Lap-Splicing on the Yield Prop-
erties, it is convenient to compute the ultimate chord rotation as the sum of the
so-modified value of θy plus a plastic part, θu

pl, appropriately reduced owing to
the short lapping, lo < lou,min. There are two approaches for the estimation of the
reduced value of θu

pl:

(i) The empirical approach of Section 3.2.3.5. The available test results suggest
that θu

pl decreases linearly with lo, if lo < lou,min; θu
pl may be taken equal to the

last term at the right-hand-side of Eqs. (3.78b) or (3.78c) times lo/lou,min ≤ 1,
with lou,min from Eq. (3.86) (Biskinis and Fardis 2004, 2007, CEN 2005a). In
about 75 tests to flexure-controlled ultimate deformation the test-to-prediction
ratio of the so-computed ultimate chord rotation, θu, has a median of 1.065 and
a coefficient of variation of 36.4% if the un-reduced value of θu

pl is taken from
Eq. (3.78b), or a median of 1.045 and a coefficient of variation of 35.9% if
Eq. (3.78c) is used instead.

(ii) The approach of Section 3.2.3.4, based on curvatures and the plastic hinge
length. In that case, the yield curvature, ϕy, entering the calculation may be
modified according to the sub-section above on the Effect of Lap-Splicing on
the Yield Properties for the effect of lap-splicing. The only other modification
is in the calculation of ϕu. There, in addition to including in the compression
reinforcement ratio both lapped compression bars in any pair, if the lap length,
lo, is shorter than the value of lou,min from Eq. (3.86), the maximum elongation
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of the extreme tension bars at ultimate conditions due to steel rupture should be
reduced to:

εsu,l =
(

1.2
lo

lou,min
− 0.2

)
εsu ≥ lo

loy,min

fyL

Es
(3.88)

where εsu is given by Eq. (3.64c) or (3.64b) for monotonic or cyclic load-
ing, respectively, and loy,min, lou,min are given by Eqs. (3.85) and (3.86), respec-
tively. In about 75 tests to flexure-controlled ultimate deformation the test-to-
prediction ratio of the so-computed ultimate chord rotation, θu, has a median
of 1.005 and a coefficient of variation of 35.2%, i.e., better than in approach (i)
above.

There are very few cyclic tests of columns without detailing for earthquake resis-
tance and smooth (plain) hooked bars lapped starting at the base (just 7 tests to the
author’s knowledge, all with lo ≥ 15dbL). They suggest the following modification
of Eq. (3.80) for the chord rotation at flexure-controlled failure:

θu,smooth−lapped =
10 + min

(
lo

dbL
; 40

)
50

θu,Eq.(3.80) (3.80a)

giving a median of 1.0 and a coefficient of variation of 28% for the test-to-prediction
ratio.

3.2.3.10 Effect of FRP Wrapping of the Plastic Hinge Region on Flexural
Behaviour

Members with Continuous Bars

Flexural yielding of the member’s end section is normally associated with yielding
of the tension reinforcement and is insensitive to what happens at the compression
zone unless the axial load is high. The experimental yield moment of members
having the plastic hinge region wrapped with FRP nonetheless exceeds on aver-
age the value calculated according to Section 3.2.2.2. This exceedance is not fully
redressed when the confined concrete strength, fc∗, estimated from Eq. (3.27a) in
Section 3.1.2.4, is used instead of the unconfined value, fc: the test-to-prediction
ratio of the so-estimated yield moment in 180 FRP-wrapped members has a median
of 1.065 (in lieu of 1.025 for beams or columns without FRP wrapping, see Sec-
tion 3.2.2.2 under Comparison with Experimental Results and Empirical Expres-
sions for the Curvature) and a coefficient of variation of 19.6% (Biskinis and Fardis
2009). So, a calibration factor of 1.065 should be applied on the values of the yield
moment and curvature, My, ϕy, obtained from 1st principles according to Section
3.2.2.2 using the confined concrete strength, fc∗, in lieu of fc. The correction factor
of 1.065 should be applied also on the 1st (flexural) term of Eqs. (3.66) for the chord
rotation at apparent yielding, θy, of members with FRP-wrapped ends. By doing so,
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the test-to-prediction ratio of θy in about 135 FRP-wrapped members has a median
of 0.995 and a coefficient of variation of 37.8% (Biskinis and Fardis 2009). If the
so-computed values of My and θy are used in Eq. (3.68), the test-to-prediction ratio
of the secant stiffness to the yield-point of these FRP-wrapped test specimens has a
median of 1.055 and a coefficient of variation of 28.7% (Biskinis and Fardis 2009).

FRP-wrapping is often applied to retrofit members that have suffered serious
damage during an earthquake (ranging from yielding to ultimate deformation), of
course after repair of the damage. Repair followed by FRP-wrapping fully re-instate
the yield moment of the damaged member: the mean and the median of the test-to-
prediction ratio of the yield moment of 20 FRP-wrapped pre-damaged columns do
not deviate significantly from those of the undamaged ones. By contrast, repair and
FRP-wrapping cannot redress the effect of previous damage on the effective flexural
stiffness to yielding (as controlled by the chord rotation at yielding, θy): the result
of Eq. (3.68) has been found to exceed the secant stiffness to the yield-point of 20
FRP-wrapped pre-damaged columns by about 30% on average (Biskinis and Fardis
2009).

If the plastic hinge region is wrapped with FRP its ultimate flexural deformation
is enhanced, primarily thanks to the confinement of the compression zone and the
increase of the concrete ultimate strain there. As a matter of fact, Eqs. (3.29) and
(3.30) in Section 3.1.2.4 for the ultimate strain of concrete under cyclic loading have
been fitted to ultimate curvature data in about 35 tests of rectangular FRP-wrapped
columns (Biskinis and Fardis 2009). In that case the ultimate curvature, ϕu, is cal-
culated from first principles according to the analysis in Section 3.2.2.4, modified
to accept a parabolic-trapezoidal σ -ε curve for the confined concrete – as in Lam
and Teng (2003a,b) – instead of the parabolic-rectangular one of unconfined con-
crete. Equations (3.29) and (3.30) used together with the (Lam and Teng 2003a,b)
confined strength model, Eq. (3.27a), give an average test-to-prediction ratio of 1.01
for ϕu with a coefficient of variation of 27.5%.14 If the so-computed ultimate cur-
vature, ϕu, is used in Eq. (3.72) of Section 3.2.3.4 together with the value of Lpl

from Eq. (3.73) (fitted to members without FRP wrapping under cyclic loading), the
test-to-prediction ratio of θu in about 95 tests of members with FRP wrapping has a
median of 0.995 and a coefficient of variation of 34.6% (Biskinis and Fardis 2009).
In another 18 members that had suffered certain damage by testing before been
repaired, FRP-wrapped and re-tested, Eqs. (3.72) and (3.73) give a median test-to-
prediction ratio of 0.985 and a coefficient of variation of 23.1%. If the columns
that had been FRP-wrapped after been damaged and repaired are put together with
the virgin ones, the overall median of the test-to-prediction ratio is 0.995 and the
coefficient of variation 33.4%.

14If the Lam and Teng Eq. (3.27b) is used for εcu
∗ instead of Eqs. (3.29) and (3.30), the ultimate

curvature of the FRP-wrapped member is underpredicted by a factor of about 2.3. So, notwith-
standing any adverse effect of the cycling, the FRP that confines the extreme compression fibres
seems to be put under lower demands by cyclic bending than by the condition of monotonic con-
centric compression for which Eq. (3.27b) has been developed, a condition inducing a uniformly
large strain to the FRP all around the section.
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It has been proposed in Biskinis and Fardis (2004) and adopted by Eurocode 8,
Part 3 (CEN 2005a) to extend to members with FRP wrapping the purely empirical
model for θu, Eqs. (3.78) in Section 3.2.3.5, by adding the term afρf ff,e/fc to the
exponent of the 2nd term from the end to include the effect of confinement by the
FRP, where:

– ρf = 2tf/bw is the geometric ratio of the FRP parallel to the loading direction,
– af is the confinement effectiveness factor of the section by the FRP, given by Eq.

(3.28) where it is denoted by an, and
– ff,e, is the effective stress of the FRP:

f f,e = min
(

f f u,nom ; εu, f E f
) (

1 − min

[
0.5; 0.7 min

(
f f u,nom ; εu, f E f

) ρ f

fc

])
(3.89)

with ffu,nom and Ef denoting the nominal strength and the Elastic modulus of the
FRP and εu,f being a limit strain, equal to:

• εu,f = 0.015 for CFRP or AFRP; and
• εu,f = 0.02 for GFRP.

With this modification Eqs. (3.78) give a median for the test-to-prediction ratio in
about 95 tests of FRP-wrapped members equal to 1.10 and a coefficient of variation
of 31.8%. In 18 members that had been FRP-wrapped and re-tested after been pre-
damaged by testing and repaired, the modification of Eqs. (3.78) on the basis of Eq.
(3.89) gives a median test-to-prediction ratio of 0.925 and a coefficient of variation
of 24%. If all FRP-wrapped columns, virgin and pre-damaged/repaired are lumped
together, the overall median of the test-to-prediction ratio is 1.09 and the coefficient
of variation is 31.5%.

The proposal above has been improved as follows (Biskinis and Fardis 2009):
the term added to the exponent of the 2nd term from the end of Eqs. (3.78) to reflect
effective confinement by the FRP is:

(
a
ρ fu

fc

)
f,e f f

= a f min

[
1.0; min

(
f f u,nom ; εu, f E f

) ρ f

fc

]
(

1 − 0.4 min

[
1.0; min

(
f f u,nom ; εu, f E f

) ρ f

fc

]) (3.90)

where the limit strain is always equal to εu,f = 0.015. With this modification Eqs.
(3.78) give a median test-to-prediction ratio in about 95 tests of FRP-wrapped virgin
members equal to 1.06 and a coefficient of variation of 31.3%.

An even better fit to those tests is achieved (median test-to-prediction ratio of
1.035 and coefficient of variation of 31.2%) if the FRP-confinement term added to
the exponent of the 2nd term from the end of Eqs. (3.78) is based on the effective
FRP strength of the model in Lam and Teng (2003a,b): ffu,L&T = Efεfu, with εfu about
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equal to 60% of the failure strain of tensile coupons.15 The resulting alternative to
Eq. (3.90) is:

(
a
ρ fu

fc

)
f,e f f

= a f c f min

[
0.4;

ρ f f f u,L&T

fc

](
1 − 0.5 min

[
0.4;

ρ f f f u,L&T

fc

])
(3.91)

where cf = 1.8 for CFRP and cf = 0.8 for GFRP or AFRP.
In the 18 members that were FRP-wrapped and re-tested after been pre-damaged

by testing and repaired, Eqs. (3.78) modified on the basis of Eqs. (3.90) or (3.91)
give a median test-to-prediction ratio of 0.925 or 0.945, and a coefficient of vari-
ation of 24% or 26%, respectively. If all FRP-wrapped columns, virgin and pre-
damaged/repaired are lumped together, the overall median of the test-to-prediction
ratio of Eqs. (3.78) modified on the basis of Eqs. (3.90) or (3.91) is 1.045 or 1.03,
respectively, and the coefficient of variation is about 31%.

Note that the last term in each one of Eqs. (3.89), (3.90) and (3.91) reflects
the experimentally documented reduced effectiveness of FRP-wrapping when larger
amounts of FRP are used.

It has been suggested above that previous damage does not have a statistically
significant effect on the ultimate chord rotation of FRP-wrapped members predicted
from Eqs. (3.72), (3.73) and (3.74) and using in Eq. (3.72) an ultimate curvature,
ϕu, from:

– first principles, according to the analysis in Section 3.2.2.4 modified to use a
parabolic-trapezoidal σ -ε curve for confined concrete – as in the (Lam and Teng
2003a,b) model for confinement by FRP – instead of a parabolic-rectangular one,

– the (Lam and Teng 2003a,b) model for the confined strength, Eq. (3.27a), and
– Equations (3.29) and (3.30) for the ultimate strain of FRP-confined concrete

under cyclic loading.

That conclusion is not corroborated by the comparisons of the predictions of
Eqs. (3.78), modified with the help of Eqs. (3.89), (3.90) and (3.91). Although the
data are not sufficient for a statistically meaningful conclusion, previous damage
seems to reduce by 10–15% the ultimate chord rotation predicted by Eqs. (3.78) as
modified on the basis of Eqs. (3.89), (3.90) or (3.91). The predictions are on the safe
side for members that are intact when wrapped with FRP and slightly on the unsafe
side for previously damaged ones.

Members with Lap-Spliced Ribbed Bars

What has been said in the sub-section above on Effect of Lap-Splicing on the Yield
Properties regarding the effect of lap-splicing on the yield moment and the member

15As noted in Section 3.1.2.4, in Lam and Teng (2003a,b) this percentage value is proposed only
for CFRP or GFRP, and 85% is given for AFRP, but on the basis of few test results.
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secant stiffness to the yield-point still applies if the end region(s) of the member
is wrapped with FRP. The only difference is in the calculation of the maximum
possible stress of lapped tension bars, where the effect of the FRP wrapping should
be taken into account. Provided that the wrapping extends over at least the full length
of the lap, My and ϕy may be calculated with the maximum possible stress of the
lapped tension bars from Eq. (3.31), using there Eq. (3.32a) (see Section 3.1.3.2).
In about 30 tests on members of rectangular section, having their ribbed bars lapped
and FRP wrapping applied starting at the section of maximum moment, the test-
to-prediction ratio for the so-computed yield moment is on average equal to 1.13
and its coefficient of variation is 8.8%. The corresponding statistics for the chord
rotation at yielding are 1.17 and 18% and for the member secant stiffness to the
yield-point 1.00 and 18.8%, respectively.

Section 3.2.3.9 under Effect of Lap-Splicing on the Yield Properties has presented
a simpler alternative to the use of Eq. (3.31) to account for the effect of lapping
of ribbed bars on the yield properties of members without FRP wrapping. In that
alternative the yield stress of lapped tension bars, fyL, is multiplied by lo/loy,min ≤ 1
(Biskinis 2007, Biskinis and Fardis 2004, 2007, CEN 2005a). The extension of that
rule to members with FRP wrapping all along the length of the lap splice entails just
a reduction by one-third of the minimum length given by Eq. (3.85):

For FRP wrapping:

loy,min = 0.2dbL fyL√
fc

( fyL and fc in MPa) (3.85a)

This simplification, proposed in (Biskinis 2007, Biskinis and Fardis 2004, 2007)
and adopted in Part 3 of Eurocode 8 (CEN 2005a), gives for the test-to-prediction
ratio of the yield moment in about 30 tests an average of 1.06 and a coefficient of
variation of 11.4% (Biskinis and Fardis 2009). The corresponding statistics for the
chord rotation at yielding are 1.085 and 16.6% and for the member secant stiffness
to the yield-point 1.005 and 18.2%, respectively.

The approach of Section 3.2.3.9 under Effect of Lap-Splicing on the Flexure-
Controlled Ultimate Deformation for the effect of lap-splicing of ribbed longitudi-
nal bars on the member’s flexure-controlled ultimate deformation can be extended
to members with FRP wrapping all along the lap-splicing. In a way similar to that
approach, the ultimate chord rotation, θu, is expressed as the sum of the chord rota-
tion at yielding, θy, plus a plastic part, θu

pl. The effect of FRP-wrapping on θy is
estimated according to the paragraph above. Regarding the effect on θu

pl, approach
(i) in Section 3.2.3.9 under Effect of Lap-Splicing on the Flexure-Controlled Ulti-
mate Deformation, based on the empirical ultimate chord rotation of Section 3.2.3.5,
takes θu

pl as equal to the last term at the right-hand-side of Eqs. (3.78b) or (3.78c)
times lo/lou,min ≤ 1, with lou,min from Eq. (3.86) (Biskinis 2007, Biskinis and Fardis
2007, CEN 2005a). For the extension of that approach to members with FRP wrap-
ping all along the region with the lap-splice, recall the three approaches presented
in the sub-section above on Members with Continuous Bars for the empirical esti-
mation of θu

pl of members with continuous bars and FRP wrapping:
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1. The one proposed in (Biskinis 2007, Biskinis and Fardis 2004, 2007) and adopted
in Eurocode 8, Part 3 (CEN 2005a), uses Eq. (3.89) in the calculation of the effect
of confinement by the FRP. Its natural extension, also proposed in (Biskinis 2007,
Biskinis and Fardis 2007) and adopted in CEN (2005a), is to calculate lou,min via
the following modification of Eqs. (3.86) and (3.87):

lou,min = dbL fyL(
1.05 + 14.5 4

ntot
a f

ρ f f f,e

fc

)√
fc

( fyL, ff,e, fc in MPa) (3.92)

where ff,e comes from Eq. (3.89) and ntot denotes the total number of lapped
longitudinal bars along the perimeter of the section, out of which only the four
corner ones are confined by the FRP (nrestr = 4 in Eq. (3.87)). Note that, θu

pl

before its reduction due to the lap splice is calculated from Eqs. (3.78b) or (3.78c)
with the exponent of the 2nd term from the end reflecting confinement by the
steel ties as well as by the FRP (i.e., the term afρfff,e/fc is added). By contrast,
confinement of lapped bars by the FRP alone and not by the steel ties is taken
into account in Eq. (3.92). Thirty members with lap-spliced ribbed bars and FRP-
wrapping cyclically tested to flexure-controlled ultimate deformation have mean
test-to-prediction ratio for the so-computed ultimate chord rotation, θu, equal to
0.965 or 0.95, and a coefficient of variation of that ratio of 26.6% or 27.2%, if
the un-reduced value of θu

pl is taken from Eq. (3.78b) or (3.78c), respectively
(Biskinis and Fardis 2009).

2. The improvement of the approach in (Biskinis 2007, Biskinis and Fardis 2004,
2007, CEN 2005a) as proposed in Biskinis and Fardis (2009), namely the use of
Eq. (3.90) for the FRP-confinement term. The natural extension of that approach,
also presented in Biskinis and Fardis (2009), is to modify Eqs. (3.86) and (3.87)
for lou,min as follows:

lou,min = dbL fyL(
1.05 + 14.5 4

ntot

(
a ρ fu

fc

)
f,e f f

)√
fc

( fyL, ff,u, Ef, fc in MPa)

(3.93)
with (aρfu/fc)f,eff from Eq. (3.90). Again the value of θu

pl before the reduction
due to the lap splice is calculated from Eq. (3.78b) or (3.78c) accounting for
confinement by the steel ties and by the FRP through the exponent of the 2nd
term from the end (i.e., adding there the term (aρfu/fc)f,eff from Eq. (3.90)), while
Eq. (3.93) accounts only for confinement of lapped bars by the FRP but not by
the steel ties. In 30 cyclic tests of members with lap-spliced ribbed bars and FRP-
wrapping the test-to-prediction ratio of the so-computed ultimate chord rotation,
θu, is on average equal to 0.925 or 0.91, and has a coefficient of variation of
28.4% or 28.9%, if the un-reduced value of θu

pl is taken from Eq. (3.78b) or
(3.78c), respectively (Biskinis and Fardis 2009).

3. The further modification of the approach, in order to use in the FRP-confinement
term the effective FRP strength of the Lam and Teng (2003a,b) model: ffu,L&T =
Efεfu, with εfu about equal to 60% of the failure strain of tensile coupons. This
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modification uses Eq. (3.90) for the FRP-confinement term in the calculation
of θu

pl for members with continuous bars and FRP wrapping. It is extended to
members with lap-spliced bars by using in Eq. (3.93) the value of (aρfu/fc)f,eff

from Eq. (3.91). The test-to-prediction ratio of the so-computed value of θu in
30 cyclic tests of members with lap-spliced ribbed bars and FRP-wrapping is
on average equal to 0.98 or 0.965, if the un-reduced value of θu

pl is taken from
Eq. (3.78b) or (3.78c), respectively, and has a coefficient of variation of 30.6%
(Biskinis and Fardis 2009).

So, although with the approach in (Biskinis 2007, Biskinis and Fardis 2004,
2007, CEN 2005a) modified as in 2 and 3 above the accuracy of the predictions
of θu improves for members with continuous bars and FRP wrapping, it deteriorates
if the bars inside the wrapping are lap-spliced.

In approach (ii) of Section 3.2.3.9 under Effect of Lap-Splicing on the Flexure-
Controlled Ultimate Deformation the limit strain of steel for the calculation of
the ultimate curvature of members without FRP wrapping (used in the estimation
of the ultimate chord rotation from the plastic hinge length according to Section
3.2.3.4) is corrected for the effect of lap-splicing according to Eq. (3.88). On the
other hand, the ultimate curvature of FRP-wrapped members with continuous bars
may be calculated according to the 3rd paragraph of the sub-section above on Mem-
bers with Continuous Bars: from (a) the analysis in Section 3.2.2.4 modified to
use a parabolic-trapezoidal σ -ε curve for the confined concrete (as in the (Lam
and Teng 2003a,b) model), instead of the parabolic-rectangular one of unconfined
concrete, (b) the (Lam and Teng 2003a,b) confined strength model and (c) the ulti-
mate strain of FRP-confined concrete under cyclic loading given by Eqs. (3.29)
and (3.30) in Section 3.1.2.4. If the tension bars are lapped inside the FRP wrap-
ping their limit strain may be taken from Eq. (3.88), but using there the value of
lou,min for FRP-wrapped members from Eq. (3.93). In that expression the value of
(aρfu/fc)f,eff should be the one from Eq. (3.91), consistent with the (Lam and Teng
2003a,b) model applied for the FRP-confined concrete in the calculation of ϕu. If
this is done, the test-to-prediction ratio of θu in 30 cyclic tests of members with
lap-spliced ribbed bars and FRP-wrapping is on average equal to 1.42 and has a
coefficient of variation of 25.7%. Therefore, if the more “fundamental” approach
for the ultimate chord rotation is extended to FRP-wrapped members with lapped
bars, it gives worse predictions than the versions 1–3 of the empirical approach pre-
sented in the paragraphs above.

3.2.3.11 Effect of Bonded Prestressing Tendons on the Cyclic Flexural
Behaviour

Prestressing of long span beams or girders can be used to advantage in concrete
buildings. However, the scope of current seismic design codes, including Eurocode 8
(CEN 2004a), does not include prestressed elements that are part of the lateral-load-
resisting system (“primary seismic” elements in Eurocode 8, see Section 4.12). The
exclusion is implicit. It comes from the fact that code rules on design and detailing
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for ductility of beam ends where plastic hinges are expected to form apply only
to reinforced concrete beams. A notable exception is the CEB Seismic Model Code
(CEB 1985) that includes a few clauses warning against the use of unbonded tendons
in “primary” members (except in partially prestressed beams with 80% of their flex-
ural resistance coming from ordinary reinforcement and with prestressing tendons
placed only within the mid-third of the section depth) and against placing tendon
anchorages in beam-column joints next to potential plastic hinges. CEB (1985) also
limits the neutral axis depth in potential plastic hinges of prestressed beams at the
moment resistance to less than 20% of the section depth (to avoid brittle failure of
the compression zone) and asks for a 25% margin between cracking and ultimate
moments of any prestressed section.

Concrete buildings designed for energy dissipation according to current codes
may include prestressed girders, provided that they, as well as the columns con-
nected to them, are not taken to be part of the lateral-load-resisting system, i.e., they
are considered and designed as “secondary seismic” elements in the Eurocode 8 ter-
minology (see Section 4.12). According to Eurocode 8 (CEN 2004a) this implies
that the total lateral stiffness of all frames in the building that include prestressed
girders does not exceed 15% of the lateral stiffness of the system of “primary seis-
mic” elements. As a matter of fact, it is sensible to consider the columns sup-
porting prestressed girders as “secondary seismic”, because normally the weak-
beam/strong-column capacity design rule of Eq. (1.4) cannot force plastic hinging
in girders with size typical of prestressed ones. Another option is to design con-
crete buildings having prestressed girders for Ductility Class L and a value of the
behaviour factor q not higher than 1.5 (as recommended in Eurocode 8 only for low
seismicity regions).

Note that, at least in buildings, prestressing is primarily – if not exclusively – used
in long span horizontal elements for resistance against gravity loads. So tendons are
placed eccentric in the member section, on the side where gravity moments induce
tension. Eccentric tendons normally do not enhance the ductility and deformation
capacity of plastic hinges, particularly at beam supports under hogging moments
that induce tension to the top flange, where the tendons are located. Under such
moments the beam section at the face of the column soon reaches its deformation
capacity, owing either to the low ultimate strain of prestressing steel (compared to
ordinary reinforcement) or to crushing of the concrete at the narrow bottom flange.
So, a less eccentric placement of tendons at beam supports and a larger quantity of
ductile ordinary reinforcement at both flanges may be appropriate, for the plastic
hinges at the ends of prestressed beams to develop significant ductility and defor-
mation capacity.

Conventional wisdom in seismic design and codification is against prestressing
members expected to develop plastic hinges, because compression due to prestress-
ing is thought to place additional demands on the compression zone, reducing the
flexural deformation capacity. Recent tests, however, have demonstrated the bene-
ficial effect of prestressing on the cyclic behaviour of bridge piers: ultimate defor-
mation increases with prestressing and residual displacements decrease (Sakai et al.
2006, Inoue and Tanabe 2006).
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So, prestressing of bridge piers has received considerable attention in the draft
code of the Japan Prestressed Concrete Engineering Association for performance-
based seismic design of prestressed concrete bridges (JPCEA 2002).

The international literature contains very few cyclic tests on prestressed mem-
bers, mainly with square section and concentric prestressing. Their results are com-
pared below to the predictions of the models proposed in previous sections, after
appropriate modifications.

In the application of the model in Section 3.2.2.2 for the calculation of the yield
moment and curvature of prestressed members with rectangular compression zone,
any bonded tendons that are near the extreme tension fibres are included in the ratio
of tension reinforcement, ρ1, after weighing the cross-sectional areas of any rein-
forcement near the outermost tension fibres by the corresponding yield stress. The
same weighing is applied for the determination of the centroid of the tension rein-
forcement. Bonded tendons and non-prestressed reinforcement in the compression
zone and the web are elastic at yielding of the section. So, their cross-sectional areas
may be added without any weighing by the yield stress.

There are two alternatives for considering the effect of prestressing:

1. Prestress is considered as part of the actions, as in Serviceability Limit States:

– the action effects due to prestress are taken from the elastic analysis; in iso-
static (statically determinate) systems prestressing induces an axial force equal
to the total prestressing force, P (positive for compression) and a bending
moment equal to P times the eccentricity of the mean tendon, and

– bonded tendons are considered as an integral part of the section, working elas-
tically up to their available yield stress, which is equal to their full yield stress,
f0.01, minus the initial stress in the tendon, σ p.

2. The prestress is considered as part of the resistance: This is how bonded tendons
that yield are normally considered at the Ultimate Limit States:

– bonded tendons that yield are taken to contribute to the resistance as an integral
part of the section, working in the plastic range with their full yield stress, f0.01;

– bonded tendons that have not yielded are considered as in case (1) above, i.e.:

• they are taken to induce in the section an axial force and a bending moment
equal to the force and moment resultant of their prestressing, and

• they are considered to work elastically as an integral part of the section up
to their available yield stress, f0.01–σ p.

For either one of the two alternative considerations (1) and (2) above, the model
in Section 3.2.2.2 underestimates by 13.5% on average the yield moment, My, of
concentrically prestressed members. More important, Eq. (3.66) overestimates the
chord rotation at yielding, by 11% on average when prestress is taken as part of the
actions and by almost 50% when it is considered as part of the resistance. The scat-
ter of the predictions for chord rotations at yielding is large. These differences are
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carried over to the calculation of the secant stiffness to the yield-point through Eq.
(3.68). Its average test-to-prediction ratio is 1.50 if prestress is taken as part of the
actions and about 2.0 when it is considered as part of the resistance! The empirical
secant stiffness to the yield-point from Eq. (3.69) does not improve the predictions.

In view of the very small sample size, the magnitude of underestimation of
the yield moment of concentrically prestressed members by the models for non-
prestressed members is considered as acceptable. The same could be said for the
overestimation of the chord rotation at yielding, but only when prestress is taken as
part of the actions. These deviations, however, accumulate into a more significant
underestimation of the secant stiffness to the yield-point through Eq. (3.68), which
borders the unacceptable. It seems that the effects of the suppression of cracking
by the prestress along part of the member is not fully captured by considering an
axial force equal to the total prestressing force, P. Taking the prestress as part of
the resistance, or using the empirical secant stiffness to the yield-point, Eq. (3.69),
give very poor predictions both for the chord rotation at yielding and for the secant
stiffness to it.

The three versions of Eqs. (3.78) underestimate the flexure-controlled cyclic ulti-
mate chord rotation, θu, of five concentrically prestressed specimens by 7.5–8.5%
on average (with a coefficient of variation of the test-to-prediction ratio from 8.5 to
12.5%). The concentrically prestressed specimens may have exceeded the expeca-
tions of a formula fitted to conventionally reinforced members, because their ten-
dons are always in tension and do not buckle under cyclic loading. For this reason,
it seems appropriate to apply Eq. (3.72), based on the ultimate curvature, ϕu, from
Sections 3.2.2.4 and 3.2.2.10 and the plastic hinge length from Eq. (3.73b), with the
limit strain of tendons taken from Eq. (3.64a), for monotonic loading that does not
cause buckling of the tendons. However, the cyclic ultimate chord rotation in the five
tests is still underestimated by 9% on average (and with a coefficient of variation of
the test-to-prediction ratio of 35.5%).

Note that bending moments nowhere enter in the application of Eqs. (3.78) and
(3.72). So, if the prestress is taken as part of the resistance, there is no way to
take into account the bending moment induced by the bonded tendons that have
not yielded. Therefore, in the calculations of θu the prestress has been taken as part
of the action, even though bonded tendons close to the extreme tension fibres had
yielded before the ultimate flexural failure.

The very limited available test data suggest that concentric prestressing is ben-
eficial for the flexure-controlled cyclic ultimate chord rotation, θu. Moreover, the
recentring effect of concentric prestressing reduces the residual deformations, and
therefore damage, no matter whether the conventionally defined flexure-controlled
chord rotation capacity, θu, has been exceeded or not. If this capacity is not
exceeded, a member without any ordinary non-prestressed reinforcement and with
only concentric prestressing returns to about zero residual deformations. If there is
a combination of non-prestressed and prestressed reinforcement, the residual defor-
mation may be considered to decrease in proportion to the contribution of prestress-
ing (in percent) to the yield moment of the section, i.e. to the ratio My(Ap=0)/My,
where My(Ap=0) is the yield moment for presumed zero cross-sectional area of
prestressed reinforcement in the section.
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3.2.4 Behaviour of Members Under Cyclic Shear

3.2.4.1 Introduction: Brittle vs. Ductile Shear Behaviour

If it precedes flexural yielding, ultimate failure of concrete members in shear occurs
at relatively low deformations and is associated with a large drop in lateral load
resistance. So, it is considered as a “brittle” failure mode. Figure 3.35 depicts char-
acteristic shear failures of columns or walls in past earthquakes. A shear failure of a
stair flight acting as an inclined wall has been shown in Fig. 2.13(a).

Often concrete members that first yield in flexure may, under cyclic loading, ulti-
mately fail in a mode showing strong and clear effects of shear: diagonal cracks are
prominent and their width and extent increase during cycling, despite the gradual
drop of peak force resistance with cycling of the load. At the same time, phenomena
which are associated with flexure (e.g., a single wide crack at right angles to the
member axis at the section of maximum moment, disintegration of the compression
zone and/or buckling of longitudinal bars next to that section) may not be so pro-
nounced in such cases. By contrast, these phenomena (often including rupture of a
longitudinal bar) grow in magnitude when flexure-controlled ultimate deformation
approaches, while any diagonal cracks that may have formed initially decrease in
width and may even disappear owing to the drop of the force resistance with load
cycling after the flexure-controlled ultimate strength. Failure in shear under cyclic
loading after initial flexural yielding is termed “ductile shear” failure (Kowalsky and
Priestley 2000). It occurs only under cyclic loading, because shear strength degrades
faster with load cycling than flexural strength. It is normally associated with diag-
onal tension and yielding of the web reinforcement, rather than with web crushing
by diagonal compression.

The left-hand-side of Fig. 3.36 (Yoshimura et al. 2004) shows force-drift hys-
teresis loops of three columns with high longitudinal reinforcement ratio, ρ tot, and
low transverse steel ratio, ρw, failing in brittle shear before yielding in flexure. Their
right-hand-side companions have sufficiently low values of ρ tot to first yield in flex-
ure and then fail in “ductile shear” (the upper two columns) or in flexure (that at the
lower right corner).

Dimensioning of concrete members against brittle shear failure is a familiar sub-
ject, covered in current codes and standards for the design of concrete structures
under non-seismic action effects that increase monotonically until ultimate strength.
Relevant models are reviewed in the Section 3.2.4.2. Shear design of members in
new earthquake-resistant concrete buildings and seismic evaluation of existing ele-
ments in substandard ones should also consider the reduction of shear resistance
with cyclic loading below the monotonic value.

Several mechanisms may explain the degradation of shear strength during cyclic
loading:

1. The degradation of dowel action with cycling of the shear (see Section 3.1.3.1)
and with the accumulation of inelastic strains in the longitudinal bars.

2. The development of flexural cracks through the depth of the member and the
ensuing decreased contribution of the compression zone to shear resistance.
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Fig. 3.35 Shear failures of columns or walls (See also Colour Plate 9 on page 723)
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Fig. 3.36 Shear force-chord rotation behaviour for: (a) brittle shear; and (b) “ductile shear” or
flexural behaviour (adapted after Yoshimura et al. 2004)

3. The reduction of aggregate interlock along diagonal cracks, as their interfaces are
ground and become smoother with cycling; in addition, the cracks open up owing
to bond slippage and accumulation of inelastic strains in the stirrups crossing the
cracks.

4. The softening of concrete in diagonal compression due to accumulation of trans-
verse tensile strains.
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The degradation of shear strength during cyclic loading is normally associated
with diagonal tension and yielding of the web reinforcement, rather than with diag-
onal compression failure in the web. It has by now prevailed to quantify this failure
mode in terms of a shear resistance, VR, (as this is governed by web reinforcement
according to the well-established Mörsch-Ritter truss analogy) that decreases with
increasing (displacement) ductility ratio under cyclic loading (Kowalsky and Priest-
ley 2000, Moehle et al. 2001, Ascheim and Moehle 1992). The contributions to
shear strength decay listed above as 1–3 have to do with the contribution of con-
crete to shear resistance, i.e. with the term Vc normally added to the contribution
of transverse steel according to a 45◦-truss analogy, Vw. Degradation mechanisms
no. 3 and 4 involve also, be it indirectly, the contribution of transverse steel to shear
resistance, reflected in Vw.

Naturally the cyclic degradation of shear resistance is larger within flexural plas-
tic hinges, as it is there that:

– flexural cracks extend into wide and intersecting diagonal cracks,
– the compression zone suffers more damage and decreases in size,
– longitudinal bars develop inelastic strains, or even buckle, and lose most of their

effectiveness in dowel action, and
– (at the end section) the compression zone supports the diagonal strut of the truss

mechanism of shear resistance.

Consequently, the decay of shear strength with cycling takes place mainly in
concrete members that develop flexural plastic hinges before exhausting their shear
resistance. Therefore, the phenomenon is normally expressed quantitatively as a
reduction of shear strength with cyclic inelastic deformations, until the so-reduced
shear strength, VR, becomes less than the shear force corresponding to flexural yield-
ing, Vy = My/Ls. The member deformation where this takes place may be considered
as its deformation capacity, as governed by shear.

An alternative way to describe the phenomenon might be to consider that the
member develops a relatively ductile failure mode in shear after initially yielding in
flexure, but that its ultimate cyclic deformation capacity is less than in an – other-
wise similar – member with higher shear resistance but ultimately failing in flexure.
Such an approach might allow direct quantification of member cyclic deformation
capacity as governed by shear without recourse to a force-based criterion. However,
owing to:

– the lack of rational models for the ultimate deformation of concrete elements as
controlled by “ductile shear” failure, and

– the scarcity of sufficient data for the development of purely empirical alternatives,

the models proposed so far for the description of ultimate shear failure due to
cyclic deformations beyond flexural yielding use force-based criteria as outlined in
the previous paragraph and described in detail in Section 3.2.4.3. These criteria
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employ empirical corrections of the truss analogy model of shear resistance, to
incorporate the effect of cyclic degradation.

The experimental results in Fig. 3.37 (Ma et al. 1976) are typical of the evolu-
tion of shear phenomena under cyclic loading. They refer to a T-beam with Ls/h
= 3.9 subjected to symmetric cycles of tip deflection in sets of three cycles of the
same amplitude. Figure 3.37(a) displays the moment-(mean) curvature loops mea-
sured over a length of d/2 next to the beam end section. Figure 3.37(b) presents the
corresponding loops of shear force v mean shear strain up to a distance 0.3d from
the end section. Diagonal cracking occurred at a shear force of 50 kN (point A in
Fig. 3.37(c)). It is only after that stage that the stirrups were activated and shear
strains started developing. After flexural yielding of the end section, shear strains
grew rapidly with deflection cycles, although the peak force of the cycles remained
almost the same. As a matter of fact, shear strains increased from the 1st to the
3rd cycle of each set of three cycles, while the corresponding peak curvatures of
the cycle decreased (cf Fig. 3.37(a) and (b)). The gradual increase of shear strains
during cycling accelerated the activation of the stirrups, driving the one monitored
in Fig. 3.37(c) to yielding. Witness the small stress of that particular stirrup (about
25% of its yield stress) at the time the end section first yielded.

Similar is the behaviour of the 3-storey barbelled wall in Fig. 3.38 (Wang et al.
1975). It is reminded that walls are considered to resist flexure with the two well-
confined and heavily reinforced section edges, while the web in-between resists
the shear. The vertical bars in the web play of course a role for the behaviour and
resistance of the wall in flexure (see term ρv in Eqs. (3.35), (3.37), (3.38) and
(3.39) and ωv in Eqs. (3.57), (3.58), (3.59), (3.60), (3.61) and (3.62)). Moreover,
if the shear capacity provided by the web reinforcement is exhausted, the bound-
ary elements at the two ends of the section may contribute to shear resistance via
the dowel action of their large diameter bars, or, even, by acting themselves as big
dowels. Notwithstanding the presumed distinct and uncoupled roles of the web and
of the two boundary elements, flexural yielding at the base of the wall’s 1st or
2nd storey (see Fig. 3.38(a), or (b), respectively) triggers the onset of significant
inelastic shear deformations over the entire 1st or 2nd storey, respectively (see Fig.
3.38(c) and (d)). Ultimate failure of that wall took place in shear at the 1st storey,
while the moment-curvature response in the 1st and 2nd storeys was very stable
(see Fig. 3.38(a) and (b)). Besides the gradual degradation of shear resistance due
to inelastic cyclic deformations, Figs. 3.37(b) and 3.38(c), (d) display the shape of
force-deformation loops typical of shear behaviour. Unlike the ones in flexure in
Figs. 3.25, 3.26, 3.28, 3.34, 3.37(a), 3.38(a) and (b), the loops in Figs. 3.37(b) and
3.38(c), (d), become almost flat upon unloading to zero force and remain so until
a steep but late increase in stiffness while the wall reloads in the reverse direc-
tion. The end result is a narrow and inverted-S V-γ loop, with very little energy
dissipation.

The inverted- S shape of the V-γ loop derives from the following mechanism:
Because of dislodgement of aggregates along the diagonal cracks and of inelastic
strains in stirrups that have yielded in tension, diagonal cracks do not close imme-
diately after reversal of the shear force. Significant reverse shear deformation needs
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Fig. 3.37 T-beam under cyclic loading: (a) M-ϕ loops next to the end section; (b) V-γ loops in plastic hinge region; (c) loops of shear force V vs stirrup strain
(adapted from Ma et al. 1976)
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(a) (b)

(c) (d)

(e) (f)

Fig. 3.38 3-storey wall (adapted from Wang et al. 1975): (a), (b): M-ϕ loops next to the base of 1st
and 2nd storey; (c), (d): V-γ loops over 1st and 2nd storey; (e) loops of base moment vs fixed-end
rotation due to bar pull-out from the anchorage in the footing; (f) base shear vs. top deflection

to be applied, to suppress the inelastic tensile strains in the stirrups and force the
cracks to fully close and develop compressive stresses normal to their face. Espe-
cially when their geometric ratio, ρw, is low, stirrups present little stiffness until the
crack closes. When that happens, a steep increase in stiffness takes place.
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The small energy dissipation capacity of the shear mechanism of force transfer
in cyclic loading and the steady accumulation of inelastic shear deformations in
constant-amplitude cycling of the shear force suggest that the behaviour in shear
does not possess the stability and dissipation capacity required for ductile behaviour
under cyclic loading. Moreover, ultimate failure in shear takes place either by prop-
agation of diagonal cracks into the compression zone, causing its disintegration, or
by diagonal web crushing in compression. In both cases failure is abrupt and catas-
trophic and cannot be prevented or mitigated by confinement. For all these reasons,
shear should be confined in the elastic region. Capacity design rules in shear aim at
exactly that. For the same reason, what is primarily of interest for concrete members
in shear is their cyclic shear resistance and not their (anyway small) inelastic shear
deformations.

3.2.4.2 Fundamental Models for Shear Resistance in Monotonic Loading

The Variable Strut Inclination Truss of the CEB/FIP Model Code 90 and
Eurocode 2

CEB/FIP Model Code 90 (CEB 1991) and Eurocode 2 (CEN 2004b) have adopted
for shear resistance the variable strut inclination truss model – strictly speaking, a
model with variable angle of inclination, δ,16 of the compression stress field in the
web with respect to the member axis. According to this model (Walraven 2002), a
concrete member with:

– longitudinal reinforcement, typically concentrated at two “chords” at the ends of
the section, and

– reinforcement transverse to the axis, with geometric ratio ρw

equilibrates a shear force V through a statically determinate “truss” mechanism com-
prising:

1. a compressive stress field in the concrete, at an angle δ to the member axis;
equilibrium gives the compression stress in the concrete as: σ c = 2V/(bwzsin2δ);

2. a tensile stress in the transverse reinforcement equal to Vtanδ/(ρwbwz), where bw

is the width of the web and z is the internal lever arm between the two “chords”;
this stress amounts to a tension force per unit length of the member equal to
Vtanδ/z;

3. a tension force of Vcotδ in the longitudinal reinforcement.

Diagonal cracking first takes place at about 45◦ to the member axis. At that time
the compression stress field is parallel to the cracks and at an angle to the mem-
ber axis δ ≈ 45◦. So long as the web has sufficient strength to resist the compres-

16The symbol δ is used here instead of the symbol θ normally used for the angle of inclination, to
avoid confusion with chord rotations.
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sive stress field, the member can sustain yielding of the transverse reinforcement
at its yield stress, fyw, and develop a further increased shear resistance at a steadily
decreasing inclination of the new cracks and of the compression field, δ, with respect
to the member axis:

VR,s = ρwbwz fyw cot δ (3.94)

Shear resistance increases with the rotation of the compression field, until either
one of the following possibilities takes place:

i. The tension chord yields, as its tensile force increases owing both to the increase
of the loading and the decrease of the inclination δ. If the member is also sub-
jected to a bending moment, M, and an axial force N (positive for compression),
and the longitudinal reinforcement is concentrated at two “chords” at the ends
of the section, the force in the tension chord is: M/z + 0.5(Vcotδ – N). The shear
force at yielding of a tension chord with cross-sectional area As1 and yield stress
fyL is:

VR,L = 2
(

Asl fyL − M/z + N/2
)

tan δ (3.95)

ii. The web concrete fails in diagonal compression, as the compressive stresses in
the web also increase owing both to the reduction of δ and the increase of V.
Note that the compressive strength of concrete at an angle δ to the member axis
is less than its uniaxial compressive strength, fc, because of the tensile stresses
and strains in the orthogonal direction (namely those associated with yielding
of the transverse reinforcement and the tensile stresses in the concrete between
adjacent diagonal cracks). The reduced strength of concrete is taken equal to
nfc,

17 with:

n = 0.6

(
1 − fc(M Pa)

250

)
in Eurocode 2 (CEN 2004b) or Model Code 90 (CEB 1991)

(3.96a)

n = 0.7

(
1 − fc(M Pa)

200

)
in the AIJ Guidelines (AIJ 1994) (3.96b)

So, the shear resistance at diagonal compression failure of the web is:

VR,max = 0.5bwz(n fc) sin 2δ (3.97)

According to Eq. (3.94), a low value of δ gives less transverse reinforcement, as
the shallower crack intersects and activates more stirrups. According to Eq. (3.95),

17The symbol n is used here instead of the symbol v used in both Eurocode 2 and CEB/FIP Model
Code 90, to avoid confusion with the normalised axial force v = N/Acfc.
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however, it is more demanding for the chords in tension and, according to Eq. (3.97),
for the inclined compression stress field as well.

The shear resistance normally attains its maximum value when the web con-
crete fails in diagonal compression, while the transverse reinforcement has already
yielded (case ii above). The condition VR,s = VR,max gives the following lower limit
for the inclination angle, δ (Walraven 2002):

sin δ =
√
ωw

n
, tan δ =

√
ωw
n

1 − ωw
n

(3.98)

where ωw ≡ ρwfyw/fc is the mechanical ratio of transverse reinforcement. At this
limit value of δ the dimensionless shear resistance is:

υR = VR

bwz fc
=
√
ωw(n − ωw) (3.99)

Although less common than case ii, case i above may also lead to shear failure.
The condition VR,s = VR,L gives the following limit value of δ:

tan δ =
√

ωw

2(ω1 − μ) + ν
(3.100)

where ω1 ≡ As1fyL/(bwzfc) is the mechanical ratio of tension reinforcement and μ ≡
M/(bwz2fc), ν ≡ N/(bwzfc) are the dimensionless bending moment and axial force,
respectively (using in all normalisations the internal lever arm, z, in lieu of the effec-
tive depth). At this value of δ the dimensionless shear resistance is:

υR = VR

bwz fc
=
√
ωw(2(ω1 − μ) + ν) (3.101)

Even less common is a failure mode where the tension chord yields first, fol-
lowed by diagonal compression failure of the web concrete while the transverse
reinforcement stays elastic. The condition VR,max = VR,L gives the following upper
limit for δ:

cos δ =
√

2(ω1 − μ) + ν

n
, tan δ =

√
n − 2(ω1 − μ) − ν

2(ω1 − μ) + ν
(3.102)

and a dimensionless shear resistance of:

υR = VR

bwz fc
=
√

(n − 2(ω1 − μ) − ν)(2(ω1 − μ) + ν) (3.103)

The variable strut inclination truss model is rational, transparent and consis-
tent with the strut-and-tie approach for the Ultimate Limit State (ULS) design of



3.2 Concrete Members 261

two-dimensional concrete regions (including discontinuities of geometry, supports
and regions with concentrated forces). So there is smooth transition between such
regions and adjacent prismatic ones. Accordingly, in Europe it is the basis of the
provisions for calculation of shear resistance of concrete members at the ULS. The
designer is allowed to choose the value of δ in the range:

– in Eurocode 2 (CEN 2004b):

0.4 ≤ tan δ ≤ 1 (22◦ ≤ δ ≤ 45◦); (3.104a)

– in the CEB/FIP Model Code 90 (CEB 1991):

1/3 ≤ tan δ ≤ 1(18◦ ≤ δ ≤ 45◦) (3.104b)

Eurocode 2 and CEB/FIP Model Code 90 consider that a compressive axial force,
N, contributes to shear resistance according to the following mechanism. Shear force
goes together with bending moments. In the common case of a column in counter-
flexure, the axial force N will be equilibrated at the two end sections by concrete
compressive stress blocks that develop at opposite ends of these two sections.18 The
axial force N is transferred, therefore, from the compressive stress block at one end
section to that at the other end via a diagonal compression strut (Fig. 3.39(a), left).
The component of the strut force parallel to the column axis is equal to N, while the
component transverse to the axis is equal to VN = N(z1+z2+d1–d)/L where z1 and
z2 are the internal lever arms at the two end sections, d1 = h–d and L is the clear
column length. This internal force is in the opposite sense with respect to the acting
(external) shear force. So, it can be considered as the contribution of the diagonal
compression strut to the shear resistance of the column. In the common case that the
two ends have about the same acting moment and cross section reinforcement, this
contribution is: VN = N(h–x)/L where x is the neutral axis depth of the end sections
at flexural yielding (computed as x = ξ yd, with ξ y from Section 3.2.2.2). The rest of
the shear force, V–VN, is resisted by the internal truss mechanism with a (variable)
strut inclination δ (Fig. 3.39(a), right). The normal stress component σ = N/bw(h–x)
in the strut acts together with the compression field of the truss, which is equal to
2(V–VN)/(bwzsin2δ) and is at an angle δ to the column axis.

As shown in Fig. 3.40, for monotonic loading the variable strut inclination
truss model gives a safe-side bound of test results on beams failing by diagonal
compression of the web after yielding of the transverse reinforcement (Walraven
2002). In Fig. 3.40(b) the beneficial effect of the (compressive) prestressing force
on shear resistance is taken into account at the same time as the adverse effect of the
superposition of the normal stress component in the strut due to prestress with the

18Being symmetrically reinforced, each end section will resist the bending moments there through
approximately equal and opposite forces in the two “chords”, that produce no net contribution to N.
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Fig. 3.39 Shear resistance model: (a) according to (CEB 1991); (b) according to (AIJ 1994)

(a) (b)

Fig. 3.40 Comparison of Eq. (3.99), subject to the limits of Eq. (3.104a), to monotonic shear
resistance data: (a) reinforced beams with rectangular or T-section; (b) prestressed T- or I-beams
(Walraven 2002)
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compression field of the truss, by multiplying the shear resistance at diagonal com-
pression failure in the web by the following empirical factor given in Eurocode 2:

ac = min[1.25; (1 + v); 2.5(1 − v)] (3.105)

where ν is the normalised axial compression, in this case due to the prestress: ν =
P/Acfc.

The variable strut inclination approach is a generalisation of the classical
Mörsch-Ritter truss, where δ = 45◦. The 45◦-truss is still the basis for shear design
in the US (ACI 2008). In such an approach, transverse reinforcement is dimen-
sioned to take a tensile force per unit length along the member axis equal to
(V–Vc)/z, instead of the value Vtanδ/z of the variable strut inclination truss model.
The Vc term replaces the increase in the contribution of stirrups to shear strength,
VR,s, according to Eq. (3.94) as the strut inclination decreases from δ = 45◦ to a
lower value. It is considered as the “concrete contribution to shear resistance”. Its
physical basis is claimed to be the contributions to the truss model of shear resis-
tance of:

– the uncracked compressive zone;
– aggregate interlock along open diagonal cracks (considered at an angle δ = 45◦);
– dowel action of the longitudinal bars; and
– the tensile strength of concrete between diagonal cracks.

As it is not feasible to quantify the contribution of each one of the above four
mechanisms in terms of the corresponding parameters, the Vc term is just the differ-
ence between:

– the experimentally measured shear resistance, and
– the contribution of transverse reinforcement calculated from Eq. (3.94) with δ =

45◦, plus any contribution of the axial force N.

So the value of Vc is commonly given by empirical or semi-empirical expressions
in terms of all other parameters that seem to significantly affect shear resistance.
Recall in this connection the Eurocode 2 empirical expression, Eq. (3.67), for the
shear resistance of concrete members without shear reinforcement, VRc.

The Truss Plus Diagonal Strut Model of the AIJ Guidelines

The approach of the Guidelines of the Architectural Institute of Japan (AIJ 1994)
for the shear resistance of concrete members under cyclic loading is the most fun-
damental in all codes or standards for earthquake-resistant design of concrete struc-
tures. In this approach shear resistance is taken as the sum of contributions from two
mechanisms:

– a “variable strut inclination” truss, as in Eurocode 2 (CEN 2004b) and Model
Code 90 (CEB 1991); and
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– a diagonal strut between the two end sections of the member, considered in skew
symmetric bending (i.e. with length L twice the shear span Ls).

The contribution of the truss mechanism to shear resistance is considered to be
controlled by the transverse reinforcement according to Eq. (3.94). A compression
field at an angle δ to the member axis equal to: σ c = 2Vw/(bwzsin2δ) = ρwfyw/sin2δ

is necessary, to support this contribution to shear resistance. The stress σ c uses up
part of the reduced diagonal concrete strength, nfc (see Eqs. (3.96) for the reduction
factor n). Neglecting the different orientations of the diagonal strut and of the com-
pression field of the truss mechanism, the effective compressive strength available to
the diagonal strut is nfc–ρwfyw/sin2δ. The AIJ Guidelines assume the diagonal strut
to take up half of the cross-sectional depth h in the direction of the shear force, no
matter the width of the compression zone due to flexure. The strut inclination with
respect to the member axis, φ, is such that:

tanφ =
√(

2Ls

h

)2

+ 1 − 2Ls

h
≈ h/4Ls. (3.106)

In the end the maximum compressive force that the diagonal strut can develop has
a component transverse to the member axis equal to 0.5bwh(nfc–ρwfyw/sin2δ)tanφ,
which is the strut contribution to shear resistance. Therefore, the total shear resis-
tance is:

VR = ρw fywbwz cot δ + 0.5bwh[n fc − ρw fyw(1 + cot2 δ)] tanφ (3.107)

An upper limit is set for the value of cotδ, equal to the smallest of the three
values:

– cot δ ≤ 2 (δ ≥ 26.5)◦ (3.108a)

for a positive term in brackets in Eq. (3.107):

– cot δ ≤ √
(n fc/ρw fyw − 1) (3.108b)

– cot δ ≤ z(h tanφ) ≈ 4ζ Ls/h (3.108c)

(with ζ = z/h), which gives the maximum possible shear resistance from Eq.
(3.107).

The effect of inelastic cyclic deformations on the shear strength of plastic hinge
regions is taken into account:

– by replacing the limit of Eq. (3.108a) with:

cot δ ≤ max(1; 2 − 50θpl) (3.108d)
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– by reducing the value of n from Eq. (3.96b) to:

n = 0.7

(
1 − fc(M Pa)

200

)
max

(
0.25; 1 − 15θpl

)
(3.109)

where θpl is the plastic hinge rotation: θpl = (μθ–1)θy, with μθ denoting the
demand value of the displacement or chord rotation ductility factor.

3.2.4.3 Models of Cyclic Resistance in Diagonal Tension After Flexural
Yielding

At pointed out in Section 3.2.4.1, after flexural yielding the shear strength degrades
in the plastic hinge with increasing cyclic inelastic deformations. It has also been
noted that this phenomenon is normally expressed quantitatively as a reduction of
shear strength with cyclic inelastic deformations, until the so-reduced shear strength,
VR, drops below the value of shear force corresponding to flexural yielding, Vy =
My/Ls.

Several models have been proposed for the cyclic decay of the strength of con-
crete members for diagonal tension failure (Kowalsky and Priestley 2000, Moehle
et al. 2001, Ascheim and Moehle 1992, Biskinis et al. 2004). They all recognise
a contribution of transverse reinforcement to shear resistance, VRs, and a separate
concrete contribution, Vc.

The “Revised UCSD model” model in Kowalsky and Priestley (2000) has been
developed on the basis of 18 circular columns that failed in shear after yielding in
flexure. Predictions also compare well to the strength of 20 circular columns yield-
ing and failing in shear and are compatible with the strength of 9 circular columns
failing in flexure.

As in the CEB/FIP Model Code 90, the model in Kowalsky and Priestley (2000)
includes the contribution of the column axial force to shear resistance as a distinct
mechanism, giving a shear resistance:

VR = N
h − x

2Ls
+
√

fck (μθ ) min

(
1.5, max

(
1; 3 − Ls

h

))
min (1; 0.5 + 20ρtot ) (0.8Ac) + VRs (units: MN, m)

(3.110)

where:

– ρ tot is the total ratio of longitudinal steel, reflecting in this case dowel action,
– Ac is taken equal to πDc

2/4 (with Dc: diameter of concrete core inside the hoops),
– h is the depth of the cross-section (equal to the diameter D in circular sections),
– N is the axial load (positive for compression),
– x is the neutral axis depth at flexural yielding (x = ξ yd, with ξ y from Section

3.2.2.2), and
– Ls/h = M/Vh is the shear span ratio at the member end, reflecting the arch mech-

anism of shear resistance.
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Shear strength degradation due to cyclic deformations of the shear span up to a
chord rotation ductility ratio μθ

19 is taken into account through the coefficient k(μθ)
in the concrete term Vc:

k(μθ ) = 1.07 − 0.115μθ
3

, 0.05 ≤ k(μθ ) ≤ 0.28 (3.111)

Equations (3.110) and (3.111) have been developed for circular columns with the
contribution of transverse steel, VRs, taken as:

VRs = π

2

Asw

sh
fyw(D − x − c) cot δ (3.112)

where Asw denotes the cross-sectional area of a circular hoop, sh its spacing and c
its concrete cover. In the “revised UCSD model” the truss inclination is taken as:
δ = 30◦.

Although originally developed for columns with circular section, Eqs. (3.110)
and (3.111) are often applied to rectangular sections as well, using for VRs Eq. (3.94)
with z = d–x, δ = 30◦, and replacing the term 0.8Ac by bwd (where bw is the width of
the web and d the effective depth). In that case it overestimates the shear resistance
of rectangular columns by about 20%, of rectangular walls by about 10% and of
non-rectangular walls or hollow rectangular piers by about 30% (Biskinis 2007,
Biskinis et al. 2004).

In the most recent one of the family of models by Moehle and co-workers for
rectangular columns (Moehle et al. 2001), the contribution of axial compression to
shear resistance is accounted for in the Vc term and not as a separate mechanism
(cf. 1st term in Eq. (3.110)). More important, the reduction of shear strength with
cyclic deformation is considered to affect both the VRs and the Vc terms, which are
multiplied by the same coefficient k(μθ) (Moehle et al. 2001):

VR = k (μθ ) (Vc + VRs) ; Vc = 0.5
√

fc

(√
1 + N

0.5
√

fc Ac

)
Ac

d

Ls
(units: MN, m)

(3.113a)

k(μθ ) = 1.15 − 0.075μθ, 0.7 ≤ k(μθ ) ≤ 1.0 (3.113b)

where Ac = bwd, for cross-sections with rectangular web of width bw and effective
depth d. The part of the Vc term multiplied by d/Ls in Eq. (3.113a) is the product of
the gross section area and the principal tensile stress at diagonal cracking, computed
on the basis of a postulated concrete tensile strength of 0.5

√
fc. For beams, rectan-

gular columns, rectangular walls or barbelled, T-, H- or hollow rectangular sections
the contribution of transverse reinforcement, VRs, is taken from Eq. (3.94), with

19In members the chord rotation ductility factor, μθ, is the same as the displacement ductility
factor.
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δ = 45◦, as in the classical Ritter-Mörsch truss analogy. In circular columns VR,s

may in this case be taken from Eq. (3.112), but with δ = 45◦ and (D–x–c) replaced
by (D–2c).

Equations (3.113) agree well, on average, with the experimental results on rect-
angular columns, but underestimate the shear resistance of circular ones by almost
20% and of rectangular walls by about 10%, while it overestimates that of non-
rectangular walls or hollow rectangular piers by about 15% (Biskinis 2007, Biskinis
et al. 2004).

Note that in Eqs. (3.110) and (3.111) the Vc term is constant and equal to 18% of
its value for zero ductility demand, when the value of μθ exceeds 8. According to
Eq. (3.113b), it is for values of μθ above 6 that the entire shear resistance VR attains
its minimum value of 70% of that for zero ductility demand. The difference in the
limiting value may be attributed to:

– the reduction of the entire shear resistance with increasing μθ in Eq. (3.113a),
whereas only one term out of three is taken to decrease with increasing μθ in
Eqs. (3.110) and (3.111); and

– the relative small magnitude of the only term that decreases with μθ in Eq.
(3.110), owing to the adoption of a value δ = 30◦ for the truss inclination δ
in Eqs. (3.94) and (3.112).

In both models above, μθ is derived from the experimental θy, which is not
known a-priori in practical applications. This may be considered as a weakness.

The models proposed in (Biskinis et al. 2004, Biskinis and Fardis 2004, Biskinis
2007) and adopted in Part 3 of Eurocode 8 (CEN 2005a) are based on the largest
database of cyclic tests of members failing by diagonal tension after yielding in
flexure: 70 circular columns, 192 rectangular beams/columns, 12 rectangular walls
and 26 hollow rectangular piers or non-recangular walls. The range of important
parameters in these tests are:

– v = N/Acfc: –0.01–0.85;
– Ls/h: 0.5–6;
– ρ tot: 0.55–5.5%;
– fc: 13–113 MPa;
– μθ: 1.0–9.5.

In these models the resistance in diagonal tension, VR, is taken a function of μθ
pl

= (μθ–1), computed as the ratio of the plastic part of the chord rotation at ductile
shear failure (: total chord rotation minus experimental yield value) to the yield
chord rotation, θy, from Eqs. (3.66), instead of the experimental θy. In this way μθ

pl

is not affected by the flexibility of the base of some test specimens, which increases
the measured pre-yield deflection but affects very little the post-elastic deformations
of the specimen itself. Similar to Eq. (3.110) of Kowalsky and Priestley (2000), the
axial compression N is taken to affect shear resistance according to the CEB/FIP
Model Code 90 (CEB 1991), but the effect of axial tension is neglected. As in Eqs.
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(3.110) and (3.113a),
√

fc appears in the Vc term, reflecting the tensile strength of
concrete.

In the first one of two models only the Vc term is taken to degrade with inelastic
cyclic displacements (cf. Eq. (3.110)). With units: MN, m, this model is:

VR = h − x

2Ls
min (N ; 0.55Ac fc) + 0.16

(
1 − 0.095 min

(
5; μpl

θ

))

max(0.5, 100ρtot )

(
1 − 0.16 min

(
5;

Ls

h

))√
fc Ac + VRs

(3.114a)

In the other model both Vc and the contribution of VRs degrade with cyclic μθ :

VR = h − x

2Ls
min (N ; 0.55Ac fc) +

(
1 − 0.05 min

(
5; μpl

θ

))
[
0.16 max(0.5; 100ρtot )

(
1 − 0.16 min

(
5;

Ls

h

)) √
fc Ac + VRs

]
(3.114b)

VRs is taken with δ = 45◦ and as for Moehle et al. (2001): in circular columns
from Eq. (3.112) with (D–x–c) replaced by (D–2c) and for all other sections from
Eq. (3.94).

Both Eqs. (3.114a) and (3.114b) agree very well with the data and are practi-
cally equivalent as far as scatter is concerned. Their test-to-prediction ratio in 300
cyclic tests to diagonal tension failure has median of 0.995 and coefficients of varia-
tion of 15.5% or 14.6%, respectively. For comparison, the median test-to-prediction
ratio for Eqs. (3.110) or (3.113) is 0.83 or 1.015, respectively, and the coefficient of
variation of both is about 25%.

Equations (3.114) are also in good agreement with three cyclic tests on pre-
stressed specimens, failing by diagonal tension after flexural yielding. In this cal-
culation the prestress can only be taken as part of the actions, even though bonded
tendons near the extreme tension fibres may yield, when the member’s end section
yields before ultimate failure in shear. The prestress cannot be taken as part of the
resistance, because bending moments nowhere enter in this calculation and hence
the bending moment induced by the bonded tendons that have not yielded cannot be
taken into account.

According to Eqs. (3.114), beyond μθ = 6 there is no further decay of shear
strength. For μθ > 6 the Vc term in Eq. (3.114a) assumes a constant value equal to
52.5% of that at μθ = 1. In Eq. (3.114b) for μθ > 6 the sum of Vc and VRs attains a
constant value of 75% that at μθ = 1.

Equations (3.110), (3.111), (3.112), (3.113) and (3.114) can be conveniently used
to assess whether a member that initially yields in flexure may ultimately fail in
shear by diagonal tension at a cyclic deformation less than that at failure by flexure.
In principle, they can also be inverted to estimate the cyclic deformation capacity
of members failing by diagonal tension after flexural yielding: by setting the shear
resistance VR equal to the shear force, My/Ls, at flexural yielding, solving for μθ
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and estimating the shear-controlled chord rotation capacity as μθ times θy, from
Eqs. (3.66). However, the sensitivity of VR to μθ is not sufficiently large to allow
using this force-based criterion to predict the deformation capacity as controlled by
shear. So, the predictive capability of the inverted procedure is poor (Biskinis 2007,
Biskinis et al. 2004).

3.2.4.4 Inclination of Compression Stress Field at Ductile Shear Failure
Under Cyclic Loading

The method of choice in Eurocode 2 (CEN 2004b) for the design of concrete ele-
ments in shear is the “variable strut inclination” model, Eqs. (3.94), (3.95) and
(3.97), along with Eqs. (3.96a) and (3.104a). Eurocode 8, conforms to the Eurocode
2 framework and uses Eq. (3.94), that includes a term proportional to cotδ but no
Vc term. According to Eurocode 8, columns and walls of DC H (High) buildings,
as well as any member of a DC Medium (M) building, may be dimensioned for an
angle δ of the compression diagonals as low as δ = 22◦ (cot δ = 2.5).The beams
of DC H buildings should be dimensioned in shear for δ = 45◦ (i.e. with a classical
45◦ truss and no Vc term).

The data used for the fitting of Eqs. (3.114) have also been utilised in (Biskinis
2007, Biskinis et al. 2004) to compute the value of δ at which the sum of N(h–
x)/2Ls and VRs from Eq. (3.94) is equal to the experimental shear resistance. The
outcome for the 300 tests is depicted in Fig. 3.41 as a function of the chord rota-
tion ductility factor, μ, at failure. Figure 3.41 shows a tendency of the angle δ to
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Fig. 3.41 Experimental data on the dependence of the strut inclination δ on chord rotation ductility
ratio, for cyclic loading after flexural yielding (Biskinis 2007, Biskinis et al. 2004)



270 3 Concrete Members Under Cyclic Loading

increase on average with increasing μ, from a value well below the Eurocode 2
lower limit of δ = 22◦ for μ = 1. However, as important parameters reflected in
the Vc term of Eqs. (3.110), (3.113) and (3.114) are missing, the scatter is very
large. So, any attempt to fit the angle δ as a function of μθ is meaningless. An
approximate 5%-fractile line is drawn in Fig. 3.41, extending from the Eurocode
2 lower limit of δ = 22◦ for μ = 1, to δ = 45◦ for μ = 2.5. This line may be
considered to give a very safe-sided estimate of shear strength for design purposes.
So, despite the merits of the “variable strut inclination” method for shear design
against monotonic loads, a classical 45◦-truss model with a Vc term that depends on
displacement ductility demand, seems to be a better means for the design of con-
crete members against diagonal tension failure under cyclic loading after flexural
yielding.

3.2.4.5 Degradation with Cyclic Loading of the Diagonal Compression
Strength of Walls

Squat shear walls subjected to cyclic loading in the lab or in the field may fail in
shear by diagonal compression, often after flexural yielding. Over 50 wall or hollow
rectangular piers (all with shear span ratio, Ls/h, less or equal to 2.5) have been found
in the literature as having failed by shear compression under cyclic loading (Biski-
nis 2007, Biskinis et al. 2004). Most of them failed in shear after they had yielded
in flexure, but a total of 18 specimens (walls with barbelled or T-section or hollow
rectangular piers) failed before flexural yielding. Figure 3.42 shows that the cyclic
shear resistance of these walls decreases when their inelastic deformations increase.

Fig. 3.42 Experimental shear resistance of squat walls for web diagonal compression, as a fraction
of the shear resistance from Eqs. (3.97), (3.98) and (3.99), using the concrete strength reduction
factor of Eurocode 2 and Model Code 90, Eq. (3.96a)
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More important, it is generally much less than the shear resistance of walls in diag-
onal compression of the web for monotonic, non-seismic actions from Eqs. (3.97),
(3.98), (3.99) and (3.96a) (CEN 2004b, CEB 1991). The cyclic shear resistance of
these walls is less than the monotonic value in (CEN 2004b, CEB 1991), even when
shear failure occurs before flexural yielding (μθ = 1 in Fig. 3.42). It seems there-
fore, that the Eurocode 2 design rules are not safe for shear compression failure of
squat walls under cyclic loading. For this reason in Part 1 of Eurocode 8 the value
of VR,max of ductile walls in DC H buildings is just 40% of the value in Eurocode 2,
Eqs. (3.96a) and (3.97). As shown in Fig. 3.42, that value is a 5%-fractile.

A purely empirical model for the cyclic degradation of the shear strength in diag-
onal compression has been fitted in (Biskinis 2007, Biskinis et al. 2004) to the data
that have been used in Fig. 3.42. In addition to μθ

pl = μθ–1, expressing the effect
of inelastic cyclic displacements, statistically significant parameters for the shear
strength in cyclic diagonal compression are those included in the Vc term of Eqs.
(3.114) plus the axial force. Most specimens in the database failed around the value
of δ that maximises VR,max in Eq. (3.97): δ = 45◦. So, the model is based on the clas-
sical 45◦ truss. For units MN, m, it gives the cyclic decay of diagonal compression
strength as (Biskinis 2007, Biskinis et al. 2004):

VR,max = 0.85
(
1 − 0.06 min

(
5; μpl

θ

)) (
1 + 1.8 min

(
0.15;

N

Ac fc

))

(1 + 0.25 max (1.75; 100ρtot ))

(
1 − 0.2 min

(
2;

Ls

h

))
√

min ( fc; 100)bwz

(3.115)

The internal lever arm z is taken as z = 0.8lw for rectangular walls and z = d–d1

for walls with barbelled or T-section and in hollow rectangular piers.
Equation (3.115) fits the data with a median test-to-prediction ratio of 1.01 and

a coefficient of variation of 17.6% (Biskinis 2007). The data fitted include the 18
cyclically loaded walls with barbelled or T-section or hollow rectangular piers fail-
ing in shear compression prior to yielding in flexure. Therefore, it may be con-
sidered to hold also (with μθ

pl = 0) for failure in cyclic shear before flexural
yielding.

Equation (3.115) has been adopted in Part 3 of Eurocode 8 (CEN 2005a).
Being fully empirical, it applies strictly within the range of parameter values in the
fitting:

– Ls/h from 0.5 to 2.4 (squat walls),
– N/Acfc from 0 to 0.18,
– ρ tot from 0.5 to 3%,
– fc from 16.5 to 137 MPa,
– μθ from 1 to 7.5.
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3.2.5 Cyclic Behaviour of Squat Members, Controlled
by Flexure-Shear Interaction

3.2.5.1 Introduction

Short columns (including captive ones, see Section 2.1.13.4), deep beams and squat
walls have low shear span ratio, M/Vh. During earthquakes short columns develop
nearly equal and opposite bending moments at their ends. The same holds in short
beams, because their end moments due to gravity loads are normally very small. So,
the shear span ratio of short columns or beams is equal to 0.5L/h, where L is the
clear length and h the depth of their section. The bending moment diagram of squat
walls is affected little by any beams framing into them. So their shear span ratio at
the base is between 0.5Hw/lw and 2/3(Hw/lw), where Hw is the total height of the
wall.

For given cross-sectional dimensions and longitudinal reinforcement, hence for
given moment resistance, the shear force increases with decreasing shear span ratio.
Moreover, low shear span ratio elements have a two-dimensional geometry. So it
is not possible to distinguish between their end regions, governed by flexure, and
the rest of their length, where (the constant) shear force controls the resistance and
the behaviour. As a matter of fact, if we ignore that the short length of the member
– compared to its depth – invalidates the simple models applicable to prismatic
elements, we may be surprised at first sight by some conclusionst. For example, if
the usual fan pattern of cracking and of the compression field near the member’s end
regions extends up to mid-length, x = L/2, then, if the corresponding value of the
inclination of the compression field at x = L/2: cotδ = L/z is used for the forces in
the chords: Ft(x) = M(x)/z+0.5Vcotδ (see Section 3.2.4.2 under The Variable Strut
Inclination Truss of the CEB/FIP Model Code 90 and Eurocode 2), we get:

– at the mid-section, x = L/2: a tensile force in both chords equal to that at the end
sections: Ft = M(x=0)/z,

– at the end sections x = 0 and x = L: zero force in one chord, instead of the
compressive force Ft = –M(x = L)/z expected there on the basis of flexure
alone.

So, the stress in the tension longitudinal reinforcement should drop from σ s = fy
at x = L/2, to σ s = 0 at x = L, inducing very high bond demands on the length of the
bars between these two sections. Unless another failure mode develops first, splitting
cracks may form all-along the corner bars of short concrete members subjected to
cycling loading.

Figure 1.2(a) in Section 1.3.1 shows the load-deformation response of an ele-
ment with Ls/h = 1.9 under monotonic loading. Soon after the monotonic ultimate
strength is reached, resistance drops drastically. In cyclic loading, hysteresis loops
are narrow and have inverted-S shape, with a tendency to tilt and shrink further
with cycling. The ultimate deformation is low and the displacement ductility factor
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at member failure is not much larger than 1.0. The behaviour is not ductile and is
strongly affected (or even governed) by shear.

3.2.5.2 Monotonic Lateral Force Resistance of Squat Members
with Flexure-Shear Interaction

As pointed out in Section 3.2.1, if the shear span ratio is low the mechanisms of
force transfer by shear or flexure essentially merge into a single one. Diagonal com-
pression in the concrete plays a prime role in this joint mechanism. A good starting
point for the understanding of the mechanism of force transfer and of ultimate fail-
ure of low shear span ratio elements is the shear resistance model in AIJ (1994),
outlined in Section 3.2.4.2 under The Truss Plus Diagonal Strut Model of the AIJ
Guidelines. That model, though, has certain limitations:

1. the assumption that the diagonal compression strut takes up one-half of the mem-
ber depth, h, is arbitrary;

2. the effect of axial load is ignored;
3. concrete stresses in the diagonal strut are directly added to those in the compres-

sion field of the truss mechanism, although they do not act in the same direction,
but at angles φ and δ to the member axis, respectively.

An important feature of the AIJ model is that the diagonal compression strut
acting between the compression zones at the two end sections resists, via its force
component that is transverse to the member axis, a certain part of the shear force (cf.
term N(h–x)/2Ls in Eqs. (3.110) and (3.114)). The rest of the shear force is resisted
through the familiar truss mechanism comprising:

– the two parallel chords,
– the stirrups, and
– the concrete compression field at an inclination δ to the member axis.

The AIJ model for shear resistance of relatively slender elements without effect
of the axial force (Section 3.2.4.2 under The Truss Plus Diagonal Strut Model of the
AIJ Guidelines) is extended below to squat elements with axial compression:

(a) by taking into account the contribution of the axial load, N, and
(b) by considering that at the two end sections the diagonal strut extends over the

neutral axis depth there at flexural yielding (i.e., it is equal to: x = ξ yd, with
ξ y from Section 3.2.2.2 under Cross-Sections with Rectangular Compression
Zone), in lieu of 0.5h.

Owing to (b), the strut inclination to the member axis is φ = arctan[(h−x)/2Ls].
Its width normal to the strut axis is x cosφ.

As in the AIJ (1994) model, the member is considered to fail in diagonal com-
pression under the action of:
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– the normal stress in the diagonal strut, assumed uniform over its width, x cosφ,
even at the end section of the member;

– the inclined compression field of the truss mechanism, considered uniform over
the internal lever arm z = ζh between the chords and acting at an angle δ to the
member axis.

Also as in the AIJ shear model, the difference in the orientation of these two
compression fields is neglected. So, their stress magnitudes are added up and the
sum is set equal to a fraction n of the uniaxial compressive strength of concrete, fc
(see Eqs. (3.96)).

The assumptions and approximations above give the following, as generalisa-
tion of the procedure in Shohara and Kato (1981) – where the truss was a classical
Mörsch-Ritter one with δ = 45◦ and n = 1 – (see Fig. 3.43(a), where ν = N/bhfc,
υ = V/bhfc, λ = L/h=2Ls/h, ζ = z/h and ωs is the total mechanical longitudinal
reinforcement ratio, denoted here as ωtot).

(a)

(b)

Fig. 3.43 (a) Schematic interaction diagram in dimensionless V-N space (CEB 1996a); (b) appli-
cation for dimensional M-N and V-N diagrams of 200 mm square column with four 16 mm bars
(CEB 1996a)



3.2 Concrete Members 275

1. In the following range of axial forces N (positive for compression):

N1 = 0.5bhn fc − As,tot fy + ρwbw fyw[cot δ(2Ls + (z − 0.5 h) cot δ) − 0.5 h]

≤ N ≤ N2 = 0.5bhn fc + As,tot fy − ρwbw fyw

[cot δ(2Ls − (z − 0.5 h) cot δ) + 0.5 h]
(3.116)

failure is brittle, taking place by yielding of transverse reinforcement and diago-
nal concrete crushing, while all the longitudinal reinforcement is still in the elas-
tic range. The shear resistance is independent of the exact value of N between N1

and N2 and of the total cross-sectional area of longitudinal reinforcement, As,tot.
It is obtained from Eq. (3.107) using there the value of tan φ from Eq. (3.106).

2. In the range of N-values:

N1 ≥ N ≥ −As,tot fy (3.117)

failure is by diagonal concrete crushing, but it is less brittle than in case 1, as not
only the transverse steel but also the tension reinforcement have already yielded.
The shear resistance is:

VR = (N + As,tot fy) tanφ + ρw fywbw cot δ (z − (2Ls + z cot δ) tanφ) (3.118)

where:

tanφ = min

⎛
⎝
√(

Ls

ηh

)2

+ 1 − η

η
− Ls

ηh
,

h

2Ls

⎞
⎠ (3.119)

and

η = N + As,tot fy − ρw fywbw (2Ls + z cot δ) cot δ

bwh
(
n fc − ρw fyw

(
1 + cot2 δ

)) (3.120)

3. In the remaining range of N-values, i.e. for

n fcbwh + As,tot fy ≥ N ≥ N2 (3.121)

failure is again by diagonal concrete crushing with the transverse steel at yield-
ing, but in this case with the compression reinforcement yielding as well. So, it
is again less brittle than in case 1. The shear resistance is:

VR = (N − As,tot fy) tanφ + ρw fywbw cot δ (z + (2Ls − z cot δ) tanφ) (3.122)

The value of tan φ is still given by Eq. (3.119), but with the following value
of η:
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η =
(
N − As,tot fy

) + ρw fywbw (2Ls − z cot δ) cot δ

bwh
(
n fc − ρw fyw

(
1 + cot2 δ

)) (3.123)

The upper limit of cotδ is still given by Eq. (3.108b). An inclination of the com-
pression field close to the cracking pattern is: cotδ = Ls/h.

Case 1 above, of brittle failure and of shear resistance independent of N exists
only if N2 > N1, i.e. only if:

cot δ ≤ ωtot

ωw

h

2Ls
(3.124)

Equations (3.116), (3.117), (3.118), (3.119), (3.120), (3.121), (3.122) and
(3.123), supplemented with Eqs. (3.106) and (3.107) where relevant, are essentially
analytical expressions of the monotonic ULS resistance of squat columns under
skew-symmetric bending, as governed by moment, shear and axial force. In other
words, they give the reduction of flexural resistance due to high shear.

Using the relationship M = VLs, Eqs. (3.116), (3.117), (3.118), (3.119), (3.120),
(3.121), (3.122) and (3.123) can be converted into interaction diagrams relating the
dimensionless moment μ = M/bh2fc = (V/bhfc)(Ls/h) to the dimensionless axial
force ν = N/bhfc. When the shear span ratio, Ls/h, increases, such μ–ν interaction
diagrams tend asymptotically to the simple bilinear diagram:

μ = 0.5ζ (ν + ωtot) for 0.5n > ν ≥ −ωtot (3.125a)

μ = 0.5ζ (n + ωtot − ν) for n + ωtot ≥ ν ≥ 0.5n (3.125b)

Equations (3.125) can be derived as interaction relations between dimensionless
moment and axial force of a single section at the ULS in bending, assuming:

– for Eq. (3.125a), that the resultant force of the concrete stresses in the compres-
sion zone is applied at the location of the compression reinforcement and

– for Eq. (3.125b), that the entire cross-section is under a compressive stress of
nfc.20

Figure 3.43(b) presents interaction diagrams derived from the above procedure
with n = 1 and δ = 45◦ (Shohara and Kato 1981).

3.2.5.3 Under What Conditions Does Shear Reduce the Moment Resistance?

The conventional criterion for the characterisation of an element as squat and prone
to reduction of its moment resistance owing to shear, is its slenderness, λ = L/h,
or – preferably – its shear span ratio, M/Vh = Ls/h. A more rational criterion can

20Normally we take n = 1 for flexure with axial load without shear.
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be based on Eq. (3.124), which is the condition for the existence of the axial-load-
range where failure is brittle, Eq. (3.116). Equation (3.124) has been generalised in
Biskinis (2007) to members with not just tension and compression reinforcement,
but also with “web” reinforcement in-between. Taking for simplicity δ = 45◦ as in
Shohara and Kato (1981), the generalised criterion is:

2
Ls

h
≤ ωtot

ωw
(3.124a)

The yield moment of rectangular beams or columns with relatively low shear
span ratio, Ls/h, has been compared in Biskinis (2007) with the value calculated
from Section 3.2.2.2.21 Over 300 such members were identified to exhibit reduc-
tion of the yield moment owing to shear and low slenderness. Calculation accord-
ing to Section 3.2.2.2 gives for them a median test-to-prediction ratio of 0.86,
distinctly lower than the median test-to-prediction ratio of 1.025 for about 2050
beams or columns that do not exhibit effects of shear on their yield moment (see
Section 3.2.2.2 under Comparison with Experimental Results and Empirical Expres-
sions for the Curvature). Scrutiny of the experimental results has led to proposed
new criteria for members whose moment resistance is reduced by shear:

i. If 2.0 < Ls/h < 3.0: the axial force N is between the bounds of Eq. (3.116).
ii. If Ls/h < 2.0: Eq. (3.124a) is met.

If the member does not satisfy one of these two criteria, its yield moment may be
calculated according to Section 3.2.2.2.

The yield moment of the over 300 members found to meet one of these two
criteria is slightly underpredicted by the procedure of Section 3.2.5.2, even when
applied with n = 1 and δ = 45◦, i.e. as in Shohara and Kato (1981). The test-to-
prediction ratio has a median of 1.085 and a coefficient of variation of 29.1%, to be
contrasted with the median of 1.025 and the coefficient of variation of 16.3% of the
about 2050 beams/columns without effects of shear (Biskinis 2007).

A more sophisticated alternative to the analysis in Section 3.2.5.2 has also been
considered in Biskinis (2007), where:

– the difference in the orientation of the truss (at an angle δ to the member axis) and
of the stress in the diagonal strut is taken into account; the principal compressive
stress of the combined field is set equal to nfc

– plane-sections analysis is carried out at the end sections.

It has further been found in Biskinis (2007) that:

(a) If the principal compressive stress of the combined stress field reaches the limit
value of nfc together with yielding of the stirrups but before attainment of the

21In squat members whose moment resistance is reduced owing to shear, the yield moment is
essentially equal to the moment resistance.
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moment resistance of the end section(s) with exceedance of εcu at the extreme
compression fibres, the more sophisticated alternative gives predictions closer
to the experimental yield moment than the procedure in Section 3.2.5.2 with n
= 1 and δ = 45◦. In those cases the test-to-prediction ratio of the yield moment
has a median of 0.99 and a coefficient of variation of 23.7%.

(b) When the moment resistance of the end section(s) is not attained before failure
of the concrete in diagonal compression and yielding of the stirrups, the proce-
dure of Section 3.2.5.2 with n = 1 and δ = 45◦ gives better prediction: a median
of 1.035 for the test-to-prediction ratio and a coefficient of variation of 31.3%.

Among those members meeting criteria (i) and (ii) for dependence of their
moment resistance on shear, alternative (a) above has been found to approximately
correspond to one of the following two conditions (Biskinis 2007):

ν ≥ 0.4; (3.126a)

ωtot

ωw
≤ 2

Ls

h
max (2; 10ν) (3.126b)

If none of these two conditions is met, the procedure of Section 3.2.5.2 gives
better predictions.

3.2.5.4 Degradation with Cyclic Loading of the Resistance of Squat Columns
to Shear Compression Failure, After Flexural Yielding

The main problem of squat columns is that, after reaching their shear-dependent
flexural capacity (see Section 3.2.5.2), they may fail in shear at relatively low values
of the chord rotation, θ . Most often shear failure of squat columns takes place by
compression along the diagonal of the element between opposite ends of its end
sections.

Close to 40 columns from the literature with shear span ratio, Ls/h, less or equal
to 2, have failed under cyclic loading by shear compression after flexural yield-
ing (Biskinis et al. 2004). A purely empirical model for the cyclic degradation of
shear strength in members failing by diagonal compression has been fitted to those
data. Based on the experimental observations, compression failure is taken to occur
along the column diagonal in elevation. Inelastic cyclic displacements are expressed
through μθ

pl = μθ–1. For units: MN, m, the cyclic shear resistance is (Biskinis et al.
2004):

VR,max = 4

7

(
1 − 0.02 min

(
5; μpl

θ

))(
1 + 1.35

N

Ac fc

)
(1 + 0.45 · 100ρtot )√

min ( fc; 40) bwz sin 2δ
(3.127)

where δ is the angle between the diagonal and the axis of the column (tanδ = h/2Ls).
The internal lever arm z is taken as z = d–d1.
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Equation (3.127) fits the test results with a median value of the test-to-prediction
ratio equal to 1.005 and coefficient of variation of 8.9%. Being almost fully empiri-
cal, it applies only in the range of parameter values in the relevant database:

– Ls/h from 1 to 2,
– N/Acfc from –0.1 to 0.7,
– ρ tot from 0.7 to 4%,
– fc from 14.5 to 61 MPa,
– μθ from 1.4 to 7.

Equation (3.127) has been adopted for squat columns in Part 3 of Eurocode 8
(CEN 2005a).

3.2.5.5 Diagonal Reinforcement in Squat Columns or Deep Beams

It has been pointed out already that elements with low shear span ratio are nearly
two-dimensional. Design of two-dimensional concrete elements for monotonic
loads is normally based on Strut-and-Tie Models (STMs). In the STM approach,
the internal stress field is idealised as a statically determined truss. Bands of com-
pressive stresses identified with concrete struts are verified in compression. Rein-
forcement is placed along tensile stress bands considered as ties of the STM.

Let’s consider a squat column or a deep beam in skew-symmetric bending, i.e.
with equal and opposite design moments at its ends: Md = VEdL/2 = VEdLs where
L and Ls are the total clear length and the shear span, respectively, and VEd is the
design shear associated with Md. The simplest STM of the member consists of;

– a concrete strut along its diagonal in elevation, connecting the compression zones
of its two end sections, and

– a (steel) tie along its other diagonal.

Dimensioning of the diagonal steel tie would give a cross-sectional area, Asd,
such that:

VEd = 2Asd fyd sin δ (3.128a)

Md = z Asd fyd cos δ (3.128b)

where:

– z is the internal lever arm at the end section(s) and
– δ is the angle between the diagonal reinforcement and the axis of the member:

δ = arctan(z/L) = arctan(0.5z/Ls) (3.129)
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If the loading is cyclic, the strut and the tie would alternate between the two
diagonals and the member should be reinforced along both, with a steel tie having
cross-sectional area, Asd, satisfying Eqs. (3.128) and (3.129). When the diagonal tie
is in compression, it could resist (if effectively restrained laterally against buckling)
the full compressive force along the diagonal. The surrounding concrete would be
protected from diagonal crushing.

Reinforcement placed along both diagonals of the element in sufficient quan-
tity to prevent shear failure before or after flexural yielding of the end sections
greatly enhances the flexure-controlled deformation capacity of the element, no
matter whether it is sufficient to take the full design action effects according to
Eqs. (3.128). The last term in Eqs. (3.78) shows that, all other parameters being the
same, a diagonal reinforcement ratio of 1% increases, on average, by 25% the ulti-
mate chord rotation capacity or by 27.5% its plastic part. The enhancement increases
more than proportionally for larger diagonal reinforcement ratios. Moreover, the
hysteresis loops of the diagonally reinforced element resemble those of steel in uni-
axial tension-compression, i.e. they are broad and stable.

Diagonal reinforcement can easily be placed in deep beams, like coupling beams
between coupled walls. It may even be placed fairly easily in squat walls (although
there it crosses the base section at mid-length, its main purpose being to prevent
sliding shear failure, and it does not enhance much the wall moment resistance). As a
matter of fact, in deep coupling beams diagonal reinforcement should preferably be
arranged in square column-like elements with dense hoops around them, to prevent
buckling of the longitudinal bars and confine the concrete inside (Fig. 3.44). In such
cases, only nominal (e.g. the minimum) longitudinal and transverse reinforcement
needs to be placed in the coupling beam, as the diagonal one is dimensioned to resist
the full design action effects according to Eqs. (3.128).

It is very difficult to place diagonal reinforcement in squat columns, while pro-
viding at the same time transverse reinforcement at the density and with a pattern
normally necessary for confinement of the concrete core and anti-buckling action.
Note that, if the column is squat in both horizontal directions, diagonal reinforce-

s
s

l

α

~h

V
Ed

/2

V
Ed

/2

A
si
f
yd

A
si
f
yd

V
Ed

(l/h)

b

h

A
si

1
2

1
2V

Ed
(l/h)

~

~

Fig. 3.44 Diagonally reinforced coupling beam (CEN 2004a)
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ment should normally be placed along both. This is impracticable. It might be feasi-
ble, though, to place diagonal reinforcement in a column which is effectively squat
only in one direction (e.g., if beams frame into it at short vertical spacing only within
one vertical plane, or if its squatness is due to a concrete or masonry infill in contact
with the column, see Fig. 2.12 in Chapter 2).

3.3 Joints in Frames

3.3.1 Force Transfer Mechanisms in Concrete Joints:
Bond and Shear

Bending moments in beams due to gravity loading normally have the same sign
at opposite faces of their joint with a vertical member. By contrast, beam bending
moments due to seismic loading have opposite sign at opposite faces of the joint.
Therefore, seismic shear forces are very high in the joint itself. Figure 3.45(a) illus-
trates the reason for the magnitude of this shear:

– With the joint considered as part of the beam, the change in the beam moment
from a (high) negative value to a positive one across the joint produces a vertical
shear force, Vjv = ΣMb/hc = ΣVbLcl/2hc, where Mb and Vb denote the beam
seismic moments and shears at the face of the joint, Lcl the beam clear span and
hc the depth of the column.

– With the joint considered as part of the column, the change of the column bending
moment from a high value just above the joint to an equally high value with
opposite sign just below, produces a horizontal shear force, Vjh = ΣMc/hb =
ΣVcHcl/2hb, where Mc and Vc denote column seismic moments and shears above
or below the joint, Hcl the clear storey height and hb the beam depth.

The joint shear forces produce a nominal shear stress in the concrete of the joint:
vj = ΣMc/(hchbbj) = ΣMb/(hchbbj), where (hchbbj) is the volume of the joint, with bj

its effective width normal to the plane of bending, conventionally taken by seismic
design codes (CEN 2004a) as:

if bc > bw : b j = min {bc; (bw + 0.5hc)} ; (3.130a)

if bc ≤ bw : b j = min {bw; (bc + 0.5hc)} (3.130b)

where bc and bw denote the width of the column and the beam, respectively, at right
angles to the plane of bending.

Shear stresses are introduced in a joint mainly by bond along the bars of the
beam and the column (or wall) around the core of the joint. Because the nominal
shear stress in the concrete of the joint is the same, no matter whether it is computed
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Fig. 3.45 Interior beam-column joint: (a) shear forces within the joint; (b) shear resistance mech-
anisms; (c) joint deformation; (d) experimental loops of moment on joint v fixed-end rotation due
to bar slippage within/through joint (adapted from Viwathanatepa et al. 1979)

from the horizontal or the vertical shear force, Vjh or Vjv, it is more convenient to
compute it from the horizontal shear, Vjh, which is based on the forces transferred
via bond stresses along the top bars of the beam. Note that, even when Eq. (1.4) is
not fulfilled, the beams framing into a joint normally yield before the column or the
wall. If they don’t, the horizontal joint shear is overestimated if computed from the
top bars of the beam, and hence is on the safe side for the joint.
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So, the joint may be considered as a series system of two (independent) mecha-
nisms of force transfer:

– from the beam and column (or wall) longitudinal bars to the core of the joint, by
bond;

– from each side of the joint core to the opposite, through shear (see Fig. 3.45(b)).

This implies that:

– if one of the two force transfer mechanisms fails, the joint fails as well; and
– the overall (shear) deformation of the joint is the sum of the individual deforma-

tions of the two mechanisms (see Fig. 3.45(c)).

Force transfer to the joint core by bond along the longitudinal bars passing
through the joint or anchored in it causes slippage along these bars. Slippage shows
up as fixed-end rotation, θ sl, of the end of the member where the longitudinal bars
belong (see Fig. 3.45(c) and (d)). Force transfer through the joint by shear causes an
angular distortion (shear strain) of the joint core, γ j (Fig. 3.45(c)). The total defor-
mation of the joint is an apparent shear deformation, equal to the sum of γ j and of
the fixed-end rotations, θ sl, at the ends of all (four, in an interior joint) members
framing into the joint (unless such a fixed-end rotation is incorporated in the chord
rotation of the member, see discussion in Section 3.3.2). As shown in Fig. 3.30, the
total shear deformation of a frame panel made up of two beams and two columns is
equal to the sum of:

– the average apparent shear deformation of the four joints at the corners of the
panel; plus

– the average chord rotation at the (four) column ends on either side of the panel,
θ c; plus

– the average chord rotations at the (four) beam ends above and below the panel, θb.

It is interesting that, although it adds to θ c + θb, the angular distortion (shear
deformation) of the joint core, γ j, takes place in the opposite sense with respect
to the sum of θ c + θb (see Fig. 3.45(c)): the joint diagonal that shortens is the one
parallel to the panel diagonal that gets longer during the deformation of the panel.
This is consistent with the opposite sign of the joint shears, Vjv, and Vjh, with respect
to those in the members themselves (see Fig. 3.45(a)).

3.3.2 The Bond Mechanism of Force Transfer in Joints

Beams normally yield before the columns. Moreover, compressive stresses in the
vertical bars of columns are normally below yield (as cracks at column ends nor-
mally are not open through the column depth and the concrete participates fully in
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resisting the force of the compressive zone). Therefore, bond stresses are normally
higher along the longitudinal bars of beams passing through a joint, than along the
column bars. So, the transfer of forces into the joint is normally controlled by the
longitudinal bars of the beam.

As the (unusual) example in Fig. 3.21 shows, bond failure along longitudinal
bars of beams or columns within the very length of the element manifests itself as
a splitting crack along the bar, especially if it is a corner one. Bond failure along
the length of the bar within the joint normally manifests itself through partial pull-
out of the bar through the joint. The high static indeterminacy of the system of
the joint and of the members framing in it limits the magnitude of any pull-out of
member longitudinal bars from the joint. Such pull-out manifests itself as a large
fixed-end rotation, θ sl, of the end of that member to which the longitudinal bars
belong. Witness the resemblance of the end moment-fixed end rotation loops in Fig.
3.45(d) (Viwathanatepa et al. 1979) to the bond-slip loops in Fig. 3.22. They are
narrow, have inverted-S shape and degrade with cycling.

The fixed-end rotation, θ sl, at a member end due to partial pull-out of the mem-
ber’s bars from the joint is normally added to the chord rotation of the member
itself at that end (see Fig. 3.24 and Eq. (3.42) in Section 3.2.2.3 and 3rd term in
Eqs. (3.66) in Section 3.2.3.2) increasing its apparent flexibility (through Eq. (3.68),
Section 3.2.3.3). It also increases its apparent deformation capacity (see 2nd term in
Eq. (3.72) in Section 3.2.3.4 and terms with asl in Eqs. (3.78) in Section 3.2.3.5). At
the extreme, bond failure along the member’s longitudinal bars within the joint may
prevent the full yield moment from developing at the end section of the member
(see Fig. 3.29 in Section 3.2.2.3 for two field cases).

The problem of bond is more acute at interior joints, where beam longitudinal
bars continue into the adjacent span, rather than at exterior ones, where beam bars
are anchored with a 90◦ bend at the far end of the joint. As a matter of fact, taking
into account that bond stresses along the part of the beam bars outside the confined
joint core are negligible because:

– yielding penetrates into the initial length of the bar into the joint while confine-
ment there is poor, and

– horizontal cracking of the column may take place at the plane of the beam longi-
tudinal bars,

and taking the width of the joint confined core along the depth hc of the column as:
hco ≈ 0.8hc, the average bond stress along a beam bar is:

– ∼dbLfy/4hco ≈ 0.3dbLfy/hc, if the bar reaches its yield stress in tension at one face
of the joint and has zero compressive stress at the opposite face,

– ∼dbLfy/2hco ≈ 0.6dbLfy/hc, if the bar reaches its yield stress in tension at one face
of the joint and in compression at the opposite one. This may happen if the crack
at the beam section at the face of the column stays open at the top under positive
moments (see Fig. 3.7 in Section 3.1.1.1 and point 3 in Section 3.2.2.6). In that
case the top bars of the beam bear the full force of the compression zone.
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At exterior joints, the average bond stress along beam bars bent by 90◦ at the far
end of the joint is lower: ∼0.2dbLfy/hc.

For common values of dbL and hc the level of bond stresses estimated above
ranges from 5 to 15 MPa, often exceeding the ultimate bond stress under cyclic
loading. Test results show, however, that cyclic bond stresses of that magnitude can
develop in joints, without causing unduly large pull-through slippage of the beam
bars (thanks primarily to lateral confinement at the level of the beam top bars by
the transverse beams and the slab, but also to enhancement of bond by compression
normal to the bar surface due to the column axial load).

Figure 3.46 demonstrates the effect of the column depth, hc, on the hysteresis
loops of shear force v overall deformation of a cross-shaped beam-column sub-
assembly (Kaku and Asakusa 1991). If the column size is small, namely hc =
18.8dbL, the overall force-displacement loops are controlled by bond slip within
the joint and their shape resembles the loops in Fig. 3.22. However, the system’s
peak force resistance does not degrade with cycling. Only the reloading stiffness is
greatly reduced, giving lower energy dissipation and certain growth of the overall
lateral displacements with cycling. For larger column sizes bond slip in the joint
does not govern and the overall force-displacement loops are controlled by the flex-
ural behaviour of the beam.

If l (: left) and r (: right) index the two vertical faces of the joint, σ s denotes the
stress in the beam bars and hco is the width of the confined core of the joint along
the depth hc of the column, the average bond stress along these beam bars is:

τb = πd2
bL

4

|σsl − σsr |
πdbL hco

= dbL

4

|σsl − σsr |
hco

(3.131)

Bond stresses along the length of the bars outside the confined core are negligible.
Plastic hinges are assumed to develop in the beam at both sides of the joint. Let’s
consider the top flange to be in tension on the left of the joint and in compression on
the right (as in Fig. 3.45(a), (b) and (c)). The top flange is normally much stronger
than the bottom one, both in tension and in compression and, therefore, its yield
force cannot be balanced by the bottom flange unless the bottom bars yield. So, the
stresses of the bottom bars are: σ s,l = –fy, σ s,r = fy and the average bond stress along
them at beam plastic hinging is: τ b = 0.5dbLfy/hco. Regarding now the top bars, they
yield at the plastic hinge of the left beam: σ s,l = fy. At the opposite face of the joint
these bars have a compressive stress, σ s,r, such that, acting together with the force
of the concrete at the top flange, Fc,r (taken negative for compression), they balance
the tension force of the bottom bars. These latter bars are forced by the stronger top
flange to yield. So, if As,r1 and As,r2 denote the cross-sectional area of the top and
bottom beam bars on the right of the joint, the compressive stress of the top bars
there is:

σs,r = − As,r2

As,r1
fy − Fc,r

As,r1
= −ρ2

ρ1
fy

(
1 − ξe f f

ω

)
(3.132)
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Fig. 3.46 Effect of bond-slip in the joint, as controlled by column size, on overall force-
displacement loops of a beam-column subassembly (adapted from Kaku and Asakusa 1991)

where ρ1 and ρ2 are the ratios of top and bottom reinforcement at the right of the
joint, normalised to the product bd of the beam, ω is: ω = ρ1fy/fc and ξ eff is the
depth of a fictitious compression zone (normalised to d), such that Fc,r = –bdξ efffc.
Therefore the average bond stress along the top bars at beam plastic hinging is:

τb = dbL

4

fy

hco

(
1 + ρ2

ρ1

(
1 − ξe f f

ω

))
(3.133)
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and is less than the average bond stress along bottom bars with the same diameter,
dbL. However, the bond problem is more acute along the top bars, because bond
stresses are not uniform around a bar but are concentrated more on the side facing
the joint core. This is the underside of the top bars, where bond conditions are con-
sidered “poor” owing to laitance and consolidation of concrete during compaction.
All around the bottom bars bond conditions are considered as “good” (see Section
3.1.3.2).

The bond stress demand given by Eq. (3.133) is capped at the ultimate bond stress
along these bars. Bond outside the confined joint core is normally neglected, but its
enhancement inside the joint core due to confinement by the joint stirrups, the top
bars of the transverse beam and all the surrounding concrete is taken into account. It
has been pointed out in Section 3.1.3.2 that the maximum steel stress at pull-out (or
-through) bond failure may be obtained from Eq. (3.31) with the 1st and 2nd terms
inside the bracketed last term replaced by the upper limit value of 2.0. Bond strength
is further enhanced by the 3rd term inside the brackets, 0.2p (in MPa), owing to the
mean normal stress across the horizontal plane of the bar due to the axial load of the
column: p = N/Ac = νfc (fc in MPa). In Section 5.4.1 these considerations are used
with Eq. (3.133) to justify the lower limit on the hc/dbL ratio imposed by Eurocode
8 on beam bars passing through, or anchored at joints.

Notwithstanding the shortfall within the joint of the full anchorage of the yield
stress of (top) beam bars in tension at one face of the joint and in compression at
the opposite one, there is a real problem only for low hc/dbL values. The solution
is a large column size and/or a small bar diameter. Needless to say, bars of small
diameter are more susceptible to buckling and may require very dense stirrups at
the end of the beam for its prevention. Fortunately, compressive stresses are lower
in beam top bars than in the bottom ones (cf. histories of bar strains in Figs. 3.6 and
3.7) and the slab next to the beam prevents top bar buckling in a horizontal plane.

3.3.3 Force Transfer Within Joints Through the Shear Mechanism

3.3.3.1 Shear Force Demand in Joints

As already pointed out in Section 3.3.1, if there is no pull-out (or -through) of the
beam or column bars around the joint core, shear stresses develop within the joint
core with a nominal value equal to the ratio of ΣMc = ΣMb to the volume of the
joint, hchbbj. Shear failure of the joint, as in the examples of Fig. 3.47, is far more
brittle than any failure of plastic hinges around the joint, even in the columns. So, it
should be prevented through design and detailing of the joint. To this end, the max-
imum possible shear force that can develop in the joint is established from capacity
design calculations, on the basis of the capacity of the beams or the columns fram-
ing into the joint (whichever is weaker) to deliver shear through bond along the
outermost beam or column bars passing through the joint.

If the sum of moment resistances of the beams framing into a joint,
∑

MRb, is
less than that of the columns,

∑
MRc, (

∑
MRb <

∑
MRc), the shear input in the joint
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(a) (b) (c)

Fig. 3.47 Shear failure of exterior joints. (a) reinforced joint; (b), (c): unreinforced joints (See
also Colour Plate 10 on page 724)

is governed by the beams. If pull-out (or -through) of the beam top bars does not
take place, the maximum possible value of the horizontal shear force in an interior
joint, Vjh, can be computed as:

– the maximum possible tensile force in the top bars at one face of the joint, Asb1fy,
– plus the maximum possible compressive force in the top flange at the opposite

face,
– minus the shear force Vc in the column above the joint.

No matter how it is shared by the concrete and the top reinforcement, the max-
imum possible compression force in the top flange will be governed by the bottom
reinforcement. It will be equal to its maximum possible tensile force, Asb2fy. So, the
horizontal shear force in the joint is (Fardis et al. 2003):

If
∑

MRb <
∑

MRc:

Vjh= (Asb1 + Asb2) fy − Vc = (Asb1 + Asb2) fy −
∑

MRb

H

L

Lcl

=
∑

MRb

(
1

zb
− 1

H

L

Lcl

)
≈ (Asb1 + Asb2) fy

(
1 − zb

H

L

Lcl

) (3.134)

where:

– Asb1, Asb2: cross-sectional area of the beam top reinforcement at one face of the
joint and of its bottom reinforcement at the opposite face, respectively;

– Vc: column shear at beam plastic hinging;
– H: storey height;
– L, Lcl: theoretical and clear beam span, respectively; and
– zb (≈ hjb) = d–d1: beam internal lever arm.
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The larger of the two sums Asb1+Asb2 diagonally across the joint should be used
in Eq. (3.134). Normally, no such distinction needs to be made at interior joints,
as the steel area is the same at both sides. At exterior joints one term in Asb1+Asb2

is zero.
The shear force is translated into a nominal shear stress, considered uniform

within the joint core:

v j = Vjh

b j h jc
(3.135)

where:

– hjc: horizontal distance between the outermost layers of column reinforcement in
the direction of the horizontal joint shear force, and

– bj: joint width in the orthogonal horizontal direction, conventionally taken from
Eqs. (3.130).

If
∑

MRb >
∑

MRc, it is the columns that govern the shear input in the joint. Let’s
Asc,top and Asc,bot denote the cross-sectional area of vertical bars on one side of the
column above or below the joint, respectively.22 Then the vertical shear force in the
joint core is (Fardis et al. 2003):

Vjv = fy(Asc,top + Asc,bot ) + Ntop − Vb,min, (3.136)

where:

– Ntop: axial force in the column above; and
– Vb,min: algebraically minimum (and possibly negative) beam shear force on either

side of the joint:

Vb,min ≈
∑

MRc

L

H

Hcl
− max

([
Vg+ψq,b

]
l ;
[
Vg+ψq,b

]
r

)
(3.137)

where:

• H and Hcl are the theoretical and the clear storey height and
• Vg+ψq,b is the shear force at the beam end on the left (index: l) or on the right

(index: r) face of the joint, due to the gravity loads acting on the beam con-
currently with the seismic action.

∑
MRc ≈ fy(Asc,top + Asc,bot )zc + 0.5hc

(
Ntop

(
1 − νtop

) + Nbot (1 − νbot )
)

(3.138)

22Normally column vertical bars are the same above and below the joint: Asc,top = Asc,bot, except at
the joints of the top floor where Asc,top = 0.
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with zc (≈ hjc) ≈ 0.9d ≈ 0.8hc denoting the internal lever arm of the column
and ν = N/Acfc.

So, Eq. (3.136) finally gives: If
∑

MRb >
∑

MRc:

Vjv ≈
∑

MRc

(
1

zc
− 1

L

H

Hcl

)
+ 1

2

∣∣[Vg+ψq,b
]

l
− [

Vg+ψq,b
]

r

∣∣ (3.139)

The shear stress in the joint core is computed as:

v j = Vjv

b j hbj
(3.140)

where hbj is the clear depth of the beam between its top and bottom reinforce-
ment.

3.3.3.2 Joint Shear Strength

Diagonal tension cracking of the joint core takes place when the principal tensile
stress under the combination of the shear stress, vj, and of the mean vertical com-
pressive stress in the joint, νtopfc, exceeds the tensile strength of concrete, fct, i.e.
when:

v j ≥ vcr = fct

√
1 + νtop fc

fct
(3.141)

According to Priestley (1997) confinement by beam bars bent vertically towards
the core of exterior joints increases the shear stress at joint diagonal cracking by
50% over the value in Eq. (3.141).

Diagonal cracking of the joint core seldom has grave consequences, especially
if the joint is reinforced with horizontal hoops and/or beams of significant cross-
section frame into all four sides of the joint. After cracking, the joint core is called
to resist the shear without reaching its ultimate stress in cyclic loading, vju.

The seismic behaviour of joints has been studied experimentally and analytically
since the 1960s. Nevertheless, there is still no universally accepted rational model
for the mechanism through which a joint resists cyclic shears. Variations of a rational
physical model in Park and Paulay (1975) are still used in certain seismic design
codes. According to it a joint resists shear via a combination of two mechanisms
(Fig. 3.45(b)):

1. A diagonal concrete strut between the compressive zones of the beams and
columns at opposite corners of the joint, contributing to the resistance against
the horizontal shear force in the joint, Vjh, with the horizontal component of its
diagonal force.

2. A truss extending over the entire core of the joint, comprising:
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– (any) horizontal hoops in the joint;
– (any) intermediate vertical bars between the column corner bars in planes paral-

lel to that of bending (including column bars contributing to the column moment
resistance above and below the joint as distributed “web” reinforcement, ωv);

– a diagonal compression field in the concrete.

The force in the strut under (1) above is assumed to develop from:

– the concrete forces in the compression zones of the beam and the column at the
two ends of the strut, and

– the bond stresses transferred to the joint over the length of the beam bars within
the width of the strut itself.

The truss under (2) above takes the rest of the joint shear force, Vjh, not resisted
by the horizontal component of the strut diagonal force. So, for safe-sided dimen-
sioning of the horizontal joint reinforcement, the horizontal component of the strut
force should not be overestimated.

Unless there is bond failure along the beam bars, pushing their compressed end
into the joint, the neutral axis depth of the beam is significantly reduced by cycling
of the beam moment, as the crack may not fully close (especially at the top flange)
owing to accumulation of plastic strains in the reinforcement. Then the compression
zone of the beam does not deliver a horizontal force to the diagonal concrete strut,
but only a compressive force to the beam reinforcement. The sum of this force and
of the tension force at the opposite face of the joint is transferred to the truss and
the strut in proportion to their share in the joint width at the level of the beam top
reinforcement. So, the width of the diagonal strut is defined by the neutral axis
depth of the column at the faces of the joint. According to this reasoning, the force
input into the strut directly from the compression zones of the members is reduced
during cycling of the moments. By contrast, the force input into the strut by bond
increases, as the degradation of bond with cycling pushes the force transfer by bond
mainly to that length of the bar within the joint core where bond is enhanced by
transverse compression, i.e. the bar length within the strut width. Therefore, despite
the deterioration of bond along most of the bar length within the joint core, the strut
mechanism remains intact.

Paulay and Priestley (1992) make the assumption that at the face of the joint
where the beam is under sagging moment (tension at the bottom) the crack cannot
close at the top flange, owing to accumulation of plastic strains in the top reinforce-
ment. This means: ξ eff = 0 in Eq. (3.133). Then the horizontal width of the strut at
that level is equal to the neutral axis depth of the column above the joint, xc. So, the
beam compression chord does not contribute to the force of the diagonal concrete
strut and the horizontal component of the strut diagonal force is equal to:

– the force transferred by bond along the bar length within the strut width, minus
– the column shear force, Vc (appearing also in Eq. (3.134) for Vjh and considered

to be applied directly to the strut through the compression zone of the column
above and affect only its horizontal shear force and not that of the truss).
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Moreover, Paulay and Priestley (1992) assume – for simplicity – that the transfer
of the total force (Asb1+Asb2)fy by bond takes place uniformly along the total length
of the top bars within the joint, hc. So, the fraction of this force going to the horizon-
tal force of the strut is equal to xc/hc. The rest, equal to (1–xc/hc), goes to the truss.
Therefore, as the truss extends over the full vertical face of the joint, the total area
of the horizontal legs of hoops within the joint, Ash, should be dimensioned for a
force equal to (1–xc/hc)(Asb1+Asb2)fy. The value of ξ c = xc/hc may be obtained from
Eq. (3.52) in Section 3.2.2.4 under Curvature at Spalling of the Concrete Cover,
using there: ω1 = ω2, ων = 0 (for convenience), εco = 0.002 and εcu = 0.004 (for
spalling of the extreme concrete fibres at the end section of the column). Then ξ c

≈ (6/5)ν, with both ν and ξ c normalised to hc. So the following total area of hor-
izontal hoops should be provided according to this version of the Park and Paulay
model.

– At interior joints:

Ash fyw ≥ (Asb1 + Asb2) fy

(
1 − 6

5
ν

)
(3.142a)

where the normalised axial force, ν, is the minimum value in the column above the
joint for any combination of the design seismic action with the concurrent gravity
loads.

The reinforcement required in exterior joints cannot be obtained by setting Asb2

= 0 in Eq. (3.142a), because the beam top reinforcement is bent down at the far face
of the joint. Then, when the bar is in tension, the bend delivers to the diagonal strut
starting there the full diagonal compression force of the strut. The horizontal com-
ponent of that force is about equal to fyAsb1–Vc. So, very little force is transferred by
bond along the part of the top bars outside the strut, to be resisted as horizontal shear
by the part of the truss falling between the strut and the face of the joint towards the
beam. The horizontal shear force of the truss is governed by the force transferred
by bond along the part of the bottom bars outside the strut.23 The compression zone
at the bottom flange of the beam delivers to the lower end of the strut a horizontal
force equal to the compression force in the concrete, i.e. to the tension force in the
top reinforcement, Asb1fy, minus the force, Asb2fy, in the bottom reinforcement that
yields in compression. The difference between:

– the horizontal component of the strut force at its top end, Asb1fy–Vc, and
– the horizontal forces delivered

• to the lower end of the strut by the beam and the column below: (Asb1–Asb2)fy
–Vc, and

• by bond within the strut width at the level of the bottom reinforcement:
(1–xc/hc)Asb2fy,

23The upward bend of the bottom bars at the far face of the joint does not deliver forces to the joint
core when these bars are in compression.
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is the force transferred by bond along the length of the bottom bars outside the strut
width. This force is a horizontal shear force to be resisted by the part of the truss
falling between the strut and the exterior face of the joint. This gives:

– At exterior joints:

Ash fyw ≥ Asb2 fy

(
1 − 6

5
ν

)
(3.142b)

where now ν is the minimum value of the normalised axial force in the column
below the joint, for any combination of the design seismic action with the con-
current gravity loads.

Test results on interior joints have been collected and compiled in Kitayama et
al. (1991) as in Fig. 3.48. Figure 3.48 suggests that the joint ultimate shear strength,
expressed in terms of the shear stress, vj, of Eqs. (3.135) and (3.140), increases
about linearly with the ratio of horizontal reinforcement within the joint, ρ jh, from
a minimum value vju ≈ 0.15fc at ρ jh = 0 (unreinforced joint) to an upper limit value
in the range of 0.24fc–0.4fc (with mean value: vju ≈ 0.32fc) at ρ jh = 0.4%. Above
that value of the steel ratio and up to ρ jh = 2.4%, the joint ultimate strength seems
to be attained always by diagonal compression in the concrete and to be practically
independent of the value of ρ jh and of the axial load ratio in the column, ν = N/fcAc

(Kitayama et al. 1991).
The experimental results in Fig. 3.48, along with careful and detailed measure-

ments of the evolution of strains in the horizontal hoops within the joint during the
history of cyclic displacements (Kitayama et al. 1991), lead to the following con-
clusions:

Fig. 3.48 Effect of
horizontal reinforcement ratio
in interior joint, ρ jh, on joint
strength (adapted from
Kitayama et al. 1991)
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– Cycling of applied loads and displacements causes a gradual degradation of bond
along the length of a bar within the joint closer to its end which is in tension, and
a concentration of most of the bond transfer near the opposite end of the bar
within the joint, where the bar is in compression (the part falling within the strut
width).

– The breakdown of bond along the length of the beam bar falling outside the strut
width may cause drastic reduction of the contribution of the truss mechanism to
the shear resistance of the joint. When this happens the horizontal component
of the strut diagonal force resists almost the full horizontal joint shear, Vjh. This
force is delivered to the strut partly by bond along the length of the beam bars
falling within the strut and partly by the compression zone of the beam.

– The joint shear that the strut can resist is governed by the compressive strength of
the concrete in its diagonal direction. Any horizontal hoops in the joint affect the
contribution of the strut to shear resistance only to the extent they enhance this
diagonal compressive strength through confinement. So, attainment of the joint
ultimate strength activates not only the hoop legs parallel to the applied shear (i.e.
in the plane of bending), considered in the truss mechanism to resist part of the
joint shear, but also (and to the same extent) the orthogonal hoop legs (at right
angles to the plane of bending). The top and bottom reinforcement of any beams
framing into the joint at right angles to the plane of bending play a role similar to
these orthogonal hoop legs, confining the core of the joint.

– Yielding of the horizontal reinforcement in the joint caps the confinement of
the concrete core and increases tensile strains in the direction(s) normal to the
diagonal strut, reducing further the diagonal compressive strength.

– The column axial force level, measured through ν = N/Acfc, does not seem to
be important, neither for the bond-slip performance of the beam bars, nor for the
joint ultimate shear stress, vju.

Test results in Fig. 3.49 (Kitayama et al. 1991) suggest that confinement on both
sides of the joint by a slab at the level of the beam top and/or by a transverse beam
significantly increases the joint ultimate shear strength, vju (to values close to 0.4fc).
This may explain the scarcity of shear failures at interior joints – even unreinforced
ones – in the field in strong earthquakes.

In view of the test results of Figs. 3.48 and 3.49 and the conclusions above that
cast doubts about the validity of the truss-and-strut physical model, alternative sim-
ple plane stress models have emerged for the shear strength of beam-column joints.
For example, the model adopted in Eurocode 8 (CEN 2004a) as alternative to the
truss-and-strut model and to Eqs. (3.142) for the calculation of joint horizontal rein-
forcement assumes a homogeneous stress field in the body of the joint, comprising:

1. the shear stress, vj, from Eqs. (3.135) or (3.140),
2. the vertical normal stress from the column, N/Ac = νfc (positive for compres-

sion), and
3. a smeared horizontal normal stress, such that the concrete core and the joint hor-

izontal reinforcement balance together the zero external horizontal force applied
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Fig. 3.49 Effect of top slab
and/or transverse beam on
both sides on the ultimate
shear strength of interior
joints (adapted from
Kitayama et al. 1991)

on the joint by the beams; this normal stress has a limit value of –ρ jhfyw (com-
pression), when the joint horizontal reinforcement is driven to yielding by the
dilatancy of the concrete core at imminent failure.

Joint strength criteria in Eurocode 8 are based on the principal stresses, in tension,
σ I, and compression, σ II, under the above system of stresses, 1–3. The joint shear
stress at diagonal cracking (σ I = fct) in the presence of horizontal reinforcement is
(CEN 2004a):

v j

fc
=
√(

fct

fc
+ νtop

)(
fct

fc
+ ρ jh fyw

fc

)
(3.143)

where ν top is computed from the minimum value of the axial force of the column
above the joint under any combination of the design seismic action with the con-
current gravity loads, including the effect of overturning moment on exterior joints.
Note that, for ρ jh = 0 and ν top between 0 and 0.3, Eq. (3.143) gives values of vj from
0.1fc to 0.2fc, in good agreement with the average value of vj ≈ 0.15fc suggested for
ρ jh = 0 by the test results in Fig. 3.48 (Kitayama et al. 1991).

The real threat to the joint is crushing of its core by the diagonal compression.
According to the simple plane stress model above, this may take place if σ II reaches
the concrete compressive strength, as this is reduced due to the tensile stresses and/or
strains in the transverse direction (i.e. that of σ I). The reduction factor on fc may
be taken the same as factor n from Eq. (3.96a) for diagonal compression in con-
crete members due to shear. Eurocode 8 (CEN 2004a) neglects for simplicity the –
adverse – effect of the horizontal normal stress, –ρ jhfyw, on the magnitude of σ II,
as well as its (more important) favourable effect on the compressive strength in the
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diagonal direction through confinement. So the condition: σ II = –nfc gives (CEN
2004a):

v ju

fc
= n

√
1 − νbottom

n
(3.144)

where ν is computed from the maximum axial force of the column below the joint
under any combination of the design seismic action with the concurren gravity loads.

For common values of ν (∼0.25) Eq. (3.144) gives an ultimate shear stress, vju,
close to 0.4fc, at the upper strength limit of interior joints in Figs. 3.48 and 3.49.
It does not seem to provide a safety margin against diagonal compression failure,
unless the design value fcd = fck/γ c is used for fc, with a partial factor for concrete,
γ c, (significantly) higher than 1.0.

An alternative plane stress approach is to apply the variable strut inclination truss
model of Section 3.2.4.2 under The Variable Strut Inclination Truss of the CEB/FIP
Model Code 90 and Eurocode 2 to the joint that is already cracked diagonally, owing
to a shear stress above the limit of Eq. (3.143). In this analogy the counterpart of the
transverse direction of the concrete element of Section 3.2.4.2 under The Variable
Strut Inclination Truss of the CEB/FIP Model Code 90 and Eurocode 2 is the hor-
izontal direction of the joint. Its transverse reinforcement ratio, ρw, corresponds to
the joint horizontal reinforcement ratio, ρ jh. The counterpart of the vertical direction
of the joint is the longitudinal one of the concrete element, but with M = 0, ω1 = 0
and N equal to the axial force of the column (positive for compression). The incli-
nation δ is the angle of the centreline of the diagonal strut in the joint to the vertical
direction.

According to the variable strut inclination truss analogy, the shear stress in the
joint at yielding of the horizontal reinforcement before failure of the concrete in
the diagonal direction may be obtained from Eq. (3.101), adapted as follows to the
conditions of the joint:

v j

fc
=
√
νtop

ρ jh fyw

fc
(3.145)

which coincides with Eq. (3.143) for fct = 0.
Adapted to the conditions of the joint, Eq. (3.99) gives the shear strength of the

joint for diagonal concrete failure after yielding of the joint horizontal reinforce-
ment:

v ju

fc
=
√
ρ jh fyw

fc

(
n − ρ jh fyw

fc

)
(3.146)

The counterpart of Eq. (3.97) for the joint shear at diagonal compression
failure is:
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v ju

fc
= 0.5n sin 2δ (3.147)

If the amount of horizontal reinforcement is large, namely if ρjhfyw > 0.5nfc,
diagonal compression failure will take place before yielding of the joint reinforce-
ment, at the upper limit value of both Eqs. (3.146) and (3.147): vju = 0.5nfc. With
this value of vju for ρ jhfyw > 0.5nfc, Eq. (3.146) gives a variation of the joint ultimate
shear with the strength of the horizontal reinforcement similar to the parabola-cum-
horizontal line given for Eq. (3.99) in Fig. 3.40. The mean upper limit: vju ≈ 0.32fc
in Fig. 3.48 agrees well with the theoretical upper limit of: vju = 0.5nfc. However,
although the data in Fig. 3.48 might suggest a parabolic variation up to ρ jh = 0.4%,
the value ρ jh = 0.4% is much lower than the theoretical one of 0.5nfc/fyw giving the
peak value of vju according to Eq. (3.146).

Equation (3.103), adapted to the conditions of the joint gives an ultimate shear
stress of:

v ju

fc
=
√
νtop

(
1 − νtop

n

)
(3.148)

which is not supported at all by the experimental data.
The shear strain in the joint core, γ ju, at the ultimate shear stress, vju, is in the

order of 0.005 rad (0.5%), i.e., very small compared to the total shear distortion of
a system of ductile beams and columns at failure of the joint.
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Chapter 4
Analysis and Modelling for Seismic Design
or Assessment of Concrete Buildings

As pointed out in the Preamble, analysis carried out within the framework of seismic
design or assessment determines by calculation the effects of the design actions
(including the seismic action) in terms of internal forces and deformations, for the
purpose of dimensioning or assessing structural members. For concrete members,
design action effects are used to verify the sizes of members and to dimension or
assess the amount of reinforcement.

Chapter 4 does not pretend to be a treatise on seismic analysis methods. Its scope
is limited to the essentials for the application of well-established analysis methods in
the design or assessment of buildings for earthquake resistance according to current
generation seismic codes. The reader is supposed to be fairly conversant with the
fundamentals of Structural Dynamics and their application for the seismic analysis
of buildings.

As in Chapters 1 and 2, emphasis is placed on the portfolio of seismic analysis
methods provided in Parts 1 and 3 of EN-Eurocode 8 and their scope of applicabil-
ity. Special attention is paid to nonlinear seismic response analysis and to practical
modelling of concrete members and buildings for its purposes. Examples of nonlin-
ear modelling of concrete members and buildings and nonlinear dynamic analysis
are presented.

4.1 Scope of Analysis in Codified Seismic Design or Assessment

4.1.1 Analysis for the Purposes of Seismic Design

As pointed out in Section 1.2 and elsewhere in Chapter 1, seismic design of new
buildings according to current codes is force-based. Its prime workhorse is linear-
elastic analysis, based on the 5%-damped elastic spectrum divided by a factor
that accounts mainly for ductility and energy dissipation capacity, but also for
overstrength (see Section 4.2.2). In Europe this factor is denoted by q and called
“behaviour factor”. In North America it is termed “Force reduction factor” or
“Response modification factor” and denoted by R.
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Most current generation codes for the seismic design of new buildings include
two alternative methods of linear-elastic seismic analysis:

(a) Linear static analysis, termed “lateral force” method of analysis in Eurocode
8 (CEN 2004a) and in certain US codes (SEAOC 1999), or “equivalent lateral
force” procedure in other US codes (BSSC 2003), but known also in practice as
“equivalent static” analysis.

(b) Modal response spectrum analysis, as called in Eurocode 8 (CEN 2004a); US
codes use the term “response spectrum” procedure (BSSC 2003) or “dynamic
lateral force” (SEAOC 1999) procedure.

Differences between codes are not limited to terminology but extend to the gen-
eral attitude towards the method of analysis. Most codes allow application of the
“modal response spectrum” analysis for the design of all new buildings and make
it mandatory for new buildings that are irregular in elevation, or tall and/or flexible
(i.e., in which higher modes are important). Only Eurocode 8 adopts it as the refer-
ence method for the design of new buildings and fully respects its rules and results.
US codes essentially consider the linear static (“equivalent lateral force”) procedure
as the reference method and adapt the results and rules of application of “modal”
analysis to conform to it. Their reasoning is that linear analysis is of limited rele-
vance and value in the framework of seismic design, as its results apply only for
ground motions less than a small fraction (1/q or 1/R) of the design seismic action.
It makes little sense therefore, according to that point of view, to apply a sophisti-
cated, complex and computationally demanding analysis method, liable to misuse,
misinterpretation or errors due to lack of experience and expertise. It makes more
sense, instead, to select the structural layout so that the structure lies well within the
scope of the time-tested and almost fool-proof linear static analysis procedure.

This concept of the role of analysis is reflected in the common view that the value
of the “modal response spectrum” procedure is limited:

1. to furnishing a heightwise pattern of lateral inertia forces in buildings with
heightwise irregular geometry, mass, stiffness or strength, or dominated by
higher modes which is more representative of the expected dynamic response;
and

2. to better accounting for the coupling of torsional and translational vibrations in
buildings with strong irregularity in plan.

Consistent with point (1) above, some codes with this attitude suggest apply-
ing “modal response spectrum” analysis not directly (i.e., computing modal
contributions to the seismic action effects from the mode shapes themselves and
combining them according to the appropriate rules, see Section 4.4.3), but indirectly:
by deriving storey modal lateral forces through modal analysis, applying them as
static lateral loads and computing via linear static analysis the modal seismic action
effects of interest. Moreover, in SEAOC (1999) all modal lateral forces are scaled
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up so that their resultant (the base shear) matches fully the value computed from the
design spectrum at the fundamental period, if the building is irregular, or 90% of
that value, if it is regular. In BSSC (2003) scaling of these modal lateral forces aims
at matching 85% of the base shear obtained from the design spectrum at a period
of 1.4 to 1.7 times an empirical period estimate, depending on the magnitude of the
design ground acceleration.

If both the lateral force method and modal response spectrum analysis are appli-
cable to the design of a given new building, modal response spectrum analysis gives
on average a slightly more even distribution of peak internal forces at different crit-
ical sections (e.g. at the two ends of the same beam or column), translated to some
material savings. If its results are used for member dimensioning, the overall inelas-
tic performance of the structure would be expected to be better, as peak inelastic
deformations normally agree better with its predictions than to those of linear static
analysis (see Section 4.11.2).

As its use is not subject to any constraints of applicability, the modal response
spectrum method can be adopted as the single analysis tool for seismic design of
new buildings in 3D, provided that the designer masters the method. It is more sound
(e.g., unlike the linear static method, its results for concurrent application of the two
horizontal seismic action components are independent of the choice of the direc-
tions, X and Y, of these components) and offers a better overall balance of safety
and economy. Its predictions for displacements and deformations are closer to those
of a nonlinear dynamic analysis (see Section 4.11.2), while, for the same column or
beam shears it gives a more even balance of column or beam seismic moments on
opposite faces of joints, which are anyway covered by the same longitudinal rein-
forcement. So, with today’s availability of reliable and efficient computer programs
for modal response spectrum analysis in 3D, and the establishment of Structural
Dynamics as a main subject in structural engineering curricula in seismic regions, it
is expected that the application of modal response spectrum analysis for the design
of new buildings will grow and prevail in the long run. Even then, though, the intu-
itively appealing, practical and conceptually simple lateral force method is expected
to stay in codes as an option for the seismic design of new buildings.

In the framework of Part 1 of Eurocode 8 (CEN 2004a):

i. nonlinear static analysis (commonly known as “pushover” analysis), and
ii. nonlinear dynamic (time-history or response-history) analysis.

have a certain role for the design of new buildings. This role is limited to:

– detailed evaluation of the expected seismic performance of a building that has
been designed using linear analysis (including confirmation of the intended plas-
tic mechanism and of the distribution and extent of damage);

– the design of buildings with seismic isolation, for which nonlinear analysis is the
reference method and linear analysis is allowed only under certain very restrictive
conditions.
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Specifically for the nonlinear static method of analysis, Part 1 of Eurocode 8
(CEN 2004a) defines two additional possible uses in the framework of the design of
new buildings:

– To verify or revise the value of the factor αu/α1 incorporated in the basic or
reference value of the behaviour factor, qo, of concrete etc. buildings, to account
for overstrength due to redundancy of the structural system (see Section 1.4.3.1
and Fig. 1.12).

– To design buildings on the basis of a nonlinear static analysis followed by
deformation-based verification of its ductile members, in lieu of force-based
design with linear elastic analysis and a design spectrum incorporating the
behaviour factor q. The use of “pushover” analysis for the direct design of new
buildings is a novelty of Part 1 of Eurocode 8 without precedent in codified
seismic design.

Internal forces for dimensioning are taken equal to those estimated from the lin-
ear analysis for the design response spectrum (i.e. the 5%-damped elastic spectrum
divided by the behaviour factor q). Consistent with the equal displacement rule and
the concept and use of the behaviour factor, displacements due to the seismic action
are taken in Part 1 of Eurocode 8 as equal to those derived from the linear analy-
sis times the behaviour factor q. By contrast, when nonlinear analysis is used, all
seismic action effects (internal forces, displacements and deformations) are those
derived from the nonlinear analysis.

4.1.2 Analysis for Seismic Assessment and Retrofitting

Unlike seismic design of new buildings, which is still (mainly) force-based, seismic
assessment or retrofitting of existing ones is nowadays fully displacement-based.
The underlying reason is practical: Force-based approaches entail capacity-demand
comparisons in terms of internal forces, with seismic internal force demands com-
puted from a design response spectrum incorporating a global behaviour or force
reduction factor, q or R. Values of this factor given in seismic design codes for new
buildings go hand-in-hand with a corresponding set of prescriptive rules or restric-
tions (on structural layout, member detailing, capacity design, etc.). For an existing
building to be entitled a q-factor larger than the value attributed to overstrength
alone (q = 1.5 in Eurocode 8), the structure as a whole, as well as every single
member considered to contribute to earthquake resistance (a “primary seismic” one,
in Eurocode 8 terminology, see Section 4.12) should meet all the rules pertaining to
one of the discrete ductility classes for which (higher) values of q are given in the
code for new buildings (e.g., in Eurocode 8 for at least DC Medium). As the build-
ing most likely violates these rules in one way or another, it will be assigned at the
end the value of the q-factor attributed to overstrength alone. In all likelihood, the
force capacity of some members considered to contribute to earthquake resistance
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will be less than the force demand resulting from such a low q-factor value. In this
way any old concrete building, possibly except low-rise ones with large walls, will
be assessed as seismically inadequate and will need retrofitting. Moreover, if it is
decided to retrofit the building and the designer wants to use the (higher) q value of
one of the discrete ductility classes in a code for new buildings, every single member
considered to contribute to earthquake resistance should be retrofitted to meet all
detailing, capacity design, etc. rules of that ductility class. This may increase the
cost of retrofitting so much, that demolition or the “do-nothing” alternative may be
the most likely outcome.

The only way out of the predicament created by the prescriptive rules of cur-
rent force-based seismic design codes for new buildings, is to abandon the con-
cept of a global q-factor that reduces the overall elastic seismic forces. Instead,
each member should be assessed and retrofitted individually, on the basis of its
own capacity determined by its own features and peculiarities. The capacity which
is important for a member’s seismic performance (including failure) is not its
force-, but its deformation-capacity. One should keep in mind that, unlike gravity
or wind actions, the seismic action is not a set of given forces to be resisted by
the structure, but a given dynamic displacement or energy input to be accommo-
dated. Therefore structural displacements and their derivatives, i.e., member defor-
mations, should be the basis of seismic assessment, instead of forces. After all,
structures collapse not because of the seismic lateral loads per se, but owing to
gravity loads acting through the lateral displacements induced by the earthquake
(P-Δ effects).

The prime objective of an analysis for the purposes of displacement-based seis-
mic assessment or retrofitting is the calculation of deformation demands in structural
members. Codes or standards that have recently emerged for (displacement-based)
seismic assessment and retrofitting of buildings (ASCE 2007, CEN 2005a) provide
to this end the full menu of analysis options mentioned in Section 4.1.1:

– the two linear-elastic options: (a) linear static analysis and (b) modal response
spectrum analysis, and

– the two nonlinear ones: (i) nonlinear static or “pushover” analysis and (ii) non-
linear dynamic analysis.

Unlike linear analysis carried out for design purposes, which uses the design
response spectrum, incorporating the behaviour factor q, linear analysis for
displacement-based assessment and retrofitting employs the 5%-damped elastic
response spectrum. Member inelastic deformation demands (e.g., chord-rotations)
may be derived directly from such an analysis, essentially employing the equal-
displacement rule at the member level. Of course, this simplification can be made
only when the estimated chord-rotation ductility demands meet certain fairly restric-
tive conditions. In ASCE (2007) these conditions comprise upper limits on the abso-
lute magnitude of these demands, as well as on their difference between storeys or
at opposite sides of the building. By contrast, in CEN (2005a) only non-uniformity
of the chord-rotation ductility ratio demands throughout the building restricts the



304 4 Analysis and Modelling for Seismic Design or Assessment of Concrete Buildings

application of linear analysis for the estimation of member inelastic deformation
demands. If the applicability conditions of linear-elastic analysis are not met, one
should resort to nonlinear analysis. So, nonlinear analysis, being always applicable,
is the reference method for displacement-based seismic assessment and retrofitting.
Note that in seismic assessment all information necessary for the calculation of
the yield moment, the secant stiffness to the yield-point, and all other member
properties needed as input to nonlinear analysis, is readily available. In design of
new structures, by contrast, the reinforcement is not known a-priori and (several)
cycles of design-analysis iterations are needed, at the expense of design effort and
convenience.

To be assessed on the basis of inelastic deformations, members (or, in general,
mechanisms of behaviour) should have a minimum of ductility. As brittle mech-
anisms of behaviour, such as shear in concrete members, exhibit practically no
ductility, they are more conveniently and reliably assessed on the basis of forces.
Linear-elastic analysis is of no use for the estimation of internal force demands in
the inelastic regime, even when its applicability conditions for the estimation of
member inelastic deformation demands are met. When these conditions are met and
member inelastic deformation demands are indeed estimated for simplicity from
linear analysis, one has to resort to other means (notably, to capacity design calcu-
lations) to establish the internal force demands on members entering in the inelastic
range.

4.2 The Seismic Action for the Analysis

4.2.1 Elastic Spectra

4.2.1.1 Elastic Response Spectra and Peak Ground Accelerations

The most common representation of the seismic action in codes is through the
response spectrum of an elastic Single-Degree-of-Freedom (SDOF) oscillator with
5% viscous damping ratio. Any other alternative representation of the seismic action
(e.g. in the form of acceleration time-histories) should conform to the 5%-damped
elastic response spectrum.

Because:

– earthquake ground motions are traditionally recorded as acceleration time-
histories, and

– seismic design is still based on forces, conveniently derived from accelerations,

the pseudo-acceleration response spectrum, Sa(T), is normally used. If spectral dis-
placements, Sd(T), are of interest (notably for displacement-based assessment or
design), they can be obtained from Sa(T) assuming simple harmonic oscillation:
Sd(T) = (T/2π)2Sa(T). Spectral pseudo-velocities can also be obtained from Sa(T)
as Sv(T) = (T/2π)Sa(T). Note that pseudo-values do not correspond to the real peak
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spectral velocity or acceleration. For damping ratio up to 10% and for natural period
T between 0.2 and 1.0 s, the pseudo-velocity spectrum closely approximates the
actual relative velocity spectrum.

The Eurocode 8 spectra include ranges of:

– constant spectral pseudo-acceleration for natural periods between TB and TC;
– constant spectral pseudo-velocity between periods TC and TD; and
– constant spectral displacement, for periods longer than TD.

In Eurocode 8 the elastic response spectrum is taken as proportional (“anchored”)
to the peak acceleration of the ground:

– the horizontal peak acceleration, ag, for the horizontal component(s) of the seis-
mic action, or

– the vertical peak acceleration, avg, for the vertical component.

The basis of the seismic design of new structures in Eurocode 8 is the “design
seismic action”, for which the no-(local-)collapse requirement should be met. It is
specified through the “design ground acceleration” in the horizontal direction, ag,
which is equal to the “reference peak ground acceleration” on rock from national
zonation maps,1 times the importance factor, γ I, of the building (see Section 1.1.1);
for ordinary importance, by definition γ I = 1.0. The “reference peak ground accel-
eration” corresponds to the reference return period, TNCR, of the “design seismic
action” for structures of ordinary importance.2 Values of the importance factor
greater or shorter than 1.0 correspond to mean return periods longer or shorter,
respectively, than TNCR. It is in the authority of each country to select the value
of TNCR that gives the appropriate trade-off between economy and public safety in
its territory, as well as the importance factors for building other than ordinary, taking
into account the specific regional features of the seismic hazard. Part 1 of Eurocode
8 (CEN 2004a) recommends the value TNCR.= 475 years.

Eurocode 8 adopts the same spectral shape for the different seismic actions to
be used for different performance levels or Limit States. The difference in the haz-
ard level is reflected only through the peak ground acceleration to which the spec-
trum is anchored. Recall from Section 1.1.3 that Part 1 of Eurocode 8 recommends
for the “damage limitation seismic action” of new buildings one having probabil-
ity 10% of being exceeded in 10 years (i.e., mean return period: 95 years). Recall

1Data from Europe available at the time of drafting Eurocode 8 could not support dependence of
the elastic spectrum on additional parameters.
2Under the Poisson assumption of earthquake occurrence (i.e. that the number of earthquakes
in an interval of time depends only on the length of the interval in a time-invariant way), the
return period, TR, of seismic events exceeding a certain threshold is related to the probability
this threshold will be exceeded, P, in TL years as: TR = –TL/ln(1–P). So, for given TL (e.g., the
conventional design life of TL = 50 years) the seismic action may equivalently be specified either
via its mean return period, TR, or its probability of exceedance in TL years, PR.
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also from Section 1.1.3 that Part 3 of Eurocode 8 does not make a recommenda-
tion to countries or owners/designers for the hazard levels associated with the three
“Limit States” (“Damage Limitation”, “Significant Damage” and “Near Collapse”)
in performance-based seismic assessment and retrofitting.

The mean return period, TR(ag), of a peak ground acceleration exceeding a
value ag is the inverse of the annual rate, λa(ag), of exceedance of this acceleration
level: TR(ag) = 1/λa(ag). A functional form commonly used for λa(ag) is: λa(ag) =
Ko(ag)–k. If the exponent k (: slope of the “hazard curve” λa(ag) in a log-log plot) is
about constant, two peak ground acceleration levels ag1, ag2, corresponding to two
different mean return periods, TR(ag1), TR(ag2), are related as:

ag1

ag2
=
(

TR(ag1)

TR(ag2)

)1/k

(4.1)

The value of k characterises the seismicity of the site. Regions where the differ-
ence in peak ground acceleration of frequent and very rare seismic excitations is
very large, have low k values (around 2). For such regions full performance-based
design or assessment at several performance levels with widely different hazard lev-
els is very meaningful. Large values of k (k > 4) are typical of regions where high
ground acceleration levels are almost as frequent as smaller ones. One performance
level (normally the one associated with the lowest among the hazard levels) would
always govern there; performance-based design or assessment at the other levels
may be redundant.

For buildings Eurocode 8 does not have provisions for near-source effects on the
seismic action. It provides, though, for topographic amplification (ridge effect, etc.)
of the seismic action for all types of structures. Such effects have been identified in
past earthquakes in Italy (Faccioli et al. 2002, Paolluci 2002, 2006) and along the
Chelidonou ravine during the 1999 Athens earthquake. According to Eurocode 8,
topographic amplification is mandatory for structures of importance above ordinary.
An Informative Annex in Part 5 of Eurocode 8 (CEN 2004c) recommends amplifi-
cation factors of the seismic action equal to 1.2 over isolated cliffs or long ridges
with slope (to the horizontal) less than 30◦, or to 1.4 at ridges steeper than 30◦.

4.2.1.2 Elastic Spectra of the Horizontal Components in Eurocode 8

The elastic response spectral acceleration for the horizontal components of the seis-
mic action in Eurocode 8 is described by the following expressions (Fig. 4.1):

0 ≤ T ≤ TB : Sa (T ) = ag S

[
1 + T

TB
(2.5η − 1)

]
(4.2a)

Constant spectral pseudo-acceleration range:

TB ≤ T ≤ TC : Sa (T ) = ag S · 2.5η (4.2b)
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Fig. 4.1 Elastic response spectra of Type 1 (left) and 2 (right) recommended in EC8, for PGA on
rock equal to 1 g and for 5% damping

Constant spectral pseudo-velocity range:

TC ≤ T ≤ TD : Sa (T ) = ag S · 2.5η

[
TC

T

]
(4.2c)

Constant spectral displacement range:

TD ≤ T ≤ 4 sec : Sa (T ) = ag S · 2.5η

[
TC TD

T 2

]
(4.2d)

where:

ag is the design ground acceleration on rock;
S is the “soil factor”;
η = √

10/ (5 + ζ ) ≥ 0.55 is a correction factor for viscous damping ratio, ζ ,
other than the reference value of 5% (Bommer and Elnashai 1999).

Witness the uniform amplification of the entire spectrum by the “soil factor” S
over the spectrum for rock. By definition S = 1 over rock. The value agS plays the
role of “effective ground acceleration”, as the spectral acceleration at the constant
spectral acceleration plateau is always equal to 2.5agS.

The values of the periods TB, TC and TD (i.e., the extent of the ranges of con-
stant spectral pseudo-acceleration, pseudo-velocity and displacement) and of the
soil factor, S, are taken to depend mainly on “ground type”. In the Eurocodes the
term ground includes any type of soil and rock. Eurocode 8 recognises five standard
ground types, over which it recommends values for TB, TC, TD and S, and two spe-
cial ones, as listed in Table 4.1. The characterisation of the ground is based on the
average value of shear wave velocity, vs,30, at the top 30 m:
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Table 4.1 Ground types in Eurocode 8 for the definition of the seismic action

Description vs,30 (m/s) NSPT cu (kPa)

A Rock outcrop, with less than 5 m cover of weaker
material

>800 – –

B Very dense sand or gravel, or very stiff clay, several
tens of metres deep; mechanical properties
gradually increase with depth

360–800 >50 >250

C Dense to medium-dense sand or gravel, or stiff clay,
several tens to many hundreds metres deep

180–360 15–50 70–250

D Loose-to-medium sand or gravel, or soft-to-firm clay <180 <15 <70
E 5–20 m surface alluvium layer with vs < 360 m/s

underlain by rock (with vs > 800 m/s )
S1 ≥10 m thick soft clay or silt with plasticity index

> 40 and high water content
<100 – 10–20

S2 Liquefiable soils; sensitive clays; any soil not of type
A to E or S1

vs,30 = 30∑
i=1,N

hi
vi

(4.3)

where hi and vi are the thickness (in m) and the shear wave velocity at small shear
strains (less than 10–6) of the i-th layer in N layers. If the value of vs,30 is not known,
the SPT (Standard Penetration Test) blow-count number may be used for soil types
B, C or D, according to the correspondence of SPT to vs,30 in Ohta and Goto (1976).
If neither the SPT nor vs,30 are available, the undrained cohesive resistance (cu) may
used to characterise the soil.

The two special ground types, S1 and S2, deserve carrying out special site-
specific studies to define the seismic action. For ground type S1 the special study
should take into account the thickness and the vs-value of the soft clay or silt layer
and the difference with the underlying materials and should quantify their effects
on the elastic response spectrum. Note that soils of type S1 may have low inter-
nal damping and exhibit linear behaviour over a large range of strains, producing
peculiar amplification of the bedrock motion and unusual or abnormal soil-structure
interaction effects. The scope of the site-specific study should also address the pos-
sibility of soil failure under the design seismic action (especially at ground type S2
deposits with liquefiable soils or sensitive clays).

The values of TB, TC, TD and S for the five standard ground types A to E, are
meant to be defined by each country in the National Annex to Eurocode 8, depend-
ing on the magnitude of earthquakes contributing most to the hazard. The geological
conditions at the site may also be taken into account in addition to determine these
values. In principle, S factors may be introduced that decrease with increasing spec-
tral value because of the soil nonlinearity effect. Instead of spectral amplification
factors that decrease with increasing design acceleration (spectral or ground) as in
US codes, e.g., BSSC (2003) and ASCE (2007), the non-binding recommendation
of a note in Eurocode 8 is for two types of spectra:
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Table 4.2 Recommended parameter values for the standard horizontal elastic response spectra in
Eurocode 8 (Fig. 4.1)

Ground type Spectrum type 1 Spectrum type 2

S TB (s) TC (s) TD (s) S TB (s) TC (s) TD (s)

A 1.00 0.15 0.4 2.0 1.0 0.05 0.25 1.2
B 1.20 0.15 0.5 2.0 1.35 0.05 0.25 1.2
C 1.15 0.20 0.6 2.0 1.50 0.10 0.25 1.2
D 1.35 0.20 0.8 2.0 1.80 0.10 0.30 1.2
E 1.40 0.15 0.5 2.0 1.60 0.05 0.25 1.2

– Type 1: for moderate to large magnitude earthquakes;
– Type 2: for low magnitude ones (e.g. with surface magnitude less than 5.5) at

close distance, producing over soft soils motions rich in high frequencies.

The values of TB, TC, TD and S recommended in a non-binding note of Eurocode
8 for the five standard ground types A to E are given in Table 4.2. They are based
on Rey et al. (2002) and European strong motion data. There are certain regions
in Europe (e.g., where the hazard is contributed mainly by strong, intermediate
depth earthquakes, as in the part of the eastern Balkans affected by the Vrancea
region) where the two recommended spectral shapes may not be suitable. The lower
S-values of Type 1 spectra are due to the larger soil non-linearity in the stronger
ground motions produced by moderate to large magnitude earthquakes. The recom-
mended values of the period TD at the outset of the constant spectral displacement
region seems rather low. For flexible structures (e.g., those with seismic isolation)
they may not lead to safe-sided designs. A safeguard against the rapid decay of the
elastic spectrum for T > TD, is provided by the lower bound of 20% of agS rec-
ommended in Eurocode 8 for the design spectral accelerations (see Eqs. (4.5c) and
(4.5d) in Section 4.2.2).

4.2.1.3 Elastic Spectra of the Vertical Component

The vertical component of the seismic action needs to be taken into account in
design only in few very well prescribed situations (see Section 4.5.1). Therefore,
the practical importance of the vertical spectrum is limited. Eurocode 8 gives nev-
ertheless a fairly detailed description of the vertical elastic response spectrum:

0 ≤ T ≤ TB : Sa,vert (T ) = avg

[
1 + T

TB
(3η − 1)

]
(4.4a)

TB ≤ T ≤ TC : Sa,vert (T ) = avg · 3η (4.4b)

TC ≤ T ≤ TD : Sa,vert (T ) = avg · 3η

[
TC

T

]
(4.4c)
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TD ≤ T ≤ 4 sec : Sa,vert (T ) = avg · 3η

[
TCTD

T 2

]
(4.4d)

The main differences between the horizontal and the vertical spectra lie:

– in the value of the amplification factor in the constant spectral pseudo-
acceleration plateau, which is 3 instead of 2.5, and

– in the lack of a uniform amplification of the entire spectrum due to the type of
soil.

Eurocode 8 recommends in a note the following non-binding values of TB, TC,
TD and of the design ground acceleration in the vertical direction, avg:

– TB = 0.05 s.
– TC = 0.15 s.
– TD = 1.0 s.
– avg = 0.9ag, if the Type 1 spectrum is considered as appropriate for the site;
– avg = 0.45ag, if the Type 2 spectrum is chosen.

The vertical response spectrum recommended in Eurocode 8 is based on
work and data specific to Europe (Ambraseys and Simpson 1996, Elnashai and
Papazoglou 1997). The ratio avg/ag is known to be higher at short distances (epi-
central or to causative fault). However, as distance does not enter as a parameter in
the definition of the seismic action in Eurocode 8, the type of spectrum has been cho-
sen as the parameter determining this ratio, on the basis of the finding that avg/ag

increases also with Magnitude (Ambraseys and Simpson 1996, Abrahamson and
Litehiser 1989), which in turn determines the selection of the type of spectrum.

4.2.2 Design Spectrum for Forced-Based Design
with Linear Analysis

For the horizontal components of the seismic action the design spectrum in
Eurocode 8 for force-based design of new buildings is:

0 ≤ T ≤ TB : Sa,d (T ) = ag S

[
2

3
+ T

TB

(
2.5

q
− 2

3

)]
(4.5a)

TB ≤ T ≤ TC : Sa,d (T ) = ag S
2.5

q
(4.5b)

TC ≤ T ≤ TD : Sa,d (T ) = ag S
2.5

q

[
TC

T

]
, Sa,d (T ) ≥ βag (4.5c)

TD ≤ T : Sa,d (T ) = ag S
2.5

q

[
TC TD

T 2

]
, Sa,d (T ) ≥ βag (4.5d)
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The value 2/3 in Eq. (4.5a) is the inverse of the overstrength factor of 1.5 con-
sidered by Eurocode 8 to always be available even without any design measures for
ductility and energy dissipation. Factor β in Eqs. (4.5c) and (4.5d) gives a lower
bound for the horizontal design spectrum, acting as a safeguard against excessive
reduction of the design forces due to flexibility of the system (real or presumed in
the design). Its recommended value in Eurocode 8 is 0.2. Its practical implications
may be particularly important, in view of the relatively low values recommended by
Eurocode 8 for the corner period TD at the outset of the constant spectral displace-
ment range.

The design spectrum in the vertical direction is obtained by substituting in
Eqs. (4.5) the design ground acceleration in the vertical direction, avg, for the “effec-
tive ground acceleration” agS. There is no clear, well-known energy dissipation
mechanism for the response in the vertical direction. So, the “behaviour factor”
q in that direction is attributed to overstrength alone and taken equal to 1.5, unless a
higher value is supported by special studies and analyses.

4.3 Linear Static Analysis

4.3.1 Fundamentals and Conditions of Applicability

Linear static analysis is carried out under lateral forces applied separately in two
orthogonal horizontal directions, X and Y. These forces are meant to simulate the
peak inertia loads induced by the horizontal component of the seismic action in these
directions, with the structure vibrating in its fundamental mode in the corresponding
direction. As designers are familiar and conversant with elastic analysis for static
loads (due to gravity or wind actions, etc.), this analysis is the workhorse of practical
seismic design.

The fundamental assumptions of the method are:

1. The fundamental translational mode in the direction of the applied lateral forces
governs the response.

2. The shape of the fundamental translational mode is known, without solving the
eigenvalue problem.

Accordingly, design codes limit the application of this method to buildings with
a heightwise distribution of mass and stiffness which is sufficiently regular for
assumption 2 to be made with some confidence. Most codes, especially those adopt-
ing a standard 1st mode drift pattern independent of the value of the 1st natural
period, e.g. (CEN 2004a), do not allow application of the method to tall flexible
structures where higher modes dominate the response. Eurocode 8 in particular,
allows applying linear static analysis only if both conditions (a) and (b) are met:

(a) The building is regular in elevation, according to the criteria in Section 2.1.7
which can be checked by inspection of the framing and the architectural draw-
ings, without any structural calculations. The rationale for the exclusion of
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heightwise irregular buildings is that their 1st mode shape may be far from the
simple approximation assumed in linear static analysis. Moreover, higher mode
effects may be locally significant (notably, around discontinuities or abrupt
changes along the height), even though they may not be important for the global
response (e.g., for the base shear and overturning moment).

(b) The fundamental period of the building is not longer than 2 s or four times
the corner period TC between the constant-spectral-pseudoacceleration and
constant-spectral-pseudovelocity ranges of the elastic spectrum. Recall that at
periods above 2 s or 4TC spectral pseudoaccelerations are low and that, if the 1st
mode is in that range, the 2nd and/or 3rd modes may be at, or close to, the range
where spectral pseudo-accelerations are constant and highest. So, their contribu-
tion to the response may be comparable to that of the 1st mode, notwithstanding
their normally lower participation mass and factors.

Conditions (a) and (b) should be met in both horizontal directions for linear static
analysis to be applicable, as it is impractical to carry out this analysis in one hori-
zontal direction and modal response spectrum analysis in the orthogonal one.

US codes (BSSC 2003, SEAOC 1999) allow using linear static analysis for low to
moderate seismicity and ordinary importance of the building (notably, for “Seismic
Design Categories” A to C in BSSC (2003), see Section 1.4.2.2), i.e., irrespective
of its structural features. These aspects aside, the counterpart of regularity condition
(a) of Eurocode 8 for the application of linear static analysis comprise all of the
following:

i. regularity in plan: the maximum storey drift under the design seismic action
should not exceed by 20% or more the mean drift of the storey;

ii. vertical regularity of mass: storey mass not exceeding by more than 50% that of
an adjacent storey;

iii. vertical regularity of stiffness: storey stiffness not less than 70% of the storey
above or 80% of the average stiffness of the three storeys above;

iv. vertical regularity of geometry: plan dimension of lateral-force-resisting system
does not exceed by 30% or more the parallel dimension of an adjacent storey.

The counterpart of the Eurocode’s flexibility condition (b) above for the applica-
bility of linear static analysis is:

– In BSSC (2003): Fundamental period shorter than 3.5 times the transition period
TC between the constant-spectral-pseudoacceleration and constant-spectral-
pseudovelocity ranges.

– In SEAOC (1999): Height less than 240 ft (73 m) for regular buildings meeting
all criteria (i)–(iv) above, or less than 65 ft (20 m) or five storeys for irregular
ones, according to any of the criteria (i)–(iv) above.
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4.3.2 Fundamental Period and Base Shear

Linear static analysis is applied in Eurocode 8 in a way that gives similar results for
storey shears – considered as the most important seismic action effect – as modal
response spectrum analysis, at least for the type of buildings where both methods
are applicable.

The seismic shear above the foundation or the top of a rigid basement (“base
shear”), Vb, is determined separately in horizontal directions X and Y, on the basis
of the 1st translational mode period, T1, in the direction of interest:

Vb = meff,1Sa,d(T1) (4.6)

where Sa,d(T1) is the value of the design response spectrum from Eqs. (4.5) at the 1st
mode and meff,1 is an estimate of the effective modal mass of that mode. Normally
meff,1 is taken equal to the total mass, m, of the building above the foundation or
the top of a rigid basement (BSSC 2003, SEAOC 1999). Eurocode 8 (CEN 2004a)
allows a reduction to: meff,1 = 0.85m, in buildings with more than two storeys above
the foundation or the top of a rigid basement and a period T1 < 2TC (where TC is the
corner period between the constant-spectral-acceleration and the constant-spectral-
pseudovelocity ranges). This value is, on average, representative of heigthwise regu-
lar buildings with at least three storeys, while if T1 < 2TC the 2nd and higher modes
are normally below the plateau where spectral pseudo-accelerations are constant and
highest. US codes (BSSC 2003, SEAOC 1999) take meff,1 = m but allow a reduction
of the overturning moment (see last paragraph in Section 4.3.3).

Eurocode 8 promotes calculation of T1 on the basis of mechanics, notably from
the Rayleigh quotient:

T1 = 2π

√√√√∑
i

miδ
2
i∑

Fiδi
(4.7)

where:

i indexes all the degrees-of-freedom (DoF) of the system in the horizontal direc-
tion, X or Y, where T1 is calculated;

mi is the (translational) mass associated with degree-of-freedom i;
Fi is the lateral force applied to degree-of-freedom i; and
δi is the displacement of degree-of-freedom i, obtained from an elastic analysis

of the structure for the set of lateral forces Fi.

For given relative magnitudes of the forces Fi (i.e., pattern over the DoFs i), the
displacements δi are proportional to Fi. So, the value of T1 from Eq. (4.7) does
not depend on the absolute magnitudes of Fi. It is also rather insensitive to the
relative magnitudes of Fi: any reasonable distribution of Fi to the DoFs i may be
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adopted. It is very convenient and also quite accurate to use as Fi lateral forces pro-
portional to the postulated distribution of Vb to the DoFs i in linear static analysis
(see Eq. (4.8) in Section 4.3.3). Note that at the stage of the calculation of T1

through Eq. (4.7) the base shear, Vb, is still unknown: the lateral forces Fi can
be chosen such that their resultant is equal to the total weight of the structure
(i.e., with Sa,d(T1) = 1.0 g). Then a single linear static analysis per horizontal direc-
tion, X or Y, suffices in order both:

– to estimate T1 from Eq. (4.7), and
– to determine the effects, EX or EY, of the seismic action component in direction

X or Y, as the seismic action effects from this analysis just need to be multiplied
by meff,1Sa,d(T1)/m, with Sa,d(T1) derived from the design spectrum at the – now
known – value of T1.

Codes (CEN 2004a, BSSC 2003, SEAOC 1999) give also empirical expres-
sions for T1, representing lower bounds (mean minus standard deviation) from
measurements on buildings in California in moderate earthquakes. Such measure-
ments reflect also the influence of non-structural elements on the response. So, the
empirical expressions underestimate the period compared to Eq. (4.7). The empir-
ical expressions may give values for T1 that lie in the constant spectral acceler-
ation region even for flexible buildings. So, they are sometimes used to obtain a
safe-side estimate of Sa,d(T1) for force-based design. In the light of the upcoming
displacement-based design and assessment, where realistic estimation of displace-
ment demands is of prime importance, the empirical expressions for T1 are not just
inaccurate and misleading, but unsafe as well. So, given that Eq. (4.7) gives accurate
estimates of T1 at no additional effort, further use of the empirical period formulas
in seismic design seems unwarranted.

Unlike Eurocode 8, which tries to emulate in linear static analysis a modal
response spectrum one through a mechanics-based value of T1 (e.g., from Eq. (4.7))
and a value of meff,1 in Eq. (4.6) which – under certain conditions – is less than the
total mass m, US codes (BSSC 2003, SEAOC 1999) seem to have more confidence
in the empirical expressions for T1 than in Eq. (4.7). So, if the designer applies
Eq. (4.7) or any alternative mechanics-based approach, he/she should respect a
lower limit on the pseudo-acceleration Sa,d(T1) from the design spectrum. In SEAOC
(1999) the limit is 80% of the Sa,d(T1) value determined from the spectrum at the
empirical T1-value. In BSSC (2003) a lower limit is set to the value of T1 from
Eq. (4.7) or other mechanics-based expressions: the T1-value to be used cannot
exceed the empirical period times 1.4–1.7.3

3Low values of the multiplicative factor are applied for high values of the design ground accelera-
tion and large ones for lower design ground accelerations.
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4.3.3 Pattern of Lateral Forces

The base shear of Eq. (4.6) is considered to be the resultant of a set of concurrent
peak inertia forces on the masses mi associated with DoF i in the horizontal direction
of the component of the seismic action. In a single mode of vibration (in this case
the 1st mode in the direction of the horizontal component) the peak lateral inertia
force on DoF i is proportional to Φ imi, where Φ i is the value of the 1st eigenmode
at that DoF. Then, the base shear from Eq. (4.6) is distributed to the DoFs as:

Fi = Vb
Φi mi∑

j
Φ j m j

(4.8)

with the summation in the denominator extending over all DoFs i.
If the building has rigid diaphragms, masses are often lumped there (at the floor

centres of mass). Then the general formulation above, applying for any arrangement
of masses and DoFs in space, is simplified to refer just to floors or storeys, with
i = 1 at the lowest floor above the foundation or the top of a rigid basement and
i = nst at the roof. The lateral forces Fi are then applied at the floor centres of
mass.

Within the field of application of linear static analysis (regularity in elevation,
higher modes unimportant), Eurocode 8 takes for simplicity the 1st mode shape as
proportional to the elevation, z, from the base or above the top of a rigid basement:
i.e. Φ i = azi. Then Eq. (4.8) is commonly termed “inverted triangular” pattern of
lateral forces, although it is only the assumed peak response accelerations that have
“inverted triangular” distribution, while the force pattern depends also on the distri-
bution of masses, mi.

As US codes are more liberal than Eurocode 8 on the applicability of linear static
analysis to taller, more flexible structures, their lateral force patterns attempt to cap-
ture higher-mode effects. So, for structures with T1 > 0.7 s SEAOC (1999) assigns
a fraction of the base shear equal to 0.07T1(s), but not exceeding one-quarter, to a
concentrated force at the roof level and distributes the rest according to Eq. (4.8)
with Φ i = azi. In BSSC (2003) Φ i is taken proportional to zi

k with k = 0.75 +
0.5T1 ≤ 2 and k ≥ 1, giving k = 1 and Φ i = azi for T1 < 0.5 s.

Interesting is the approach in AIJ (1992). The seismic shear at storey i is given
directly as a fraction of the total building weight at storey i and above, ai; the propor-
tionality constant is equal to 1 + 2(1/

√
ai − ai )/(3 + 1/T1) and empirically reflects

higher-mode effects on long-period structures. For uniform distribution of the total
weight to nst levels, ai is equal to (1–(i+1)/nst) with i = 1 at the lowest storey. For
flexible structures this dependence of seismic shears on storey level amount to a very
nonlinear distribution of storey lateral loads with height and a strong concentration
of lateral loads near the top.

Note that the lateral forces of Eq. (4.8) are meant to produce (by equilibrium)
safe-side envelopes of storey seismic shears. Overturning moments, calculated also
by equilibrium from these lateral forces, may significantly overestimate the actual
peak values at some storeys. Accordingly, BSSC (2003) allows reducing by 25%
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the overturning moment at the foundation level computed by equilibrium from the
lateral forces of Eq. (4.8).

4.4 Modal Response Spectrum Analysis

4.4.1 Modal Analysis and Its Results

As a first step in a modal response spectrum analysis, the modal shapes (eigen-
modes) in 3D and the natural frequencies (eigenvalues) are computed. Note that,
even when the building may be sufficiently regular in plan for separate planar (2D)
analyses to be allowed in two vertical planes, XZ and YZ, modal response spectrum
analysis should be done on a full 3D structural model. Then, each modal shape, rep-
resented by vector Φn for mode n, will in general have displacements and rotations
in all three directions, X, Y and Z for all nodes i of the structural model (unless the
solution of the eigenvalue problem is based on few DoFs, with the rest condensed
out, see “indirect” approach at the end of this section).

An eigenmode-eigenvalue analysis gives for each normal mode, n:

1. The natural period, Tn , and the corresponding circular frequency, ωn = 2π/Tn.
2. The mode shape vector Φn.
3. Factors of modal participation to the response to the seismic action component

in direction X, Y or Z, denoted as Γ Xn, Γ Yn, Γ Zn and calculated as: Γ Xn =
Φn

TMIX/Φn
TMΦn = ΣiϕXi,nmXi/Σi(ϕ2

Xi,nmXi+ ϕ2
Yi,nmYi+ϕ2

Zi,nmZi), where i
denotes nodes associated with dynamic DoFs, M is the mass matrix, IX is a
vector with elements equal to 1 for the translational DoFs parallel to direction
X and all other elements equal to 0, ϕXi,n is the element of Φn corresponding to
the translational DoF of node i parallel to X and mXi the associated element of
the mass matrix. Similarly for ϕYi,n, ϕZi,n, mYi and mZi. If M contains rotational
mass moments of inertia, IθXi,n, IθYi,n, IθZi,n, the associated terms are included in
the sum at the denominator of Γ Xn. The definitions of Γ Yn, Γ Zn are similar.

4. The (base-shear-)effective modal masses in directions X, Y and Z, MXn,
MYn, and MZn, respectively: MXn = (Φn

TMIX)2/Φn
TMΦn = (ΣiϕXi,nmXi)2/

Σi(ϕ2
Xi,nmXi+ ϕ2

Yi,nmYi+ϕ2
Zi,nmZi), and similarly for MYn, MZn. They are impor-

tant because they give the peak force resultants in mode n along direction X, Y or
Z: VbX,n = Sa(Tn)MXn, VbY,n = Sa(Tn)MYn, VbZ,n = Sa(Tn)MZn, respectively. The
sum of the effective modal masses in X, Y or Z over all modes of the structure is
equal to its total mass.

Participation factors and effective modal masses convey a certain physical mean-
ing, essential for the understanding of the nature and relative importance of each
mode. For example:

– the relative magnitude of the modal participation factors determines the predom-
inant direction of the mode: its inclination to horizontal direction X is Γ Yn/Γ Xn,
etc.;
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– the predominant direction of the mode with the largest modal base shear is a
good choice, together with the orthogonal direction, as a “principal” or “main”
direction of the structure in plan, along which the horizontal seismic action com-
ponents are taken to act.

– a good measure of the regularity in plan (irrespective of the qualitative criteria
for regularity) is the lack of significant rotation about the vertical (and of global
reaction torque with respect to that axis) in the (few) lower most modes.

Unfortunately, the presence and potential dominance of torsion about the vertical
in a mode can only be detected from participation factors and modal masses for
rotation about Z, normally not reported in computer output.4 The importance of
torsion in a mode can also be appreciated on the basis of modal reaction forces and
moments.

Peak modal seismic action effects in the response to the seismic action compo-
nent in direction X, Y or Z may be computed as follows:

I. For each normal mode n the spectral displacement, SdX(Tn), is calculated from
the pseudo-acceleration spectrum of the seismic action component, let’s say X,
as SdX(Tn) = (Tn/2π)2SaX(Tn).

II. The nodal displacement vector of the structure in mode n due to the seismic
action component of interest, let’s say in direction X, UXn, is computed as:
UXn= SdX(Tn)Γ XnΦn.

III. Peak modal values of the effects of the seismic action component of interest are
computed from the modal displacement vector of Step II. Member modal defor-
mations (e.g., chord rotations) or modal interstorey drifts are obtained directly
from the nodal displacement vector of mode n. Modal member (end) forces are
computed by multiplying the member modal deformations by the member stiff-
ness matrix and modal storey shears, overturning moments, etc. by equilibrium
from modal member shears, moments, axial forces, etc.

The so-computed peak modal responses are exact. However, they occur at differ-
ent instances in the response and can be combined only approximately. Section 4.4.3
presents combination rules for peak modal responses. Rules to take into account in
approximation the simultaneous occurrence of the seismic action components are
given in Section 4.7.

Condensation of degrees of freedom (DoFs) is sometimes applied to buildings
with rigid diaphragms to reduce the number of static DoFs into just three dynamic
ones per floor (two horizontal translations, one rotation about the vertical). This is
possible only if the vertical seismic action component, Z, is of no interest or impor-
tance. Dynamic condensation profits from the fact that horizontal seismic action
components normally induce negligible vertical nodal inertia forces or nodal inertia

4The commonly reported modal participation factors and effective modal masses along X, Y and
Z are not so informative about torsion about the vertical.
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moments about the X and Y axes. This allows expressing nodal translations in Z
and nodal rotations about X and Y in terms of the dynamic DoFs5 and eliminating
them from the equation of motion. If a diaphragm is rigid, the three in-plane DoFs
(two horizontal translations and the rotation about the vertical axis) of each one of
its nodes can be expressed through a kinematic constraint in terms of the corre-
sponding DoFs of a single node of the diaphragm, termed master node. The master
node is often taken to coincide with the storey centre of mass, where the storey’s
full translational mass, mXi = mYi, and floor rotational mass moment of inertia, Iθi,
are lumped. The reduced dynamic model has just 3nst modes in 3D (nst: number of
storeys). For each mode n the response spectrum in entered with the natural period
Tn of the mode to read the spectral acceleration Sa(Tn). Then, for each one of the two
horizontal components of the seismic action two horizontal forces and one torque
with respect to the vertical are computed for mode n at each floor level i: FXi,n, FYi,n

and Mi,n, where indexes X and Y denote now the direction of the two forces and not
that of the seismic action component (which may be either X or Y). These forces
and moments are computed as Sa(Tn) times:

– the participation factor of mode n to the response to the seismic action component
of interest, let’s say Γ Xn for the one in direction X;

– the mass associated with the corresponding floor DoFs: floor mass mXi = mYi

and floor rotational mass moment of inertia, Iθi; and
– the corresponding component of the modal eigenvector, ϕXi,n, ϕYi,n, ϕθi,n.

For each mode n and separately for the two horizontal components of the seis-
mic action, a static analysis of the full structural model in 3D is carried out then,
under static forces and moments FXi,n, FYi,n and Mi,n, applied to the corresponding
dynamic DoFs of each floor i. Peak modal response quantities (nodal displacements,
member internal forces or deformations, e.g. chord rotations, interstorey drifts, etc.)
are computed separately for each mode and combined for all modes according to
the rules in Section 4.4.3 for each horizontal component X or Y of the seismic
action.

As the “indirect” approach above computes internal forces and other response
quantities by static analysis for specified (modal) forces at floor levels, resembling
external loads, it is more intuitive and appealing to designers who are familiar with
analysis for static actions, such as wind or gravity, but maybe not so conversant with
modal response spectrum analysis. For this reason, despite its lack of generality
and limitations in its use (rigid diaphragms, no vertical seismic action component)
some codes (BSSC 2003) do suggest the “indirect” procedure for the calculation
of peak dynamic response quantities in the framework of modal response spectrum
analysis.

5Dynamic DoFs are those contributing to the equation of motion with inertia terms.
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4.4.2 Minimum Number of Modes

Modal response spectrum analysis should take into account all modes contributing
significantly to any response quantity of interest. This is difficult to achieve in prac-
tice, because the number of modes to be considered should be specified as input
to the eigenvalue analysis. Codes (CEN 2004a, BSSC 2003, SEAOC 1999) focus
on base shears as the prime response quantities of interest and use as a criterion
the relevant measure(s) from the eigenvalue analysis. They require the N considered
modes to provide together a total effective modal mass along any individual seismic
action component, X, Y, or even Z, at least 90% of the total mass.

If the above criterion is hard to satisfy, Eurocode 8 (CEN 2004a) allows as alter-
native to take into account all modes which individually have effective modal mass
along any one of the seismic action components, X, Y or Z, considered in design,
at least 5% of the total mass. This criterion refers to modes that may have not been
captured so far in the eigenvalue analysis; so it is difficult to apply. As a third alter-
native in case meeting any of the two criteria above is unfeasible (e.g. when torsional
modes are important, or when the vertical seismic action component should be con-
sidered in design), Eurocode 8 is content if the eigenvalue analysis captures at least
3
√

nst modes (where nst is the number of storeys above the foundation or the top of
a rigid basement) and at least one natural periods below 0.2 s.

The 1st and most commonly used of the above criteria (that of the sum of effec-
tive modal masses captured) addresses only the base shear reflected in the computed
modes, and even that only partly. As modal shears are equal to the effective modal
mass times the spectral acceleration at the mode’s period, if the 1st mode period is
fairly long and higher mode periods are in the constant spectral acceleration plateau,
the effective modal mass alone underestimates the contribution of higher modes to
base shear. Other global response quantities, such as the overturning moment at
the base and the top displacement, are less sensitive to the number of modes than
the base shear. However, response quantities used in local verifications (interstorey
drifts, member chord rotations or internal forces, etc.) may be more sensitive to the
number of modes included. So, these modes would preferably account for much
more than 90% of the total mass (close to 100%), to approximate well the peak
values of these quantities.

There exist techniques to approximately account for the missing mass due to
truncation of higher modes (e.g. by adding static response). However, Eurocode 8
does not require such measures for buildings.

Modal overturning moments from modal analysis reflect realistically the distri-
bution of modal inertia forces along the height. So, their final combination via the
rules of Section 4.4.3 into peak dynamic storey overturning moments can be con-
sidered as free of the conservatism associated with calculation of storey “static” or
“equivalent lateral” forces by equilibrium. BSSC (2003) allows up to 10% reduction
of the value of the overturning moment at the foundation level as computed from
modal contributions according to Section 4.4.3.
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4.4.3 Combination of Modal Results

In modal response spectrum analysis it is convenient to take the elastic response to
two different modes as independent of each other. In reality this is just an approxi-
mation. The magnitude of the actual correlation between modes i and j is estimated
through a correlation coefficient of the two modes, ρ ij. The following approximation
has been proposed in (Rosenblueth and Elorduy 1969):

ρij = ζ 2(1 + λ)2

(1 − λ)2 + 4ζ 2λ
(4.9a)

Nowadays the approximation proposed in Wilson et al. (1981) and Der
Kiureghian (1981) is more widely accepted and used:

ρij = 8
√
ζiζj(ζi + λζj)λ3/2

(1 − λ2)2 + 4ζiζjλ(1 + λ2) + 4(ζ 2
i + ζ 2

j )λ2
(4.9b)

In Eqs. (4.9) ζ i, ζ j are the viscous damping ratios in modes i and j, respectively
(taken as equal in Eq. (4.9a) and denoted by ζ ), while λ = Ti/Tj. If two modes
have closely spaced natural periods (λ ≈ 1.0), ρ ij is close to 1.0 and the responses
in the two modes cannot be considered independent of each other. For buildings
Eurocode 8 (CEN 2004a) considers that modes i and j cannot be taken as indepen-
dent, if λ is between 0.9 and 1/0.9. At the two extremes of this range of λ and for
ζ i = ζ j = 0.05, Eq. (4.9b) gives ρ ij = 0.47. Part 2 of Eurocode 8 for bridges (CEN
2005b) is more restrictive, considering that modes i and j are not independent if λ is
between [0.1 + √

(ζiζj)] and 0.1/[0.1 + √
(ζiζj)]; if ζ i = ζ j = 0.05 and λ is equal to

these limit values, Eq. (4.9b) gives indeed a low value: ρ ij = 0.05. Note that build-
ings with about the same lateral stiffness in horizontal directions X and Y have pairs
of modes with very similar periods at about right angles in plan (albeit not necessar-
ily in the two direction, X and Y). The modes of each pair are closely correlated.

When all relevant modal responses can be taken as independent of each other,
random vibration theory gives the expected value of the maximum, EE, of a seismic
action effect as the Square Root of the Sum of Squares of the modal responses –
SRSS rule (Rosenblueth 1951):

EE =
√∑

N

E 2
Ei (4.10)

where the summation extends over the N modes taken into account and EEi is the
peak value of the seismic action effect in mode i. If the response in any two vibra-
tion modes i and j cannot be taken as independent of each other, the SRSS rule
is unconservative. Then more accurate procedures for the combination of peak
modal responses should be used (CEN 2004a). Random vibration theory gives
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the Complete Quadratic Combination – CQC rule (Wilson et al. 1981) quoted in
Eurocode 8 for the expected value of the maximum, EE, of a seismic action effect
due to correlated modes:

EE =
√∑N

i=1

∑N

j=1
ρij EEi EE j (4.11)

In Eq. (4.11) EEi, EEj are the peak values of the seismic action effect in modes
i and j. The correlation coefficient of modes i and j, ρ ij, may be taken from the
approximation of Eqs. (4.9). Comparison with the results of response-history anal-
yses has demonstrated good average accuracy of the CQC rule. Note that the CQC
includes the SRSS rule, Eq. (4.10), as a special case for ρ ij = 0 if i �= j (for i = j we
have ρ ij = 1).

The SRSS and the CQC give only the absolute value of the peak response esti-
mate, which should be considered and combined with non-seismic action effects
(e.g., due to gravity loads) as both negative and positive. So, although modal inter-
nal forces satisfy equilibrium at any level, member end force values from the SRSS
or CQC rules do not satisfy equilibrium at the level of the individual member or
node. So, envelopes of moments along members cannot be constructed from the
member end forces and equilibrium. They may be constructed, instead, point-by-
point, by SRSS or CQC combination of the modal moments at the generic point
x along the member. Such envelopes do not have a point of inflection and do not
show whether the member is in single or in double curvature bending when its peak
end moments take place. This can be judged from the peak shear forces computed
through the same mode combination rules. The member may be considered to be
in double or single curvature; if the product of the member’s peak shear force and
the member length is closer to the sum of the (positive) member end moments, or to
their difference, respectively.

4.5 Linear Analysis for the Vertical Seismic Action Component

4.5.1 When is the Vertical Component Important and Should
Be Taken Into Account?

In buildings the vertical seismic action component may in general be neglected,
because:

– its effects are normally covered by the design for factored gravity loads;
– except in buildings having long span beams with significant mass distributed

along them, the fundamental period of the building in the vertical direction is
governed by the axial stiffness of vertical members and is very short; so, spectral
amplification of the vertical ground motion is low.
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Seismic design codes require to take into account the vertical seismic action com-
ponent only when its effects are likely to be significant (in view of the arguments
above). Eurocode 8 considers this to be the case only if the design ground accelera-
tion in the vertical direction, avg, exceeds 0.25 g, and even then only in the following
cases:

– in base-isolated buildings; or
– for (nearly) horizontal members (beams, girders, or slabs) which:

• have a span of at least 20 m; or
• cantilever over at least 5 m; or
• support directly columns; or
• are prestressed.

4.5.2 Special Linear Static Analysis Approach
for the Vertical Component

The analysis provisions of current seismic design codes pertain primarily (essen-
tially only) to the horizontal components of the seismic action. At most they include
very limited special guidance for the analysis under the vertical component. The
modal response spectrum and the nonlinear dynamic methods of analysis are,
of course, applicable for the analysis of the response to the vertical component,
provided that floor masses are not lumped only at nodes of vertical and horizontal
elements, but at several intermediate points of the horizontal elements as well. How-
ever, a very large number of modes may need to be determined in modal analysis
to capture 90% of the participating mass in the vertical direction, or, in general, to
accurately estimate the seismic action effects due to the vertical component.

Although not described in codes, an “equivalent static” linear analysis can be
used for the vertical component. This is a modification of the “lateral force proce-
dure” to address the vertical direction instead of the horizontal. For convenience,
it may employ the same structural model as the analysis for the horizontal compo-
nents. In this approach the fundamental period of vibration in the vertical direction,
T1, may be estimated via Eq. (4.7), using as Fi the weights of the masses mi and as δi

the vertical nodal displacements from the analysis for the loads Fi. As these forces
are the gravity loads concurrent with the design seismic action, a linear static anal-
ysis for them is done anyway and its results are already available. A total vertical
seismic force can then be computed from Eq. (4.6) with meff,1 = m, on the basis of
the spectral acceleration, Sav(T1), derived from the vertical design spectrum (see last
paragraph in Section 4.2.2). For the purposes of the static analysis for the vertical
seismic action component, this total vertical force can be distributed to all nodes
of the structure in proportion to the product of their mass, mi, times their vertical
displacement, δi, under the weights of the masses mi.



4.5 Linear Analysis for the Vertical Seismic Action Component 323

In those horizontal members for which the vertical component needs to be taken
into account, the relevant dynamic response is often of local nature. It involves
these members and their immediately adjacent or supporting ones, but not the
entire structure. So, Eurocode 8 considers sufficient to carry out an analysis on
a partial structural model capturing the important aspects of the response in the
vertical direction, without irrelevant and unimportant influences that may confuse
or obscure the important results. The partial model includes fully the horizontal
members on which the vertical component is considered to act, as well as the
elements (or systems of elements) directly supporting them. All other adjacent
elements (e.g. adjacent spans) may be included only with their stiffness. More
specifically:

(a) the partial structural model should include all (nearly) horizontal members for
which the vertical component needs to be taken into account, each discretised
into a few (e.g. about five) beam elements with masses lumped at the interme-
diate nodes;

(b) directly supporting elements or systems of elements may also be included, up
to their supports by the ground or at another vertically stiff element or system of
elements; for example, columns directly supporting the members on which the
vertical component is taken to act may be included with their full length down
to the foundation;

(c) adjacent spans continuous to the member(s) on which the vertical component is
taken to act may be included up to their next support, with appropriate boundary
conditions there (e.g. pinned or fixed against rotation, fixed vertically, etc.);

(d) the partial structural model should include those beams, girders or other hori-
zontal elements which are connected at an angle (often at right angles) to the
members on which the vertical component is taken to act; these transverse or
oblique elements should be included in the model with their full connectivity
and the appropriate boundary conditions at their supports, but without interme-
diate nodes for lumped masses;

The members on which the vertical component is considered to act (those listed
in (a) above) and their directly associated supporting elements or systems of ele-
ments (e.g. those listed in (b) or (d)) are the only ones to be dimensioned on the
basis of the computed action effects of the vertical component.

The designer may find it inconvenient to develop the partial structural model
just for the purposes of the analysis for the vertical component. He/she may prefer
to keep instead the overall structural model of the analysis for gravity loads and
the horizontal components of the seismic action, but use a partial model only to
calculate T1 from Eq. (4.7) and distribute to the individual masses the total vertical
seismic force derived from T1 and from the vertical design spectrum. Such a partial
model may be developed from the overall structural model, by considering all nodes
of vertical elements as fixed against vertical displacement. These vertical DoFs are
released in the subsequent static analysis for the calculation of the effects of the
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vertical seismic action component. This latter analysis is carried out on the overall
structural model under vertical nodal loads proportional to miδi and applied only
to the vertically active DoFs of the partial structural model. In this way the action
effects of the vertical component, EZ, can be realistically computed, not only in the
horizontal members included in the partial model, but also in their supporting or
adjacent elements and the whole structure.

4.6 Nonlinear Analysis

4.6.1 Nonlinear Static (“Pushover”) Analysis

4.6.1.1 Introduction

The prime use of nonlinear analysis is for assessment of existing or retrofitted build-
ings, for which, as pointed out in Section 4.1.3, nonlinear analysis is the reference
method, or for evaluation of the seismic performance of new designs.

Unlike linear analysis, which has long been the basis of practical seismic design
of new buildings, and nonlinear dynamic analysis, which has been extensively used
since the 1970s for research, code-calibration or other special tasks, nonlinear static
analysis (commonly called “pushover” analysis) was not widely known or used until
the first new-generation guidelines for seismic rehabilitation of existing buildings
(ATC 1997) adopted it as the reference method. Since then, its appealing simplic-
ity and intuitiveness and the wide availability of reliable and user-friendly analysis
software have made it the analysis method of choice for seismic assessment and
retrofitting of buildings.

“Pushover” analysis is essentially the extension of the “lateral force procedure”
of static analysis into the nonlinear regime. It is carried out under constant grav-
ity loads and monotonically increasing lateral loading applied on the masses of the
structural model. This loading is meant to simulate inertia forces due to a horizontal
component of the seismic action (the vertical component is not addressed). While
the applied lateral forces increase in the course of the analysis, the engineer can fol-
low the gradual emergence of plastic hinges, the evolution of the plastic mechanism
and damage, as a function of the magnitude of the imposed lateral loads and of the
resulting displacements.

4.6.1.2 Lateral Load Vector

Pushover analysis was initially developed, and still mainly applied, for 2D anal-
yses. Even when applied on 3D structural models the lateral loading simulates
the inertia due to a single horizontal seismic action component. In the fundamen-
tal and most commonly used version of the method, the forces Fi incrementally
applied on the masses mi remain proportional to an invariant pattern of horizontal
displacements Φ i:
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Fi = αmiΦi (4.12)

as if the entire response were in a single invariant mode with horizontal modal dis-
placements Φ i.

According to Eurocode 8 (CEN 2004a, 2005a), pushover analyses should be
applied to buildings using both of the following lateral load patterns:

1. A “modal pattern”, simulating the inertia forces of the 1st mode in the horizontal
direction in which the analysis is carried out. This pattern is meant to apply in
the elastic regime and during the initial stages of the plastic mechanism devel-
opment, as well as in a full-fledged beam-sway mechanism (see Fig. 1.3(b)–(e)).
The precise pattern depends on the type of linear analysis applicable:

– If the building meets the applicability conditions of linear static analysis, an
“inverted triangular” unidirectional lateral load pattern is applied, like the one
used in a linear static analysis (i.e. with Φ i = zi in Eq. (4.12));

– When the building does not fulfil the conditions for the application of linear
static analysis, Φ i in Eq. (4.12) is the 1st mode shape from modal analysis.
If the 1st mode is not purely translational, the patterns of Φ i and Fi are not
unidirectional: they may have horizontal components orthogonal to that of the
seismic action component in question.

2. A “uniform pattern”, corresponding to uniform unidirectional lateral accelera-
tions, i.e. to Φ i = 1 in Eq. (4.12). It attempts to simulate the inertia forces in a
potential soft-storey mechanism, limited in all likelihood to the bottom storey,
with the lateral drifts concentrated there and the storeys above moving laterally
almost as a rigid body (Fig. 1.3(a)).

The most unfavourable result of the pushover analyses with the two standard
lateral force patterns, 1 or 2, should be used. Unless the structure is symmet-
ric about an axis at right angles to the seismic action component considered, the
lateral forces should be applied in both the positive and the negative direction
(sense).

More sophisticated versions of pushover analysis (Bracci et al. 1997, Elnashai
2001, Gupta and Kunnath 2000) do not use a fixed pattern of applied lateral loads,
Eq. (4.12), but “adapt” it to the evolution of nonlinearity, as this affects the dynamic
properties of the structure. However, any increase in accuracy is at the expense of the
most attractive feature of pushover analysis, namely its simplicity. So, here we stay
with the original and simplest version of pushover analysis, as in the N2 procedure
(Fajfar 2000) adopted in Eurocode 8 (CEN 2004a, 2005a).

4.6.1.3 Capacity Curve and Equivalent SDOF System

It is convenient and common to present the results of a “pushover” analysis in the
form of a nonlinear force-displacement curve (Fig. 4.2). Although it depicts a cer-
tain aspect of the building’s nonlinear response and has little to do with its capacity
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Fig. 4.2 Elastic-perfectly
plastic idealisation of
capacity curve of equivalent
SDOF system in pushover
analysis (Fajfar 2000, CEN
2004a)

to withstand the seismic action, the curve is commonly referred to as “capacity
curve”. This differentiates it from the “demand” curve, which relates the spectral
displacement to the product of the mass and the spectral acceleration (Acceleration-
Displacement-Response-Spectrum, ADRS, Fig. 4.3). The proximity of the “capacity
curve” to the results of a series of nonlinear dynamic (response-history) analy-
sis, considered as the benchmark, is often taken as a measure of the accuracy of
a “pushover” analysis.

An obvious force quantity for the vertical axis of the “capacity curve” is the
base shear, Vb, as it represents the total force resistance in the horizontal direction
considered at an instant of the displacement response. The lateral displacement on
the horizontal axis, dn, is often taken at a certain node n of the structural model,
termed “control node”. That node is normally at the centre of mass of the roof.
A mathematically better choice, relating very well to the definition of the seismic
demand in terms of spectral quantities, are the lateral force and displacement of an
equivalent Single-Degree-of-Freedom (SDOF) system. In the N2 procedure (Fajfar
2000) adopted in Eurocode 8 the equivalent SDOF system is defined as follows:

(a) (b)

Fig. 4.3 “Target displacement” of equivalent SDOF system in “pushover” analysis (Fajfar 2000,
CEN 2004a): (a) long and intermediate period ranges; (b) short period range
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– The horizontal displacements Φ i in Eq. (4.12) are normalised so that Φn = 1 at
the control node.

– The mass of the equivalent SDOF system m∗ is:

m∗ =
∑

miΦi (4.13)

– Its force, F∗ and displacement d∗ are:

F∗ = Vb

Γ
, d∗ = dn

Γ
(4.14)

where:

Γ = m∗∑
miΦ

2
i

(4.15)

Note that in the “modal pattern” of lateral loads, where Φ i emulates a mode
shape, Γ is the participation factor of that mode in the direction of the lateral forces
(point 3 in Section 4.4.1).

To determine the seismic demand (see Section 4.6.1.4) we need to estimate the
period T∗ of the equivalent SDOF system. According to Fajfar (2000) and CEN
(2004a) T∗ can be determined on the basis of the mass from Eq. (4.13) and of the
elastic stiffness of an elastic-perfectly plastic idealisation of the “capacity curve” of
the SDOF system. The yield force, Fy

∗, of the elastic-perfectly plastic curve, taken
as the ultimate strength of the SDOF system, is the value of F∗ when a complete
plastic mechanism forms (or at the terminal point of the “capacity curve”, if a full
plastic mechanism does not develop by then). The yield displacement, dy

∗, is cho-
sen so that the deformation energy of the elastic-perfectly plastic idealisation at the
displacement of the equivalent SDOF system when the plastic mechanism forms or
at the terminal point, dm

∗, is equal to that of the actual “capacity curve” at the same
point, Em

∗ (Fig. 4.2):

d∗
y = 2

(
d∗

m − E∗
m

F∗
y

)
(4.16)

The elastic stiffness of the SDOF system is Fy
∗/dy

∗ and its period T∗ is (Fajfar
2000, CEN 2004a):

T ∗ = 2π

√
m∗d∗

y

F∗
y

(4.17)

If the structure is almost linear until the “yield point” of the elastic-perfectly
plastic SDOF system, the period from Eq. (4.17) is the same as the one computed
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from Eq. (4.7) on the basis of the results of a linear analysis under lateral forces with
the pattern of Eq. (4.12).

4.6.1.4 Definition of the Seismic Demand Through the “Target Displacement”

Unlike linear or nonlinear dynamic analysis, which both give directly all peak seis-
mic demands under a given earthquake, a pushover analysis per se gives only the
“capacity curve”. The demand is estimated separately. This is normally done in
terms of the maximum displacement induced by the earthquake, either to the equiv-
alent SDOF system or at the “control node” of the full structure. This is called
“target displacement”. In the N2 method (Fajfar 2000, CEN 2004a) the “target dis-
placement” is determined on the basis of the “equal displacement rule”, modified
for short period systems according to Eqs. (1.1) and (1.2) (Vidic et al. 1994). As
shown in Fig. 4.3, if T ∗ is longer than the transition period, TC, between the constant
pseudo-acceleration and the constant pseudo-velocity parts of the elastic spectrum,
the target displacement of the equivalent SDOF system is taken equal to the spectral
displacement from the 5%-damped elastic spectrum at period T ∗:

d∗
t = Sd (T ∗) =

[
T ∗

2π

]2

Sa(T ∗) if T ≥ TC (4.18a)

Otherwise, the spectral displacement is corrected according to the q-μ-T relation
in (Vidic et al. 1994):

d∗
t = Sd (T ∗)

qu

(
1 + (qu − 1)

TC

T ∗

)
≥ Sd (T ∗) if T < TC (4.18b)

where qu = m∗Sa(T∗)/Fy
∗. Equation (4.14) can then be inverted for the displacement

at the control node, dn, corresponding to the “target displacement” of the SDOF
system.

The “target displacement” may be determined more accurately (especially if the
seismic action is given in terms of one or more acceleration time-histories instead of
a smooth, 5%-damped elastic spectrum) as the peak displacement from a nonlinear
dynamic analysis of a SDOF system with the mass m∗ of the equivalent SDOF
system and an elastic-perfectly plastic force-deformation monotonic law with the
yield force, Fy

∗, and the yield displacement, dy
∗, of the equivalent SDOF system of

Section 4.6.1.3. This analysis may be carried out according to Section 4.6.2, using
a hysteresis model, such those in Section 4.10.1.6.

The demands at the local level (inelastic deformations and forces) due to the hor-
izontal component of the seismic action in the direction of the pushover analysis are
those corresponding to the “target displacement”. Codes (ATC 1997, CEN 2004a,
2005a, ASCE 2007) require carrying out the pushover until a terminal point at 1.5
times the “target displacement”.
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4.6.1.5 Torsional Effects

The original development of pushover analysis and the N2 method (Fajfar 2000)
are for 2D analysis under a single component of the seismic action. The question
arises to what extent the standard pushover analysis may be applied, if the response
is significantly affected by torsion in 3D and what corrections may be needed in that
case.

If the 1st mode along, or close to, each one of the two orthogonal horizontal
directions in which the pushover analysis is carried out includes a significant tor-
sional component, the “modal pattern” of lateral loads should be applied to individ-
ual nodes (not to the floor centres of mass), with the displacements Φ i in Eq. (4.12)
taken according to the shape of the corresponding 1st mode in 3D. However, if the
1st or 2nd mode in one of the two orthogonal horizontal directions is primarily tor-
sional, such a pushover analysis may overestimate horizontal displacements on the
flexible/weak side in plan (the one developing larger horizontal displacements along
the direction of lateral forces than the opposite side), i.e., is on the safe side and the
difference may be ignored. By contrast, the displacements of the stiff/strong side are
underestimated. This difference in the prediction is on the unsafe side and should
be taken into account (CEN 2004a). This may be done as follows (Peruš and Fajfar
2005, Marušić and Fajfar 2005, Fajfar et al. 2004, 2005):

1. The standard pushover analysis is carried out on the 3D structure, with the uni-
directional pattern of lateral forces, “uniform” or “modal”, applied to the floor
centres of mass.

2. The equivalent SDOF system is established, along with the elastic-perfectly plas-
tic idealisation of its “capacity curve”. Its “target displacement” is determined
and translated to a displacement at the control node n at the centre of mass of the
roof by inverting Eq. (4.14).

3. A modal response spectrum analysis of the same 3D structural model is carried
out. The displacement in the horizontal direction of the pushover analysis is com-
puted at all nodes of the roof (including the control node at the centre of mass)
through the CQC rule, Eq. (4.11) and divided by the corresponding value of the
control node at the centre of mass, to give an “amplification factor” reflecting the
effect of torsion on roof displacements.

4. At all points where the “amplification factor” derived in 3 above is greater than
1.0, it multiplies the displacements of all nodes along the same vertical line, as
these are obtained from the standard pushover analysis in 1 and 2 above. These
products are taken as the outcome of the analysis, reflecting on one hand the
global inelastic response and its heightwise distribution as captured by standard
pushover analysis, and on the other the effect of global torsion on the planwise
distribution of inelasticity. Eurocode 8 limits the “amplification factor” to values
not less than 1.0 and does not allow de-amplification due to the effects of torsion.

Nonlinear dynamic analyses show that the larger the extent and magnitude of
inelasticity, the less are the effects of torsion on local response.
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4.6.1.6 Higher Mode Effects

Pushover analysis with a force pattern from Eq. (4.12) captures only the effects of a
single mode, and, as a matter of fact, only to the extent that the modal shape is fairly
well approximated by the displacement pattern(s) used in Eq. (4.12). To capture the
effects of higher modes, “Modal Pushover Analysis” has been proposed in Chopra
and Goel (2002, 2004). In it a pushover analysis is fully carried out separately for
each mode of interest, with gravity loads considered concurrently with every single
mode. The horizontal displacement patternΦ i in Eq. (4.12) follows the modal shape.
For each mode an equivalent SDOF system is defined through Eqs. (4.13), (4.14),
(4.15), (4.16) and (4.17) and the seismic demand is determined from Eqs. (4.18)
in terms of a “target displacement”. A pushover analysis is carried out for each
mode up to its own “target displacement”; modal displacements (accounting for the
modal participation factors) at the modal target displacement are combined, e.g., via
the CQC rule, Eq. (4.11). Recognising that in most cases inelasticity is limited to
the 1st mode, a “Modified Modal Pushover Analysis” has been proposed in Chopra
et al. (2004), in which higher mode contributions are considered as elastic.

Application of the method to flexible multistorey steel frames, regular or not,
suggests that three modes may provide good agreement with the peak storey dis-
placements from nonlinear dynamic analysis. However, element deformations (e.g.,
plastic hinge or chord rotations) are not estimated equally well. So, they are deter-
mined not by combining modal deformations via the CQC rule but from the com-
puted global displacements, using case-dependent transformations from them to
local deformations (e.g. via interstorey drifts). Element forces are computed in the
end from local element deformations, via the element’s nonlinear constitutive rela-
tion used in the pushover analysis.

Part 3 of Eurocode 8 limits the application of pushover analysis with the two
standard lateral force patterns of Section 4.6.1.2 to buildings meeting condition (b)
in Section 4.3.1 for the applicability of linear static analysis (1st mode period not
longer than 2 s or four times the transition period TC between the constant-spectral-
acceleration and the constant-spectral-pseudovelocity regions of the spectrum). For
buildings violating this condition, reference is made to either “modal pushover” or
nonlinear dynamic analysis.

4.6.2 Nonlinear Dynamic (Response- or Time-History) Analysis

4.6.2.1 Scope of Application

Nonlinear dynamic analysis was developed as a method in the 1970s for research,
code-calibration, or special applications. Since then, with the availability of several
reliable and numerically stable computer codes with nonlinear dynamic analysis
capabilities, it has gained its place in engineering practice for the evaluation of struc-
tural designs carried out using other approaches (e.g., by conventional force-based
design with the q-factor and linear analysis) or cycles of analysis and design eval-
uation. Its application in design is greatest in buildings with base isolation, as their
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response is governed by a few elements (the isolation devices) with strongly nonlin-
ear force-deformation law that depends on the specific devices and does not follow
a standard pattern. Moreover, as isolation normally shields the superstructure from
seismic damage, residual displacements of the isolation system are of great interest.
They can be estimated only through nonlinear dynamic analysis.

The main practical application of nonlinear dynamic analysis, currently and in
the foreseeable future, is for seismic assessment of existing structures, where, as
pointed out in Section 4.1.3, nonlinear analysis is the reference method. Profession-
als practicing seismic assessment and retrofitting are fewer and more specialised
than in every-day seismic design. So they often master nonlinear dynamic analysis
and its special software tools.

4.6.2.2 The Seismic Input Motions

If the analysis is linear or nonlinear static, the seismic action can be defined through
its 5%-damped elastic response spectrum. For a nonlinear dynamic (response-
history) analysis, time-histories of the ground motion are needed. These time-
histories should conform on average with the 5%-damped elastic response spectrum
defining the seismic action.

Current seismic codes (CEN 2004a, BSSC 2003, SEAOC 1999, ASCE 2007)
require as input for a response-history analysis an ensemble of at least three records
(or pairs or triplets of different records, for analysis under two or three concur-
rent components of the action). Eurocode 8 accepts artificial, historic or simulated
records, but US codes (BSSC 2003, SEAOC 1999) only recorded, or simulated ones.
Artificial (or “synthetic”) records can be mathematically produced using random
vibration theory to match almost perfectly the response spectrum defining the seis-
mic action (Gasparini and Vanmarcke 1976). It is fairly straightforward to adjust
the phases of the various sinusoidal components of the artificial waveform, as well
as the time-evolution of their amplitudes (“envelope function”), so that the artifi-
cial record resembles a specific recorded motion. Note, however, that records which
are equally rich in all frequencies are not realistic. Moreover, an excitation with
a smooth response spectrum without peaks or troughs introduces a conservative
bias in the response, as it does not let inelastic response help the structure escape
from a spectral peak to a trough at a longer period. Therefore, historic records are
favoured also in CEN (2004a). Records simulated from mathematical source mod-
els, including rupture, propagation of the motion through the bedrock to the site and,
finally, through the subsoil to the surface, are also preferred over artificial ones (CEN
2004a), as the final records resemble natural ones and are physically appealing.
Obviously, an equally good average fitting of the target spectrum requires more –
appropriately selected – historic or simulated records than artificial ones. Individual
recorded or simulated records should be “adequately qualified with regard to the
seismogenetic features of the sources and to the soil conditions appropriate to the
site” (CEN 2004a). In more plain language, they should come from events with mag-
nitude, fault distance and mechanism of rupture at the source consistent with those
of the design seismic action (BSSC 2003, SEAOC 1999, ASCE 2007). The travel
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path and the subsoil conditions should preferably resemble those of the site. These
requirements are not only hard to meet, but may also conflict with conformity (in the
mean) to the target spectrum of the design seismic action. The requirement of CEN
(2004a) to scale individual historic or simulated records so that their peak ground
acceleration (PGA) matches on average the value of agS of the design seismic action
may also be considered against physical reality. It is more meaningful, instead, to
use individual historic or simulated records with PGA values already conforming to
the target value of agS. Note also that the PGA alone may be artificially increased or
reduced, without affecting at all the structural response. So, it is more meaningful to
select the records on the basis of conformity of spectral values alone, as described
below.

If pairs or triplets of different records are used as input for analysis under two or
three concurrent seismic action components, conformity to the target 5%-damped
elastic response spectrum may be achieved by scaling the amplitude of the individ-
ual records as follows:

– For each earthquake consisting of a triplet of translational components, the
records of horizontal components are checked for conformity separately from
the vertical one (CEN 2005b).

– The records of the vertical component, if considereded, are scaled so that the
average 5%-damped elastic spectra of their ensemble is at least 90% of the
5%-damped vertical spectrum at all periods between 0.2Tv and 2Tv, where Tv

is the period of the lowest mode with participation factor of the vertical compo-
nent higher than those of both horizontal ones (CEN 2005b).

– For analysis in 3D under both horizontal components, the 5%-damped elastic
spectra of the two horizontal components in each pair are combined by applying
the SRSS rule at each period value. The average of the “SRSS spectra” of the
two horizontal components of the individual earthquakes in the ensemble should
be at least 0.9

√
2 ≈ 1.3 times (

√
2 ≈ 1.4 times in (SEAOC 1999, ASCE 2007))

the target 5%-damped horizontal elastic spectrum at all periods from 0.2T1 up
to 2T1 in CEN (2004a) or 1.5T1 in BSSC (2003), SEAOC (1999) and ASCE
(2007), where T1 is the lowest natural period of the structure in any horizon-
tal direction. If it isn’t, all individual horizontal components are scaled up, so
that their final average “SRSS spectrum” exceeds by a factor of 1.3 (or 1.4 in
(SEAOC 1999, ASCE 2007)) the target 5%-damped horizontal elastic spectrum
everywhere between 0.2T1 and 2T1 in CEN (2004a) or 1.5T1 in BSSC (2003),
SEAOC (1999) and ASCE (2007).

For analysis under a single horizontal component, Eurocode 8 (CEN 2004a)
requires the mean 5%-damped elastic spectrum of the applied motions not to fall
below 90% of that of the design seismic action at any period from 0.2T1 to 2T1. In
BSSC (2003) the lower limit is 100% of the spectrum of the design seismic action
at all periods from 0.2T1 to 1.5T1 (T1 is the fundamental period in the horizontal
direction along which the motion is applied).
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If the response is obtained from at least seven nonlinear time-history analyses
with (triplets or pairs of) ground motions chosen in accordance with the previous
paragraphs, the relevant verifications may use the average of the response quan-
tities from all these analyses as action effect. Otherwise, is should use the most
unfavourable value of the response quantity among the analyses.

4.6.2.3 Damping

If the response is indeed elastic, nonlinear and linear response-history analysis
should give identical results, even when they are carried out using different algo-
rithms and software tools. Linear response-history analysis should, in turn, produce
the same peak SDOF response as given by the elastic response spectrum, normally
associated in design codes with viscous damping ratio 5% of critical. Therefore,
for consistency across methods as well as with the elastic spectrum to which the
input time-histories conform, nonlinear dynamic analysis should have a built-in 5%
viscous damping ratio associated with elastic response. Recall that in a design con-
text the upper limit of the elastic regime is defined by yielding of members. So,
the 5% viscous damping ratio is considered to encompass all sources of damping
up to member yielding, including any structural damping of hysteretic nature, e.g.,
due to cracking of concrete members and energy dissipation during pre-yield cycles.
Hysteretic damping after member yielding should be reflected just by the nonlinear
force-deformation laws describing the post-yield behaviour of members in cyclic
loading.

Recall that the forces due to viscous damping enter in the equations of motion
as CU̇ . For convenience of the numerical integration of the nonlinear equations of
motion, the damping matrix, C, is typically taken to be of the Rayleigh type,

C = αoM + α1K (4.19)

Rayleigh damping gives a viscous damping ratio ζ at a circular frequency ω equal
to:

ζ = 1

2

(αo

ω
+ α1ω

)
(4.20)

So, the mass-proportional part damps out lower-frequency components and the
stiffness-proportional part high-frequency ones. To achieve values of the damping
ratio as close as possible to the target value ζ = ζ o = 0.05 within the predominant
frequency range of the response, one may specify ζ = ζ o at two circular frequencies,
ω1 and ω2, straddling that range and solve for αo and α1 to get:

ζ = ζo

ω1 + ω2

(ω1ω2

ω
+ ω

)
(4.20a)

For analysis under a single component of the seismic action a good choice for
ω1 is the circular frequency of the mode with the highest modal base shear in the
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elastic structure.6 For concurrent application of the two horizontal components, the
average circular frequency in the two modes with the highest modal base shears in
two nearly orthogonal horizontal directions may be appropriate. The value of ω2

may be chosen two to three times ω1, bracketing the range of the 1st and 2nd modes
in both horizontal directions. The resulting viscous damping ratio is lower than ζ =
ζ o = 0.05 at frequencies between ω1 and ω2 and higher outside that range (Chopra
2007). The further away the values of ω1 and ω2, the larger is the dip in damping
ratio in-between. The minimum damping occurs at ωmin = √

(ω1ω2) and is equal to
ζmin = 2ζ oωmin/(ω1+ ω2). However, the closer together ω1 and ω2 are, the steeper
the increase of damping at higher frequencies.

Hysteretic damping depends on the unloading and reloading rules (“hysteresis
rules”) adopted for the behaviour of the members after their yielding (see Section
4.10.1.7).

4.6.2.4 Numerical Integration of the Equation of Motion

Nonlinear response-history analysis entails numerical integration of the equation of
motion:

M

⎛
⎝Ü +

∑
j

αg j e j

⎞
⎠ + CU̇ + FR = 0 (4.21)

where M is the mass matrix (usually diagonal, with masses lumped at the nodes),
U is the vector of nodal DoFs relative to the ground, agj are the acceleration time-
histories in the three directions, with j = 1, 2, 3 denoting translation along directions
X, Y, Z, C is the damping matrix, FR is the vector of resisting forces and vectors
ej have the value 1 at DoF j of each node and 0 at all others. Usually the time-step
for the numerical integration, Δt = ti+1–ti, is chosen the same as the discretisation
interval of the ground acceleration agj(t) (typically 0.01 s), or one-half of it. Only
implicit integration schemes, which are unconditionally stable for linear systems,
are appropriate for such a long Δt. For the same stability performance the simpler
and computationally efficient explicit schemes, like the central difference method,
require a much shorter time-step. They are more appropriate for the analysis of
fast transients or wave propagation problems, whose accurate description requires
anyway a very short Δt.

Although the engine for the integration of the equation of motion is normally a
black box for the user of nonlinear analysis software, the choice among numer-
ical integration schemes and/or of their parameters is often left to him/her. As
numerical instabilities in nonlinear response-history analyses are not rare (especially
when the number of DoFs is very large and the analysis is carried out for many

6An eigenvalue analysis of the elastic structure should precede the nonlinear dynamic one anyway,
for insight into the predominant features of the expected response.
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ground motions), the user should pay special attention to the choice of numerical
integration scheme.

Two widely used schemes, both unconditionally stable for linear systems, are
(Chopra 2007):

– Newmark’s average acceleration method (Newmark 1959), and
– Wilson’s ϑ method.

In Newmark’s average acceleration method Ü is taken constant within Δt :
Ü = Ü i + 0.5ΔÜ i giving velocity and displacement at ti+1: U̇ i+1 = U̇ i + (Ü i +
0.5ΔÜ i )Δt , U i+1 = U i + (U̇ i + 0.5(Ü i + 0.5ΔU̇ i )Δt)Δt . Substituting in the
incremental equation of motion between ti and ti+1, one obtains for ΔUi = Ui+1–Ui:

K∗
i ΔU i = ΔF∗

i (4.22)

with:

K ∗
i = K i + 2

Δt

(
C + 2

M
Δt

)
, ΔF∗

i = 2

(
C + 2

M
Δt

)
U̇ i +2MÜ i −M

∑
j

Δαg j e j

(4.23a)

where Ki is the tangent stiffness matrix at time ti. Equation (4.22) is solved with
equilibrium iterations, until the unbalanced load vector (i.e., the difference between
the generalised external nodal forces and the internal ones calculated from member
deformations) becomes less than a specified tolerance. During iterations and after
convergence Ui+1, U̇ i+1 and Üi+1 are computed (for use in the next step) by adding
ΔUi, ΔU̇ i = 2(ΔU i/Δt − U̇ i ), ΔÜ i+1 = 2

(
2
(
ΔU i/Δt − U̇ i

)
/Δt − Ü i

)
to Ui,

U̇ i and Üi, respectively.
In Wilson’s ϑ-method the nodal acceleration, ΔÜ = Ü–Üi+1 and the input accel-

erations, Δagj(t) are taken linear functions of t–ti up to time ti + ϑΔt > ti+1

(with ϑ > 1). Then Ki
∗ and δFi

∗ (which refers to δUi, from ti to ti + ϑΔt) become:

K ∗
i = K i + 3

ϑΔt

(
C + 2

M
ϑΔt

)
,

δF∗
i = 3

(
C + 2

M
ϑΔt

)
U̇ i +

(
3M + ϑΔt

2
C
)

Ü i − ϑM
∑

j

Δüg jα j

(4.23b)

After solving Ki
∗δUi = δFi

∗ for δUi, the expression for δUi in terms of δÜi is
solved for δÜ i = 6(δU i/ϑΔt − U̇)/ϑΔt − 3Ü i , giving ΔÜi=δÜi/ϑ , and then
ΔU̇ i = (Ü i + 0.5ΔÜ i )Δt , ΔU i = (U̇ i + 0.5(Ü i + ΔÜ i/3)Δt)Δt , to be used to
compute Ui+1, U̇ i+1, Üi+1.

Wilson’s method introduces numerical damping which eliminates spurious high
frequency response. For ϑ ≥ 1.37 it is unconditionally stable for linear systems and
for ϑ = 1.42 it gives optimal accuracy for them.
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4.6.3 Concluding Remarks on the Nonlinear Analysis Methods

Thanks to its simplicity and intuitiveness and the wide availability of reliable and
user-friendly analysis software, the standard form of pushover analysis, as described
in Sections 4.6.1.2, 4.6.1.3 and 4.6.1.4 and in Fajfar (2000) (i.e., without the “adap-
tive” options for the lateral load pattern or higher mode and torsional effects, not
even as highlighted in Sections 4.6.1.5 and 4.6.1.6), has become the workhorse of
practical nonlinear seismic response analysis. It should be kept in mind, though, that
it has been developed for 2D analysis under a single horizontal component of the
seismic action and applies under such conditions alone, and even then only when
the effects of higher modes are unimportant. This restricts its application to height-
wise regular low-rise buildings, almost fully symmetric about an axis parallel to the
seismic action component considered. The ways proposed to take into account 3D
and torsional effects or higher modes, e.g., according to Sections 4.6.1.5 and 4.6.1.6,
respectively, have not been sufficiently validated so far and are not widely accepted
yet. The same applies for the concurrent application of both horizontal components
of the seismic action (see last paragraph of Section 4.7.1). Last, but not least, there
is certain ambiguity in the determination of the seismic demand. The approach in
Section 4.6.1.3, Eqs. (4.18), is just one way to determine the “target displacement”
for given elastic spectrum. There other approaches that may yield very different
answers.

Unlike the static method of nonlinear analysis, the dynamic one does not require
approximate a-priori determination of the global nonlinear seismic demand (like
the “target displacement” of pushover analysis). Global displacement demands are
determined in the course of the analysis of the response and are free of ambiguities,
such as that about the “target displacement” in pushover analysis. Torsional, 3D and
higher mode effects are fully accounted for, as well as concurrent application of
two or three seismic action components. Note, also, that, unlike the modal response
spectrum analysis, which provides only (statistically) best estimates of the peak
response (via the SRSS or CQC rules), peak response quantities determined via non-
linear dynamic analysis are exact, even under concurrent seismic action components
(within, of course, the limits of nonlinear modelling and of its capability to repre-
sent well the structure). Last, but not least, nonlinear dynamic analysis provides esti-
mates not only of peak deformations, which are important for the overall safety and
integrity of the structure, but of residual ones as well, which are the most meaning-
ful measure of damage and, hence, very important for performance-based design or
assessment.

Limitations of nonlinear dynamic analysis are:

– its sophistication and lack of familiarity among practitioners;
– the lack of simple and numerically stable, yet fairly accurate, models for vertical

members in 3D analysis (see Section 4.10.1.8); and,
– certain sensitivity of the outcome to the choice of input ground motions, which

is at the absolute discretion of the engineer.
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The second drawback plagues static and dynamic nonlinear analysis alike (only
that static nonlinear analysis does not apply well under 3D conditions, anyway).
However, continuous progress in the state of the art and practice will reduce with
time the importance of this and of the first drawback. The third limitation often raises
doubts about the outcome of nonlinear dynamic analysis. It is possible (although not
very likely, unless there is intention) to arrive at one conclusion using one ensem-
ble of input motions meeting the requirements set out by codes and standards (see
Section 4.6.2.2) and to another with a different set of equally legitimate motions.
Standardisation of motions to resolve this question is too rigid a straitjacket, run-
ning, among others, against the continuous evolution of scientific knowledge and
information on ground motion.

Despite its current limitations, nonlinear dynamic analysis is bound to become in
the long run the technique of choice for practical nonlinear analysis, eclipsing the
static version, which may end up being remembered as just an interlude that paved
the way of nonlinear dynamic analysis into everyday practice.

4.7 Combination of the Maximum Effects of the Individual
Seismic Action Components

4.7.1 The Two Options: The SRSS and the Linear Approximation

The two horizontal components of the seismic action, as well as the vertical compo-
nent (when taken into account), are considered to act concurrently on the structure.

In planwise regular buildings with completely independent lateral-force-resisting
systems along two orthogonal horizontal directions, the seismic action compo-
nent in each one of these directions does not produce (significant) seismic action
effects in the lateral-force-resisting systems of the orthogonal direction. For this
reason, if in such buildings the independent lateral-force-resisting systems in the
two horizontal directions consist solely of walls, Eurocode 8 (CEN 2004a) does
not require combining the effects of the two horizontal components of the seismic
action.

Simultaneous occurrence of more than one component can be handled
rigourously only in time-history analysis (which is normally nonlinear). Such an
analysis is carried out with the two horizontal components (and the vertical one, if
taken into account) acting simultaneously. All other methods of analysis (i.e., the
two linear approaches and nonlinear static analysis) give only estimates of the peak
value of seismic action effects during the response to a single component. These esti-
mates are denoted here as EX and EY for the two horizontal components (considered
to include also the effect of the associated accidental eccentricities, see Section 4.8)
and EZ for the vertical component. The peak values of the seismic action effects do
not take place simultaneously. So, a combination of the type: E = EX + EY + EZ is
overly conservative for the expected value of the peak seismic action effect, E, under
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three concurrent components. Design codes adopt more representative, probability-
based combination rules for the estimation of E.

The reference rule for the combination of the peak values of seismic action
effects, EX, EY, EZ, computed for separate action of the individual components is
the SRSS rule in (Smebby and Der Kiureghian 1985):

E = ±
√

E2
X + E2

Y + E2
Z (4.24)

If EX, EY, EZ are computed via the modal response spectrum method by com-
bining modal contributions to each one of them via the CQC rule, Eq. (4.11), and,
besides, the seismic action components in directions X, Y, Z are statistically inde-
pendent, the outcome of Eq. (4.24) in an elastic structure is indeed the expected
value of the peak seismic action effect, E, under concurrent seismic action compo-
nents. Under these conditions, the result from Eq. (4.24) is also independent of the
choice of horizontal directions X and Y. In other words, if a single modal response
spectrum analysis is carried out covering all three components, X, Y, Z, at the same
time and modal contributions for each component are combined via the CQC rule,
Eq. (4.24) gives the expected value of the peak elastic seismic action effect, E, for
all members of the structure, no matter the choice of directions X and Y. In this sim-
ple way Eq. (4.24) automatically fulfils an – at first sight – onerous requirement of
Eurocode 8 for buildings with resisting elements not in two perpendicular directions
(hence with no obvious choice for the two directions X and Y as main or principal
ones): to apply the two horizontal components along all relevant horizontal direc-
tions, X, and the orthogonal direction, Y.

Eurocode 8 (CEN 2004a) adopts the combination rule of Eq. (4.24) as the
reference, not only under the conditions for which it has been developed as an
exact rule (namely for modal response spectrum analysis with modal contribu-
tions combined via the CQC rule), but also for linear static analysis (the lateral
force method of Section 4.3 for the horizontal components and the method in
Section 4.5.2 for the vertical component, if considered), modal response spectrum
analysis with modal contributions combined via the SRSS rule, or even pushover
analysis.

US codes (BSSC 2003, SEAOC 1999) have opted for the linear superposition
rule:

E = ±{EX + λEY + λEZ} (4.25a)

E = ±{λEX + EY + λEZ} (4.25b)

E = ±{λEX + λEY + EZ} (4.25c)

A value λ ≈ 0.275 provides the best average agreement with the result of
Eq. (4.24) in the range of possible positive values of EX, EY, EZ. This optimal value
has been rounded to λ = 0.3 in BSSC (2003) and SEAOC (1999). Equations (4.25)
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may underestimate the result of Eq. (4.24) by less than 9% (when EX, EY, EZ are
about equal) and may overestimate it by not more than 8% (when two of the three
seismic action effects are an order of magnitude less than the third).

Eurocode 8 (CEN 2004a) accepts Eq. (4.25) with λ = 0.3 as alternative to the
reference rule of Eq. (4.24).

If dimensioning is based on a single, one-component stress resultant, as, e.g., for
beams in bending or shear, the outcome of Eq. (4.24), or the maximum value among
the three alternatives in Eq. (4.25) should be added to, or subtracted from, the action
effect of the gravity loads which are concurrent with the design seismic action. Then
Eqs. (4.24) and (4.25) give approximately the same design.

Equations (4.24) and (4.25) can be applied also in nonlinear static (pushover)
analysis, but only to combine peak displacement and deformation results due to the
two horizontal components (the vertical component is irrelevant in that case). Peak
internal forces may be combined in the same way only if they are still in the elas-
tic range of the corresponding force-deformation relation. Otherwise, this relation
should be used to determine the peak internal forces due to the two horizontal com-
ponents from the corresponding peak deformation estimated through Eq. (4.24) or
(4.25).

4.7.2 Combination of the Effects of the Seismic Action
Components in Dimensioning for Vectorial Action Effects

Often dimensioning of a member section or region is carried out for two or three
concurrent stress-resultants. Vertical members, for instance, are dimensioned for
uniaxial or biaxial bending with axial force and for uniaxial shear with axial force
(possibly depending also on the bending moment through the moment-to-shear
ratio). It is convenient to consider the seismic action effects that enter such dimen-
sioning as arranged in a vector (array) of dimension 3 for biaxial bending with axial
force, 2 for shear with axial force or uniaxial bending with axial force, etc. One
of the stress-resultants in that vector should be chosen as the main one, with the
others considered as accompanying. For instance, when dimensioning in shear, the
shear force may be the main stress-resultant and the axial force and the bending
moment the accompanying ones. For uniaxial bending with axial force, the main
component is always the moment. In columns under biaxial bending with axial
force, the main component is one of the two components of bending moment, cho-
sen as follows: the bending moments are normalised to a measure of the section’s
moment resistance so that they become independent of it size (e.g., to Ach with
Ac being the cross-sectional area and h its depth for the bending moment con-
sidered); then the bending moment with the largest normalised value is the main
component.

In dimensioning for multi-component action effects the application of Eqs. (4.24)
and Eq. (4.25) may not be so straightforward and may lead to markedly different
designs, depending on how the issues of signs and of simultaneity of peak values of
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different stress-resultants are addressed. The following sections elaborate different
cases and options for the application of Eqs. (4.24) or (4.25) in that case. The impli-
cations of the different options are exemplified at the end of each section for a
column with centroidal axes y and z parallel to the horizontal components of the
seismic action, X and Y, assuming that these components excite exclusively the 1st
translational mode in each direction. To eliminate the effect of differences due to
the analysis method and focus on the combination rule, it is also assumed that any
analysis method produces the same values for the action effects and that we have
nearly uniaxial bending, i.e.: EX = [My,X, Mz,X, NX]T with My,X >> Mz,X, EY =
[My,Y, Mz,Y, NY]T with My,Y << Mz,Y. The vertical effect of the component of the
seismic action is neglected in this illustration: EZ ≈ [0, 0, 0]T.

4.7.2.1 The Linear Approximation with Linear Static Analysis

In each one of the three alternatives of Eq. (4.25), e.g. in EX + λEY + λEZ for
Eq. (4.25a), the seismic action components Y and Z are taken with a sense of action
(positive or negative) such that, when component X acts in the positive sense, the
contributions of λEY and λEZ to the main component in the vector have the same
sign as that of EX. The signs of the three terms EX, λEY, λEZ in the sum EX +
λEY + λEZ for the accompanying components (elements of the vector) are controlled
by the sense (positive or negative) of the corresponding component, X, Y, or Z,
of the seismic action, as this sense is determined from the sign of EX in the main
component of the vector of seismic action effects. As a result, the vector of seismic
action effects for EX + λEY + λEZ assumes only two equal and opposite values. The
same applies for Eqs. (4.25b) and (4.25c).

If the main component is the same in all three multi-component action effect
vectors of the three versions of Eq. (4.25) (e.g., in dimensioning for shear with
axial force and bending moment, or for uniaxial bending with axial force), then
the vector to be used as E is normally the one of the three with the largest (abso-
lute) value of the main component. So, there are just two cases for E. If the main
component has about equally large values in two of the vectors, both of them
are considered as potentially critical and we should consider 2 × 2 = 4 cases for
E. If it has about equally large values in all three vectors, there are 2 × 3 = 6
cases for E.

If the main component is not the same in all three vectors of the three alternatives
in Eq. (4.25) (e.g. in biaxial bending with axial force), then the two vectors where
each of these two different main components clearly assumes its largest (absolute)
value should be considered as potentially critical. Then we have 2×2=4 cases for
E. If the choice is not clear, all three vectors of the three alternatives in Eq. (4.25)
are potentially critical and there are 2×3=6 cases for E. If in a single one of the
three vectors both of the two main components are clearly (absolutely) larger than
in the two other vectors, that vector is the single possible choice for E and just two
different cases are considered for E.

In the example case of the column, such an application of Eq. (4.25) gives the
following four vectors E:
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± [My,X + sign(My,X My,Y)λMy,Y, Mz,X + sign(My,X My,Y)λMz,Y,

NX + sign(My,X My,Y)λNY]T,

± [My,Y + sign(Mz,X Mz,Y)λMy,X, Mz,Y + sign(Mz,X Mz,Y)λMz,X,

NY + sign(Mz,X Mz,Y)λNX]T,

where “sign(My,XMy,Y)” is the sign of the product of My,X and My,Y (similarly for
“sign(Mz,XMz,Y)”).

4.7.2.2 The Linear Approximation with Modal Response Spectrum Analysis

Modal response spectrum analysis gives positive peak values for all seismic action
effects, without any correspondence between the peak value of a seismic action
stress resultant and the concurrent values of the other two. The only possible way
to combine these stress resultants is to consider their peak values as concurrent and
combine them with the same sign in each one of the three alternatives of Eq. (4.25) –
because that’s how Eq. (4.25) is an approximation to Eq. (4.24) for λ = 0.3. This
gives 3 × 23 = 24 combinations of signs for the three stress resultants in the vector
E, namely the following, for biaxial bending with normal force:

My = ± (|My,X | + λ|My,Y | + λ|My,Z |) , Mz = ± (|Mz,X | + λ|Mz,Y | + λ|Mz,Z |) ,
N = ± (|NX | + λ|NY | + λ|NZ |)

(4.26a)

My = ± (
λ|My,X | + |My,Y | + λ|My,Z |) , Mz = ± (

λ|Mz,X | + |Mz,Y | + λ|Mz,Z |) ,
N = ± (λ|NX | + |NY | + λ|NZ |)

(4.26b)

My = ± (
λ|My,X | + λ|My,Y | + |My,Z |) , Mz = ± (

λ|Mz,X | + λ|Mz,Y | + |Mz,Z |) ,
N = ± (λ|NX | + λ|NY | + |NZ |)

(4.26c)

For the example of the column this way of applying Eq. (4.25) gives the following
16 vectors E:

[±(|My,X| + λ|My,Y|), ±(|Mz,X| + λ|Mz,Y|), ±(|NX| + λ|NY|)]T,

[±(|My,Y| + λ|My,X|), ±(|Mz,Y| + λ|Mz,X|), ±(|NY| + λ|NX|)]T.

The main difference with the approach in Section 4.7.2.1 is that we lose the
correspondence between the signs of different stress resultants, notably of bending
moments and axial forces in the same element or of the axial forces in different
elements (see Sections 5.7.3.5 and 5.7.4.1 for the implications). This may be a more
serious handicap of Eq. (4.25) when used with modal response spectrum analysis,
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than the large number of different vectors taken in the dimensioning in order to
consider all possible combinations of signs.

4.7.2.3 SRSS Rule with Modal Response Spectrum Analysis

When applied for the calculation of each stress-resultant in the vector of seismic
action effects for the dimensioning of a member section or region, Eq. (4.24) gives
the expected value of the peak stress-resultant during the response to the (three)
simultaneous components of the seismic action. The peak values of the individual
stress resultants do not take place concurrently. If it is assumed they do, the design
is safe-sided but probably too conservative.

Eurocode 8 allows using more accurate rules for the estimation of the most
probable value of the seismic action effect that takes place concurrently with the
expected value of the maximum of each one of the two (or more) stress-resultants
that enter the dimensioning of a member section or region. A rule of this type
is described in this section, with reference to biaxial bending with moments My

and Mz (defined with respect to the local axes y and z of the cross-section) and
axial force N. This is a fairly general case, not only as far as the dimension of
the vector of stress-resultants is concerned, but also in that either My or Mz may
be the “main component” of this vector, depending on their (normalised) magni-
tude. Uniaxial bending with axial force, My-N, and uniaxial shear, Vy, with axial
force and bending moment, N and Mz, are special cases, with only one of the
stress-resultants (Vy and Mz, respectively) being the “main component” of the
vector.

Equation (4.24), should be applied at the lowest possible level at which the veri-
fication is carried out. For biaxial bending with axial force, this means to the strains
of the extreme concrete fibres in the section. This is not feasible, as seismic action
effects are calculated through modal response spectrum analysis separately from the
nonlinear plane-section analysis. So, extreme combinations of My, Mz and N should
be sought (rather than extreme but separate values of My, Mz, N) which lead, in
good approximation, to the SRSS result at the final, e.g., fibre strain, level. It has
been shown in Gupta and Singh (1977) that, if the seismic action effect of interest
is a scalar which is a linear function of My, Mz and N, then the My-Mz-N combina-
tions that lead to the expected peak value of this effect under the (three) concurrent
components of the seismic action satisfy the condition:

ETC−1 E = I (4.27)

In Eq. (4.27) I is the identity matrix, E is the vector [My Mz N ]T and C is its
covariance matrix:

C =
⎡
⎣ M2

y,max cov(My,Mz) cov(My, N )
M2

z,max cov(Mz, N )
symmetric N 2

max

⎤
⎦ (4.28)
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with:

M2
y,max =

∑
i

∑
j

ρi j (My,i X My, j X + My,iY My, jY + My,i Z My, j Z ) = M2
y,X + M2

y,Y + M2
y,Z

(4.29)

M2
z,max =

∑
i

∑
j

ρi j (Mz,i X Mz, j X + Mz,iY Mz, jY + Mz,i Z Mz, j Z ) = M2
z,X + M2

z,Y + M2
z,Z

(4.30)

N 2
max =

∑
i

∑
j

ρi j (Ni X N j X + NiY N jY + Ni Z N j Z ) = N 2
X + N 2

Y + N 2
Z (4.31)

cov(My,Mz) =
∑

i

∑
j

ρi j (My,i X Mz, j X + My,iY Mz, jY + My,i Z Mz, j Z ) (4.32)

cov(My, N ) =
∑

i

∑
j

ρi j (My,i X N j X + My,iY N jY + My,i Z N j Z ) (4.33)

cov(Mz, N ) =
∑

i

∑
j

ρi j (Ni X Mz, j X + NiY Mz, jY + Ni Z Mz, j Z ) (4.34)

In Eqs. (4.29), (4.30), (4.31), (4.32), (4.33) and (4.34) X, Y or Z index the effects
due to the seismic action component X, Y, or Z, respectively, i and j index normal
modes, while ρ ij is their correlation coefficient, as given, e.g. from Eqs. (4.9). Modal
seismic effects My,iX, etc., are computed as the product of the participation factor of
mode i for the seismic action component in direction X, times the stress resultant
My in mode i from the eigenvector of the mode scaled to the corresponding spectral
displacement. My,max, Mz,max and Nmax from Eqs. (4.29), (4.30) and (4.31) are the
expected values of the peak stress resultants under the three-component seismic
action according to Eq. (4.24).

Values of the vector [My Mz N]T satisfying Eq. (4.27) lie on an ellipsoidal surface
in the space My-Mz-N. It is usually sufficient to consider only the six points on this
surface corresponding to algebraically maximum and minimum values of one of the
stress resultants, My, Mz, N, and to the corresponding concurrent values of the two
others. With My,max, Mz,max and Nmax taken positive, these six triplets are:

±
(

My,max =
√

M2
y,X + M2

y,Y + M2
y,Z ,

cov(My,Mz)

My,max
,

cov(My, N )

My,max

)
(4.35)

±
(

cov(My,Mz)

Mz,max
,Mz,max =

√
M2

z,X + M2
z,Y + M2

z,Y ,
cov(Mz, N )

Mz,max

)
(4.36)

±
(

cov(My, N )

Nmax
,

cov(Mz, N )

Nmax
, Nmax =

√
N 2

X + N 2
Y + N 2

Z

)
(4.37)

As cov(My, Mz), cov(My, N), and cov(Mz, N) have signs, the two stress resultants
which take place concurrently with the maximum of the third one also have signs.
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If:

– only the two bending moments, My and Mz, are taken as main components of
[My Mz N]T, and

– only the cases when the absolute value of a main component is maximum are of
interest,

then only the four different values from Eqs. (4.35) and (4.36) need to be considered
as the values of E from Eq. (4.24). This is the case in the column example, where
this way of applying Eq. (4.24) gives the following four vectors E:

± [
√

(M2
y,X + M2

y,Y ), (My,X Mz,X + My,Y Mz,Y)/
√

(M2
y,X + M2

y,Y ),

(My,X NX + My,Y NY)/
√

(M2
y,X + M2

y,Y )]T

± [(My,X Mz,X + My,Y Mz,Y)/
√

(M2
z,X + M2

z,Y ),
√

(M2
z,X + M2

z,Y ),

(Mz,X NX + Mz,Y NY)/
√

(M2
z,X + M2

z,Y )]T

4.7.2.4 SRSS Rule with Linear Static Analysis

Calculation of EX, EY, EZ by linear static analysis corresponds to taking a single
normal mode for each component of the seismic action, i.e. to using in Eqs. (4.29),
(4.30), (4.31), (4.32), (4.33) and (4.34) i=1, j=2, ρ11=1, ρ22=1, ρ12=0. Then
Eqs. (4.35), (4.36) and (4.37) give the following six triplets (My, Mz, N):

±
(

My,max =
√

M2
y,X + M2

y,Z + M2
y,Z , Mz = My,X Mz,X + My,Y Mz,Y + My,Z Mz,Z

My,max
,

N = My,X NX + My,Y NY + My,Z NZ

My,max

)
(4.38)

±
(

My = My,X Mz,X + My,Y Mz,Y + My,Z Mz,Z

Mz,max
, Mz,max =

√
M2

z,X + M2
z,,Y + M2

z,Y ,

N = Mz,X NX + Mz,Y NY + Mz,Z NZ

Mz,max

)
(4.39)

±
(

My = My,X NX + My,Y NY + My,Z NZ

Nmax
, Mz = Mz,X NX + Mz,Y NY + Mz,Z NZ

Nmax
,

Nmax =
√

N 2
X + N 2

Y + N 2
Z

)
(4.40)

If only My and Mz are taken as main components and just the cases where the
absolute value of a main component is maximum are of interest, only the four triplets
from Eqs. (4.38), (4.39) will be considered as values of E from Eq. (4.24).
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In the column example Section 4.7.2.4 gives the same result as 4.7.2.3, if there
are no differences due to the analysis method.

4.7.2.5 Concluding Remarks

The different values of E from any one of the four approaches above should be
superimposed to the vector of stress-resultants due to gravity loads considered con-
current with the design seismic action. This gives the vector of stress-resultants
for dimensioning. Apart from any difference between the seismic effects from a
modal response spectrum analysis or a linear static one, the four approaches in
Sections 4.7.2.1, 4.7.2.2, 4.7.2.3 and 4.7.2.4 do not lead normally to very different
designs. So, the criteria for selecting which one to apply should be their computa-
tional convenience and soundness from the theoretical point of view.

If a modal response spectrum analysis is used, application of Eq. (4.24) the way
proposed in Section 4.7.2.3 (which also entails combining modal responses through
the CQC rule) is the most sound and computationally convenient approach and leads
to economic designs. For this method of analysis, the straightforward application of
Eq. (4.25) according to Section 4.7.2.2 is less sound. Besides, it gives many more
combinations of stress resultants for dimensioning, some of which are physically
meaningless. So, it is computationally inconvenient and may lead to less economic
designs.

If linear static analysis is used, application of Eq. (4.24) according to
Section 4.7.2.4 is sound and computationally convenient and leads to economic
designs. Application of Eq. (4.25) as proposed in Section 4.7.2.1 is a plausible,
computationally convenient and economic alternative. It is also physically appeal-
ing, as it preserves the correspondence of signs of stress resultants and retains the
notion of separate seismic action components, with EX + λEY + λEZ considered as
governed by the horizontal component in direction X, λEX + EY + λEZ by that in Y
and λEX + λEY + EZ by the vertical component.

The combination of the seismic action effects of the different components accord-
ing to Section 4.7.2.3 should be integrated in the modal response spectrum analysis.
In all other cases these seismic action effects may also be combined after the anal-
ysis, just before their use for member dimensioning or verification. This is very
convenient, as it can be done with a post-processing module, independently of the
analysis software.

The – unfortunately not uncommon in practice – application of Eq. (4.24) to
all stress resultants, taking the computed peak response estimates as simultaneous,
is overly conservative. For the case of column biaxial bending with normal force
addressed in Sections 4.7.2.1, 4.7.2.2, 4.7.2.3 and 4.7.2.4, this would give the fol-
lowing eight values of E:

(
±My,max = ±

√
M2

y,X + M2
y,Z + M2

y,Z ,±Mz,max = ±
√

M2
z,X + M2

z,Y + M2
z,Y ,

± Nmax = ±
√

N 2
X + N 2

Y + N 2
Z

)
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with the individual seismic action effects computed by either a linear static or a
modal response spectrum analysis. Such an approach is irrational – despite its pre-
sumption of soundness – and leads to very uneconomic designs.

4.8 Analysis for Accidental Torsional Effects

4.8.1 Accidental Eccentricity

When the planwise distribution of stiffness or mass is asymmetric, the response
to the horizontal components of the seismic action includes torsional-translational
coupling. Analysis in 3D for the horizontal components takes this coupling into
account in a satisfactory way, especially in modal response spectrum or nonlinear
dynamic analysis.

Some seismic design codes attempt to take into account amplification or de-
amplification of the static or “natural” eccentricity between the centres of mass and
stiffness during the dynamic response (see Figs. 2.22, 4.14 and 4.19 for examples of
this eccentricity). This is very inconvenient for the analysis, as normally the storey
stiffness centre cannot be uniquely defined (see Section 2.1.5). Locating a conven-
tionally defined storey stiffness centre is not worth the effort of the tedious addi-
tional analyses required to achieve the accuracy and sophistication consistent with
a dynamic amplification of static eccentricities.

In a building with full planwise symmetry of stiffness and nominal masses the
analysis for the horizontal components of the seismic action produces no torsional
response at all. However, a conventional seismic response analysis cannot capture
possible variations in the stiffness or mass distribution from the nominal one, or a
possible torsional component of the ground motion about the vertical. Such effects
may produce torsional response even for a nominally fully symmetric building. To
ensure a minimum of torsional resistance and stiffness and limit the consequences
of unforeseen torsional response, most seismic design codes introduce accidental
torsional effects by shifting the masses with respect to their nominal positions by an
“accidental eccentricity”. Examples of factors for which the “accidental eccentric-
ity” attempts to account are:

– A planwise distribution of any “imposed” (“live” loads) present at the instant the
earthquake occurs that differs from the uniform one assumed in design.

– Infill walls – considered as nonstructural elements and neglected in design cal-
culations – with a distribution in plan that does not follow that of the elements of
the lateral-load-resisting system.

– A planwise distribution of the effective stiffness of structural members different
from that of the nominal ones used in design (based on the geometry of the cross-
section alone, no matter the reinforcement). Recall that in design of new buildings
the analysis is based on nominal member rigidities, (EI)n, taken for convenience
as a fixed fraction of the rigidity of the gross uncracked section, (EI)c, e.g. (EI)n =
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0.5(EI)c (see Section 4.9.2). As pointed out in Section 3.2.3.3, for given cross-
sectional dimensions the effective member rigidity after cracking, e.g. the secant
rigidity to yield-point, (EI)eff, depends on the shear span ratio and axial stress
of the member, as well as on the amount and layout of reinforcement. So, the
actual distribution in plan of structural stiffness may significantly differ from the
nominal one considered in design.

The “accidental eccentricity” of each horizontal seismic action component is
specified in codes as a fraction of the dimension of the storey at right angles to that
of the seismic action component. In most codes (CEN 2004a, BSSC 2003, SEAOC
1999) this fraction is one-twentieth (5%). Eurocode 8 doubles that fraction to one-
tenth (10%), if the effects of the “accidental eccentricity” are taken into account
in the simplified way of Section 4.8.4 on a separate 2D model for each horizontal
component of the seismic action,7 instead of a full 3D model. Moreover, if there are
masonry infills with a moderately irregular and asymmetric distribution in plan,8 the
“accidental eccentricity” is doubled further in Eurocode 8 (i.e., to 10% of the storey
orthogonal dimension in the baseline case, or 20% if accidental torsional effects are
evaluated in a simplified way when using two separate 2D models).

The “accidental eccentricity” is taken in both the positive and the negative sense
along any horizontal direction, but practically along the two orthogonal directions
of the horizontal seismic action components. It is taken also in the same horizontal
direction and in the same sense (positive or negative) for the whole building at a
time, which is simple and safe-sided for the global seismic action effects (but not
always for local ones).

In a dynamic analysis (modal response spectrum analysis or nonlinear dynamic),
the masses may be shifted from their nominal location by the “accidental eccen-
tricity”. This produces four dynamic models in total, with different dynamic char-
acteristics (natural periods and mode shapes) and entails using the envelope of the
seismic action effects from the four analyses. This is at the expense not only of
convenience and computational effort, but also of our understanding of the dynamic
response. So, it is done only in the framework of nonlinear analysis (dynamic and
often for static, as well) for the assessment of existing buildings, but very rarely in
modal response spectrum analysis for design. Seismic design codes normally allow
replacing the “accidental eccentricity” of the masses from their nominal positions,
by an “accidental eccentricity” of the horizontal seismic components with respect to
the nominal position of the masses. The effects of the “accidental eccentricity” are
determined then through static approaches (see Section 4.8.2).

In SEAOC (1999) and BSSC (2003) as well – but only for “Seismic Design
Category” C and above, as defined in Section 1.4.2.2 – the “accidental eccentricity”

7This is allowed in Eurocode 8 for structures regular in plan. Note than in a 2D model all nodes of
a floor that may belong to different 2D frames have the same horizontal displacement, regardless
of any static eccentricity between the floor centres of stiffness and mass.
8Strongly irregular arrangements, such as infills mainly along two adjacent faces of the building,
cannot be taken into account in this simplified way, see Section 2.1.13.2.
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of 5% of the perpendicular floor plan dimension is multiplied by the following factor
at each floor level i, to take into account dynamic amplification:

Axi =
(

δmax,i

0.6(δmax,i + δmin,i )

)2

(4.41)

In Eq. (4.41) δmax,i and δmin,i are the maximum and minimum, over the plan, lat-
eral displacements in the direction of the horizontal seismic action component in
question, under the combination of this component and its accidental eccentricity,
which is taken initially as 5% of the perpendicular floor plan dimension, but then
multiplied by Axi. The accidental eccentricity of each horizontal component should
be taken both in the positive and in the negative sense, giving two values of Axi. If
the maximum of these two values is greater than 1.0 in at least one floor level i,
the analysis should be repeated, using the corresponding value of Ai (but not greater
than 3.0) as amplification factor of the accidental eccentricity at the correspond-
ing level(s). Values of Axi for this horizontal seismic direction and sense (sign) of
the corresponding eccentricities are recomputed, the analyses repeated, etc., until
convergence of all values of Axi which are greater than 1.0. However, considering
the semi-empirical nature of the amplification factor Axi and the arbitrary choice of
the initial accidental eccentricity value as 5% of the structure’s plan dimension, the
iterative calculation may not be worthy. A single cycle of analysis under the com-
bination of this horizontal component and its accidental eccentricity at 5% of the
perpendicular floor plan dimension would seem sufficient for the calculation of Axi.
Note that each sense of action of the accidental eccentricity, positive or negative, is
in principle associated with different values of Axi, and should normally be consid-
ered as a different load case, uniquely associated to the corresponding direction and
sense of action of the horizontal seismic action component.

4.8.2 Estimation of the Effects of Accidental Eccentricity Through
Linear Static Analysis

In linear static analysis the action effects of the “accidental eccentricity” alone of
a horizontal seismic action component are computed through a linear static anal-
ysis of a 3D structural model under storey torques about the vertical axis, taken
all with the same sign and equal to the storey lateral loads due to the horizontal
component in question times its “accidental eccentricity” at the storey. The lateral
loads are those of Eq. (4.8) in Section 4.3.3. In the context of linear static analysis
this is equivalent to shifting the masses, and hence exact. By analogy, if the modal
response spectrum method is used in the analysis for the horizontal seismic action
components, the static storey torques may be computed as: (a) the storey “acciden-
tal eccentricity” times (b) the floor mass times (c) the floor response acceleration in
the direction of the considered horizontal component of the seismic action, from the
CQC combination of modal contributions to floor response accelerations. Eurocode
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8 allows taking, instead, the storey torques as the storey lateral loads of the linear
static analysis from Eq. (4.8) times the “accidental eccentricity” at the storey. This is
computationally simpler, especially if in both horizontal directions the storey “acci-
dental eccentricity” is constant at all levels (i.e., if all floors have the same plan
dimensions). Then it suffices to carry out a single static analysis for storey torques
proportional to the storey lateral loads from Eq. (4.8) for Vb = 1.0. The effects of
the “accidental eccentricity” of each horizontal seismic action component can be
obtained then by multiplying the results of this single analysis by the base shear
Vb from Eq. (4.6) corresponding to the 1st mode period in the horizontal direction
of interest and by the (constant at all floors) eccentricity of this component of the
seismic action.

If the floors are taken as rigid diaphragms, the total storey torque may be applied
to a single floor node of the storey (the “master node”). If a diaphragm may not be
considered as rigid and its in-plane flexibility is taken into account in the 3D struc-
tural model, it is more meaningful to replace the storey torque with nodal torques
at each nodal mass mi, equal to the product of the “accidental eccentricity” and that
mass’s lateral force from Eq. (4.8).

Action effects of “accidental eccentricities” produced from static analysis have
signs. As the “accidental eccentricity” is meant to be taken in both the positive and
the negative sense along the two directions of the horizontal seismic action compo-
nents in order to produce the most unfavourable value for the seismic action effect
of interest, the action effect of the accidental eccentricity of horizontal component
X, symbolised here as eX, is taken to have the same sign as that due to the hori-
zontal component X itself and superimposed to it. The outcome is the total seismic
action effect of horizontal component X, symbolised here as EX. Note that it is these
latter total 1st-order action effects that should be multiplied by 1/(1–θ i) to include a-
posteriori P-Δ effects according to the approximate procedure of Section 4.9.7. The
exact approaches of the three last paragraphs of Section 4.9.7 for 2nd-order effects
apply to both analyses: for the horizontal component X itself and for its accidental
eccentricity, if carried out separately. When the “accidental eccentricities” are mod-
elled by shifting the masses from their nominal location, as often done in nonlinear
dynamic analysis, 2nd-order effects are taken into account once and for all.

4.8.3 Combination of Accidental Eccentricity Effects Due
to the Two Horizontal Components of the Seismic Action
for Linear Analysis

An accidental eccentricity is associated to each direction of application of the trans-
lational component, X or Y, of the seismic action. The total action effect of horizon-
tal component X, including the effect of accidental eccentricity eX, is considered
as EX. It is this total effect that is combined according to Section 4.7 with the total
action effect of horizontal component Y, EY, (that includes the effect of accidental
eccentricity eY) and sometimes with the action effect of the vertical component Z.
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If the action effects of the components X, Y, Z are combined linearly through
Eq. (4.25) (cf. Sections 4.7.2.1 and 4.7.2.2), the action effects of the accidental
eccentricity eX of component X and those of the translational component X itself
are added with the same sign. Similarly for horizontal component Y and eY. It is
computationally straightforward to incorporate the effect of eX or eY, into the total
effect of horizontal component X or Y, respectively, as the combination of seismic
action effects anyway takes place after the analysis for the individual seismic action
components.

When action effects are computed through separate analyses for each compo-
nents X, Y or Z and combined via the rigorous approach of Eq. (4.24) as in
Sections 4.7.2.3 and 4.7.2.4, those due to the accidental eccentricity eX from lin-
ear static analysis may be added (with the same sign) to the action effects of the
horizontal component X, no matter whether the latter is computed by linear static
or modal response spectrum analysis. Similarly for component Y and eY. These
individual “sums” are considered as EX and EY, respectively, and enter as such in
Eq. (4.24). When, by contrast, the action effects due to the translational components
X and Y are computed via a single modal response spectrum analysis for all three
components, with an extension of the CQC combination module to include expres-
sions like Eqs. (4.29)–(4.37) in Section 4.7.2.3, it is computationally inconvenient
to include the effects of eX or eY in the total effect of horizontal components X or Y
through such an “addition”. Moreover, such an “addition” destroys the beauty and
rigour of the approach of Section 4.7.2.3 for the combination of the three seismic
action components in a single step. A procedure like the following would be more
consistent with the rigorous approach of Eq. (4.24):

1. Combine separately, via Eq. (4.24), and in a single-step the action effects of the
translational components X, Y, (Z) from modal response spectrum analysis.

2. Carry out one static analysis to determine the effect of accidental eccentricity
eX, and another one to determine that of eY and combine their results using
Eq. (4.24). It is convenient to substitute for these analyses a single one, with
storey torques equal to the SRSS of those representing eX and eY at that storey.

3. Add together the (positive) outcomes of the two calculations 1 and 2.

As a matter of fact, the outcome of this procedure is generally more safe-sided
than the option given at the beginning of the previous paragraph, where the action
effects of the accidental eccentricity of each component are “added” to those due
to the horizontal component itself, and the two sums (for X and Y) combined via
Eq. (4.24) in the end.

4.8.4 Simplified Estimation of Accidental Eccentricity Effects
in Eurocode 8 for Planwise Symmetric Lateral Stiffness
and Mass

In the spirit of simplification associated with linear static analysis, Eurocode 8
allows it to account for the effects of “accidental eccentricities” in buildings with
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planwise symmetric distribution of lateral stiffness and mass in a way simpler than
that in Sections 4.8.2 and 4.8.3. This may be done by amplifying the results of linear
static analysis for each translational component of the seismic action by (1 + 0.6x/L),
where x is the distance of the member in question to the mass centre in plan and L is
the plan dimension, both at right angles to the horizontal component of the seismic
action. This factor is derived assuming that:

– torsional effects are fully resisted by the stiffness of the structural elements in the
direction of the horizontal component in question, without any contribution from
any element stiffness in the orthogonal horizontal direction; and

– the stiffness of the members resisting the torsional effects is uniformly distributed
in plan.

As a matter of fact, the term 0.6/L is equal to the storey torque due to the “acci-
dental eccentricity” of 0.05L acting on the storey seismic shear, V, divided by the
moment of inertia of a uniform lateral stiffness, kB, per unit floor area parallel to side
B in plan, kBBL3/12, and further divided by the normalised storey shear, V/(kBBL).
Normally there is also lateral stiffness, kL ≈ kB, per unit floor area parallel to side
L in plan and kLLB3/12 should be added to kBBL3/12 before it divides the storey
torque 0.05LV. The contribution of kL is neglected and therefore the term 0.6x/L
is safe-sided by an average factor of 2. If this additional conservatism is too high a
price for the simplicity, the general approach of Sections 4.8.2 and 4.8.3 may always
be used.

The general approach of Sections 4.8.2 and 4.8.3 can only be applied with a
full 3D structural model. It does not apply if a separate 2D analysis is carried
out for each horizontal component, as allowed by Eurocode 8 for buildings meet-
ing the criteria in Sections 2.1.5 and 2.1.6 for regularity in plan. If such sep-
arate 2D analyses are made, the effects of the accidental eccentricity can only
be estimated through the simplified approach of this section. As these analyses
neglect any static eccentricity between the storey centres of mass and stiffness, the
amplification factor of the simplified approach becomes in that case (1+1.2x/L),
to cover the effect of the neglected static eccentricity, no matter whether there is
actually one.

4.8.5 Accidental Eccentricity in Nonlinear Analysis

In nonlinear dynamic analysis masses are shifted from their nominal location by
the “accidental eccentricity”. The shifting is in the same direction at all storeys. For
analysis in 3D this gives four dynamic models to be subjected to each (in general
bi-directional) input motion. If the analysis is carried out for unidirectional ground
motions, masses are shifted only at right angles to the excitation and there are two
models to be analysed for each ground motion. Although this sounds inconvenient
and computationally demanding, it is consistent with the sophistication and com-
plexity of nonlinear dynamic analysis.
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The same approach should be followed for nonlinear static analysis, which is
normally carried out separately for each horizontal component of the seismic action,
giving two models to be analysed with the seismic action component applied in the
positive and negative sense. The torsional effects due to each eccentrically acting
horizontal component should then be calculated according to Section 4.6.1.5.

The envelope of seismic action effects from the two or four sets of analyses for
unidirectional or bidirectional seismic action, respectively, is used in the design or
assessment.

This approach cannot be followed unless a full 3D structural model is analysed.
If a separate 2D model is used for each horizontal component of the seismic action,
as allowed by Eurocode 8 for buildings meeting the criteria for regularity in plan
(see Sections 2.1.5 and 2.1.6), the effects of the accidental eccentricity can only
be estimated through the simplified approach described in the last paragraph of
Section 4.8.4.

4.9 Modeling of Buildings for Linear Analysis

4.9.1 The Level of Discretisation

The selection of the appropriate mathematical model of the physical structure
depends not only on the action(s) and the method of analysis, but also on the
intended use of its results. The objective of a structural model for the purposes
of seismic design or assessment is not to serve the analysis per se but the ulti-
mate phase of member detailed design, assessment or retrofitting. The only purpose
of modelling and analysis is to provide the data for that phase. Rules for practi-
cal dimensioning and detailing or assessment of members against cyclic inelastic
deformations are sufficiently developed mainly – if not only – for prismatic mem-
bers. Corresponding rules for 2D members are available only for special elements
with a specific structural role, e.g. low-shear-ratio coupling beams in skew symmet-
ric bending, interior or exterior beam-column joints, etc. Dimensioning or assess-
ment of generic 2D concrete elements for strength can be done using Strut-and-Tie
models, which are still developing and have not penetrated yet everyday practice.
Moreover, rules for detailing for ductility elements dimensioned on the basis of the
Strut-and-Tie approach are not well-developed yet. So, the structural model should
employ mainly 3D beam elements.

According to codes the structural model for linear analysis should represent
well the distribution of stiffness and mass. This may not be sufficient in design
or assessment. The model and the discretisation of the structure should correspond
closely to its layout in 3D, to provide the seismic action effects for the dimension-
ing and detailing or assessing members and sections. For instance, a stick model,
with all members of a storey lumped into a single mathematical element connect-
ing adjacent floors with only 3 DoFs per storey (for analysis in 3D) is insufficient.
At the other extreme, a very detailed Finite Element (FE) discretisation, providing
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very “accurate” predictions of elastic displacements and stresses at a point-by-point
basis, may be practically useless. Reliable and almost equally accurate predictions
of the “average” seismic action effects needed for member dimensioning or assess-
ment, such as stress resultants or chord rotations at member ends, can be directly
obtained from an appropriate space frame model of the structure. Moreover, certain
fine effects captured by a detailed FE analysis, such as those of non-planar distribu-
tion of strains in the cross-section of deep members, or shear lag in members with
composite cross-section, etc., lose their relevance during inelastic seismic response
or are anyway neglected in ULS calculations and member verifications. Note also
that the connectivity of:

– a 2D element or region modelled via 2D FEs, with
– 3D beam elements in the plane of the 2D FEs,

requires special treatment, as even in shell FEs the rotation DoFs about the normal
to the shell surface do not possess stiffness and cannot be directly connected to
3D beam elements in the plane of the 2D FE.9 For all these reasons, the analysis
model appropriate for seismic design or assessment is a member-by-member type
of model, where every beam, column or part of a wall between floors is represented
as a 3D beam element, with the 3 translations and the 3 rotations at each node
between such elements considered as DoFs. Masses may also be lumped at these
nodes and associated in general with all six DoFs there. If the vertical component of
the seismic action is considered, lumped masses should be included at intermediate
points of long-span girders or at the ends of cantilevers. This requires nodes with 6
DoFs at these points, even when no other element frames into these nodes.

4.9.2 Effective Elastic Stiffness of Concrete Members

Section 3.2.3.3 has pointed out that the elastic stiffness in an analysis for seis-
mic design should correspond to the elastic branch of a bilinear force-deformation
behaviour. Accordingly, current seismic design codes, e.g. CEN (2004a), BSSC
(2003) and SEAOC (1999) require that design of concrete buildings be based on
an analysis in which member stiffness takes into account the effect of cracking.10

9One way to achieve a non-pinned connection of a region modelled with 2D FEs to a 3D beam
element in the same plane, is to provide the end of the 3D beam element with an almost rigid
extension into the region modelled with 2D FEs, connecting the node at the physical end of the
beam element with any FE node inside the 2D FE region.
10As a matter of fact, in the context of US codes (BSSC 2003, SEAOC 1999) a realistic stiffness for
concrete members has little practical implication for strength-based member design, as the design
base shear is not allowed to be less than 80% of the value computed from the design spectrum
on the basis of empirical period formulas (SEAOC 1999), or less than that given by the design
spectrum at a multiple between 1.4 and 1.7 of the empirical period (BSSC 2003). The reduction in
lateral force demands due to concrete cracking may account partly for the high values of the force
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Eurocode 8, in particular, specifies the stiffness at incipient yielding of the rein-
forcement. A default stiffness value equal to 50% of that of the uncracked member
neglecting the effect of the reinforcement is normally accepted by seismic design
codes – including Part 1 of Eurocode 8 (CEN 2004a) in case the cracked member
is not modelled more accurately. This default value is much higher than the exper-
imental secant stiffness at incipient yielding, including the effect of bar slippage
from the joints (see Section 3.2.3.3). So, it is considered as safe-sided for force- and
strength-based design of new buildings, because it underestimates the period and
increases the design spectral acceleration and the design forces. However, it leads
to underestimation of storey drifts and P-Δ effects, which is not safe-sided.

Although torsion does develop in beams and columns of concrete buildings
during the seismic response, it is almost immaterial for their earthquake resis-
tance. Cracking reduces the torsional rigidity much more than the shear- or
flexural-rigidity. So, considering that overestimation of member torsional moments
may be at the expense of their bending moments and shears, which are more
important for earthquake resistance, and that torsional moments due to deforma-
tion compatibility drop with the large reduction of torsional rigidity upon cracking,
the effective torsional rigidity, GcCef, of concrete members should be assigned a
very small value (close to zero). This should not be done by reducing the concrete
shear modulus, Gc, as this will also reduce the effective shear stiffness and unduly
increase member shear deformations. In the special case of using the torsional rigid-
ity of a supporting beam to model the restraining effect of the slab on the bending of
another element (e.g. of a staircase supported on that beam), the effective torsional
rigidity of at least part of the length of the beam should be assigned an artificially
high value. Torsional rigidity may also be important in U-shaped structural walls
subjected to large torques (see Section 4.9.4).

4.9.3 Modelling of Beams and Columns

Beams and columns are normally modelled as prismatic 3D beam elements. Their
parameters for linear analysis are the cross-sectional area, A, the moments of inertia,
Iy and Iz, with respect to the principal axes y and z of the section, the shear areas Ay

and Az along these local axes (for shear flexibility, which is important in members
with low shear span ratio) and the torsional moment of inertia, C or Ix for St. Venant
torsion about the centroidal axis x.

Members with cross-section comprising more than one rectangular parts (L-, T-,
C-sections, etc.) are normally dimensioned or assessed for action effects (moments,
shears, curvatures or chord rotations) defined with respect to axes parallel to the
section sides. So, the analysis should provide action effects referring to such axes.
In columns or walls without double symmetry of the section (L-, T-sections, etc.),

reduction factors R of US codes. The stiffness used for concrete members has implications mainly
for the calculated interstorey drifts.
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such axes normally are not principal ones. When the deviation is large and, in addi-
tion, the flexural rigidity differs significantly between the two actual principal direc-
tions (as, e.g., in an L-shaped section), it may be desirable to have this difference
reflected in the action effects from the analysis (e.g. for consistency of the relative
magnitude of the bending moment demands with that of flexural capacities in these
two directions). Then, the product of inertia Iyz with respect to centroidal axes y
and z parallel to the sides of the section, should also be specified together with the
moments of inertia about these axes (alternatively, the principal moments of inertia
and the orientation of the principal axes with respect to the global coordinate sys-
tem should be given). Shear areas of such sections along their sides may be taken
equal to the full area of the rectangle(s) having the long side parallel to the direction
in question. These shear areas may then be projected onto the principal centroidal
axes, to compute the shear areas in the principal directions, Ay and Az.

Concrete beams integral with a floor slab are considered to have T- or L-, etc.,
section, with a constant effective flange width throughout their span. The effective
width of the slab on each side of the web, taken in design for convenience the same
as for gravity loads, is normally specified in design codes as the sum of a fraction of
the distance between adjacent points of inflection of the beam (10% in Eurocode 2)
plus another fraction (again 10% in Eurocode 2) of the clear distance to the adjacent
parallel beam. More realistic estimates of the effective slab width are proposed in
Section 4.10.5.1 for nonlinear analysis. In a long girder providing support (at inter-
mediate points) to secondary joist beams or to vertically interrupted (“floating”)
columns, intermediate nodes are normally introduced along the span and the girder
is modelled as a series of short beams, all with the same effective flange width, as
determined from the overall span of the girder between supports on vertical ele-
ments. By contrast, the effective flange width of the secondary joist beams depends
on their shorter spans between girders.

What has been said above for members of non-doubly symmetric section
notwithstanding, beams integral with a floor slab should be assigned local y and
z axes normal and parallel to the plane of the slab, respectively, even when their
web is not at right angles to the slab (as, e.g., in a horizontal beam supporting a
sloping roof).11 The moment of inertia Iz is computed for the T- or L-section on
the basis of the effective flange width. The shear area Ay is that of the beam web
alone. If the slab is considered as a rigid diaphragm, the values of A, Iy and Az are
immaterial. If it isn’t, they may have to be determined so that the flexibility of the
diaphragm is included in the model, e.g., according to Section 4.9.5.

11The beam is dimensioned for the ULS in bending, or assessed on the basis of its ultimate defor-
mation, for action effects about an axis parallel to the slab, using as beam depth the projection,
hsinβ, of the actual depth h on the normal to the slab and as web width the value bw/sinβ (β is the
angle of the web to the plane of the slab). Assessment of the beam and of its transverse reinforce-
ment in shear can be based on the actual depth and width of the web, h and bw, but with a shear
force equal to the shear Vy from the analysis or capacity design in the direction of the normal to
the slab, divided by sinβ.
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The model should account for the effect of sizeable joints between members to
the stiffness of these members and of the structure as a whole. The length of the 3D
beam element falling in the physical region of its joints with another member is often
considered as rigid. If this is done for every member framing into a joint, the global
stiffness is overestimated, even when slippage and pull-through of longitudinal bars
from the joint is indirectly taken into account as an apparent increase in the flex-
ibility of these members, because the shear deformation of the joint panel zone is
neglected. It is preferable to consider as rigid just the parts within the physical joint
that belong to the less bulky and stiff among the elements framing in it (normally of
the beams).

There are two options for modelling the end region(s) of a member as rigid:

1. To consider the clear length of the member as its real “elastic” length and use a
(6×6) transfer matrix to express the kinematic constraint between the DoFs at the
real end of the member at the face of the joint and the ones of the mathematical
node, where the elements of the model are interconnected.

2. To insert a fictitious almost rigid short element between the real end of the “elas-
tic” member and the mathematical node.

Apart from the increase in computational burden brought about by the additional
elements and nodes, approach No. 2 may produce ill-conditioning, because of the
large difference in stiffness between the connected elements, real and fictitious. If
this approach is used owing to lack of computational tools for approach No. 1, the
sensitivity of the analysis results to the stiffness of the fictitious members should be
checked, e.g. by ensuring that results are almost the same when the stiffness of a
fictitious element changes by an order of magnitude.

If the member end region within a joint is modelled as rigid, stress resultants
or chord rotations at member ends, routinely given as output of the analysis, can be
used directly for dimensioning or assessing the member at its end section at the joint
face. When such rigid ends are not employed, unless the stress resultant or chord
rotation at the joint face is separately calculated on the basis of the joint dimensions,
a safe-sided member dimensioning or assessment may be carried out assuming that
the stress resultants or chord rotations at the mathematical nodes apply at the face
of the joint.

Often the centroidal axes of connected members do not intersect. Then the math-
ematical node is placed on the centroidal axis of one of the connected members,
typically a vertical one, with the ends of the other members connected to that node
at an eccentricity. This eccentricity can easily be incorporated in the modelling of
the member end region within the joint as rigid: the rigid end will be at an angle to
the member axis.

Distributed gravity loads on members with rigid ends are often considered by the
analysis program to act only on the “elastic” element between the rigid ends. Any
gravity load unaccounted for, as falling outside the “elastic” element length, should
be specified separately as a concentrated nodal force.
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4.9.4 Special Modelling Aspects for Walls

The part of a wall between successive floors and/or substantial openings should
be modelled as a single 3D beam element. Such a modelling is often called
“wide-column-analogy”. Elastic displacements and stress resultants predicted by
the “wide-column-analogy” in the wall itself and the rest of the system compare
well with those of detailed FE analysis, provided that shear deformations in the wall
are accounted for through a finite shear area.

Code rules regarding the amount and detailing of their horizontal reinforcement
ensure that walls with composite section, consisting of connected or intersecting
rectangular segments (L-, T-, U-, H-shaped, etc.), work as a single integral unit. So,
no matter how they are modelled for the analysis, such walls are dimensioned or
verified in flexure with axial force and in shear along and normal to the long sides
of their constituent rectangles. For each of the two directions of bending considered,
the part of the section parallel to the shear force and normal to the moment vector
is taken as the web and the parts orthogonal to it are the flanges. The Eurocode 8
rules for the confinement reinforcement of such walls also presume a single integral
section. So, it is most convenient for the subsequent phases of dimensioning and
detailing or assessment to model walls of any section using storey-tall 3D beam
elements with the cross-sectional properties of the entire section. The only question
regarding this approach may concern the modelling of torsion in walls with section
other than (nearly) rectangular, as detailed below.

Except possibly in walls with semi-closed channel-section addressed later in this
section, compatibility torsion is not an important component of the seismic resis-
tance of walls. So, accurate estimation of torsion-induced shear for the design or
assessment of the wall itself is unimportant. The main relevant issue is whether
potentially unrealistic modelling of the torsional stiffness and response of a wall
with section other than (nearly) rectangular, has a significant effect on the seismic
action effects calculated for other structural members. If storey-tall 3D-beam ele-
ments are used with the cross-sectional properties of the entire section, the accuracy
of the prediction of seismic action effects in other members is improved if the axis
of the 3D beam element modelling the wall passes through the shear centre of its
cross-section, instead of its centroid. For L- or T-shaped sections this is very conve-
nient, as the shear centre is near the intersection of the two rectangular parts of the
section, through which the axis of the beams framing into the wall often pass. The
offset from the centroid to the shear centre introduces some error in the calculation
of the vertical displacement of the end of a beam eccentrically connected to that
node of the wall. Another issue is that the torsional rigidity, GcC, of the section esti-
mated for pure St. Venant torsion – i.e. as Gc

∑
(lwbw

3/3), with lw and bw denoting
the length and thickness of each rectangular part of the section - does not account for
the resistance of the wall to torsion-induced warping of the section. When evaluat-
ing these questions, though, we should keep in mind the large uncertainty regarding
the reduction of torsional rigidity due to concrete cracking (see last paragraph of
Section 4.9.2).
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An alternative to the single-element modelling of walls with a section consisting
of connected or intersecting rectangular segments is to use a separate 3D beam ele-
ment at the centroidal axis of each such segment of the section. To dimension and
detail the entire section in bending with axial force, computed bending moments
and axial forces of the individual 3D beam elements need to be composed into a
single My, a single Mz and a single N for the entire section. If these elements are
connected at floor levels to a common mathematical node (e.g. via rigid horizontal
arms or equivalent kinematic constraints), the model is fully equivalent to a sin-
gle 3D beam element along the centroidal axis of the full section. According to
Xenidis et al. (1993) the overall torsional behaviour is better represented if the con-
stituent elements of the section are not connected to a common mathematical node
at each floor, but to individual end nodes at the centroid of each segment of the
wall section. The connection between the individual elements may best be effected
through arms within the plane of the section, connected to each other at the inter-
section of adjacent segments of the section. These arms should be rigid in bending,
shear or axial extension, but should have finite torsional rigidity: GcC = GcHstbw

3/3
(where Hst is the storey height and bw the thickness of the web of the correspond-
ing wall segment). Then the individual 3D beam elements of the wall may bend
relatively independently of each other in the vertical plane of their length dimen-
sion, developing, through their in-plane shear forces, a torque with respect to the
centroid of the composite section. This multiple vertical 3D element model with
connection through horizontal arms meeting at the corner(s) of the section has one
drawback: the replacement of the continuous shear stress distribution along the ver-
tical connection of the individual wall segments by a discrete vertical force at the
node where the horizontal arms meet induces fictitious counterflexure moments in
the individual elements (Stafford-Smith and Girgis 1986, Kwan 1993). The coun-
terflexure decreases the shear stiffness of individual wall segments and hence the
apparent torsional rigidity of the wall. More important, the fictitious moments have
maximum value at the two ends of the element, i.e. at storey levels, and distort most
the calculated moments at the most critical cross-sections of the wall. To remove
the effect of parasitic counterflexure on these end moments, Kwan (1993) sug-
gested introducing another set of nodes at storey mid-height and use two sets of
elements per storey, in lieu of one. Then the “real” end moments at storey levels
can be estimated by linear extrapolation from the moments at storey quarter-height,
as these are estimated by averaging the end moments of the half-storey individual
elements.

Channel-shaped walls with openings regularly spaced vertically and separated
by deep spandrel beams are semi-closed sections. Their torsion is dominated by
circulatory shear flow. So, they can be modelled with a single element at the cen-
troid or shear centre of the full section, with torsional rigidity according to Bredt’s
formula for closed sections: GC = 4GcAm

2/
∫

ds/t. In this formula Am is the area
enclosed by the centreline of the closed thin-walled section at the spandrel beam
level. The integral all along the perimeter is calculated with an equivalent thick-
ness of the spandrel beam, smeared over the storey height Hst (Rutenberg et al.
1986):
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teq = Hst

hb
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] (4.42)

In Eq. (4.42) Ib and hb denote the moment of inertia and the depth of the spandrel
beam and lb its span. If the spandrel beam is very flexible, or if just the slab plays
that role, the wall section is closer to an open one. In that case, if the torsional
stiffness of the wall itself is an important component of the total torsional rigidity
of the structure and, moreover, the overall structural layout is such that torsion is an
important component of the response to the horizontal seismic action components,
it may be better to use the multiple vertical 3D element model connected at the
corner(s) of the section through horizontal arms which are rigid except for their
finite torsional rigidity: GcC = GcHstbw

3/3, as outlined in the previous paragraph.
The individual vertical elements will always suffer from torsion-induced parasitic
counterflexure. In this case, however, parasitic moments at opposite sides of the wall
section cancel each other, when the moments and axial forces of the individual wall
elements are assembled into a resultant moment at the centroid of the full section
for the dimensioning of the wall in bending with axial force.

Recall from Fig. 1.7 in Section 1.3.5 that in Eurocode 8 (CEN 2004a) design of
new walls using linear analysis employs heightwise linear envelopes of wall elastic
moments from the analysis (see also Section 5.7.4.1). So, bending moment values
from the analysis at any level other than the base and the top of the wall are not
relevant for design according to Eurocode 8.

Beams framing into a wall at floor levels, etc., should be connected to the math-
ematical node at the axis of the wall. An eccentricity between this node and the real
end of the beam should be modelled with a rigid connection. If eccentrically fram-
ing beams are at right angles to the plane of the wall (i.e. in its weak direction), it
is more accurate to give to this rigid connection a finite torsional rigidity, GcC =
GcHstbw

3/3 (where Hst is the storey height and bw the thickness of the web of the
wall. Note also that less than the full length of a rectangular (part of a) wall section
works effectively in out-of-plane frame action with beams connected to the wall at
right angles to its plane. The fully effective width of the wall in that direction may
be taken to extend up to about twice the wall thickness on each side of the beam. To
take into account the anyway small contribution of the weak direction of a rectangu-
lar wall to frame action, its cross-sectional moment of inertia may be conservatively
computed using a depth of bw and a width of 4bw.

4.9.5 Modelling of Floor Diaphragms

4.9.5.1 Rigid Diaphragms

The in-plane stiffness of floor slabs acting as diaphragms should be properly recog-
nised and reflected by the model for the seismic analysis. Floor diaphragms are
commonly assumed and modelled as rigid. The most convenient way to model a
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diaphragm as rigid is by introducing at each floor level an additional node (“master”
node) close to the centre of mass of the floor and preferably not coinciding with
anyone of the floor nodes modelling physical connection of members. This node
has only 3 DoFs: two translations in the plane of the diaphragm and a rotation about
the normal to that plane. The corresponding DoFs of all floor nodes (called in this
respect “slaves”) are related to those of their “master” through a 3×3 transfer matrix,
expressing the rigid-body kinematic constraint. If the diaphragm is horizontal, the
“master” and “slave” DoFs refer to the global coordinate system and the “slave”
DoFs can be condensed out of the global equations of equilibrium or motion, where
only the “master” DoFs remain. If the floor is at an inclination to the horizontal,
the kinematic constraints between translations in the plane of the floor and rota-
tions about the normal to it can be introduced as linear constraints between global
DoFs, after appropriate rotation transformations. The same end can be achieved in a
more general way, by considering rigid 3D elements between the “master” node and
the physical end of all elements with nodes on the floor in question. At the “master”
node the mass of the two translational DoFs is equal to the sum of the corresponding
masses of all its “slaves”. The rotational mass moment of inertia about the vertical
axis at the “master” is the sum of those of its “slaves” (normally neglected as small),
plus the sum over all the “slave” nodes of the product of that node’s mass, mi, times
the square of its distance to the “master”: mi[(Xi–Xm)2 + (Yi–Ym)2].

If the analysis program has neither one of the above computational capabilities or
an equivalent alternative to express kinematic constraints between the floor nodes,
the floor diaphragm can be included in the model as non-rigid but with high in-plane
stiffness, e.g., using the modelling approach of the next section.

4.9.5.2 Flexible Diaphragms

In-plane flexibility of floor diaphragms should be realistically modelled, if:

1. the layout in plan of the floor diaphragm and of some lateral-force-resisting ele-
ments is such that the distribution of seismic action effects in these elements may
deviate significantly from the result of the rigid diaphragm assumption; or

2. if in-plane seismic action effects of the floor diaphragm, needed for its verifica-
tion, cannot be accurately computed on the basis of the rigid diaphragm assump-
tion; or

3. the floor itself and/or some of its beams are post-tensioned, and the flexible floor
diaphragm model of the floor-frame system is anyway necessary for a reliable
calculation of the in-plane action effects due to post-tensioning.

If diaphragm flexibility is included in the model for reason No. 1, a FE model
of the diaphragm within its plane is not the best option. Combining FE with 3D
beam elements in the same model is fairly expensive and tricky. One FE for each
panel of the floor between beams is not sufficient. To use several FEs for a panel,
each surrounding beam should be broken up in several 3D beam elements with
intermediate nodes, increasing computational demands and unduly complicating the
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subsequent phases of beam dimensioning/detailing or assessment. Shell FEs should
preferably be used, and not 2D FEs with just in-plane translational DoFs.

Unless there is compelling need to use FEs for the diaphragm, its in-plane flexi-
bility can be approximated through the value of the moment of inertia Iy of its beams
about the normal to the plane of the diaphragm, with or without X-bracing added
to the model of each slab panel. For a diaphragm with thickness h, plan dimensions
lx and lz (with direction y reserved for the normal to the diaphragm, as in the local
coordinate system of the beams), Young’s Modulus E and a Poisson ratio value of
1/3, the stiffness for in-plane extension or shear is essentially reproduced if the panel
is modelled as a horizontal frame with X- bracing having the following properties
(Yettram and Husain 1966):

– Frame members with length lx are assigned:

• a flexural rigidity about the normal to the diaphragm:

(E I )y = Eh

60
l2
x lz (4.43a)

• an axial stiffness:

(E A) = Ehlz
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)2
]

(4.43b)

– X-diagonals have only axial stiffness:

(E A)d = Eh
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(l2
x + l2

z )3/2

lx lz
(4.43c)

For frame members parallel to lz subscript x replaces z and vice-versa. Since
the 3D beam elements around the diaphragm panel are already in the model with
out-of-plane flexural properties EIz and GAy, only X-bracing elements need to be
added.

The above modelling approach works well if the aspect ratio lx/lz of each
diaphragm panel is not far from 1.0. For panels with lx>>lz Eq. (4.43b) may give
negative stiffness, which does not make sense. A simpler and more reasonable, but
generally less accurate, alternative is to omit the 2nd term in brackets in Eq. (4.43b)
and the X-bracing, and increase instead by a factor of 4 the flexural stiffness of the
frame members in Eq. (4.43a). The new expressions for the in-plane parameters of
the beams of length lx are then as follows, including the effects of diaphragm panels
(possibly) on both sides of a beam (Fardis 1997):

(E I )y ≈ Eh

15
l2
x

∑
lz (4.44a)

(E A) ≈ Eh

2

∑
lz + Ebw(hb − h) (4.44b)
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The 2nd term in Eq. (4.44b) is the contribution of the web of beams to their
axial stiffness. For the beams which are parallel to side lz subscript z replaces x and
vice-versa.

Eurocode 8 states in a note that the diaphragm flexibility may be neglected, if it
increases horizontal displacements by more than 10%. To apply this conventional
definition of a rigid diaphragm, two analyses are unfortunately needed, one neglect-
ing and the other considering the diaphragm’s in-plane flexibility.

4.9.6 A Special Case in Modelling: Concrete Staircases

If the lateral-load-resisting system itself is flexible, as e.g. in low-rise frame struc-
tures, and/or if the location of the staircase in plan is such that the torsional rigid-
ity and response of the building is significantly affected (as, e.g., in the case of
Fig. 2.13(b) and (c)), the designer may want to include the staircase in the structural
model. In this way the effect of the staircase on the seismic action effects in the
rest of the structure can be determined, and even the staircase could be designed or
assessed under its own seismic action effects.

A staircase may be modelled as a series of prismatic 3D beam elements along
its axis, inclined to the horizontal. The sectional properties (including shear areas)
of these elements should be those of the full-width solid part beneath the steps. A
curved axis may be modelled as multilinear. For staircases supported only at the
ends, having a helical axis or one consisting of a combination of straight segments
and quarter- or semi-circular segments, the 12 × 12 stiffness matrix of the entire
stair between its ends is given in Skouteropoulou et al. (1986, 1987) and Fardis et al.
(1987). Inclined beams supporting the staircase and supported, in turn, by elements
of the lateral-load-resisting system, should be similarly and appropriately included
in the model. Only integral connections of the staircase and/or its supporting beams
to the rest of the structure should be included in the model as nodes between ele-
ments. Connections without properly detailed and anchored reinforcement will, in
all likelihood, break loose in an earthquake. They cannot be relied upon under seis-
mic actions and the designer should not only omit them from the model, but also
avoid them altogether in new buildings.

At floor levels a stair is typically supported on beams. Its partial fixity there in
bending and torsion is provided by its continuation into a floor slab on the other
side of the supporting beam. As this slab is not included in the model of the lateral-
load-resisting system, the partial fixity of the stair against rotations at its support
node on the beam should be modelled either:

– by connecting the node supporting the stair to the nearest floor node in a direction
close to the extension of the stair axis in plan, through a fictitious horizontal
member having cross-sectional properties about the same as the stair; or

– by assigning a very large torsional rigidity to the segment of the supporting beam
between the support node of the stair on the beam and the nearest common node
of the supporting beam with a transverse frame.
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If this is not done, the stair in the model will be almost hinged for rotation about
the supporting beam.

Examples of staircases included in the model are presented in Section 4.10.5.3.

4.9.7 2nd-Order (P-Δ) Effects

It has been pointed out in Section 1.2.1 that collapse of structures during an earth-
quake is caused not by the seismic lateral forces per se but by the seismic lateral
displacements, Δ, acting with the structure’s weight to generate (P-Δ) moments in
vertical elements. To appreciate the importance of P-Δ effects, think of a situation in
which the P-Δ moment alone, M = Nδ, produced at the base of a single column by
its axial force, N, and the interstorey displacement, δ, reaches the column’s moment
resistance, MR. As the support of gravity loads is force-controlled, the column may
collapse, no matter its ductility. Normalising MR into μR ≡ MR/(bh2fc) and N into
ν ≡ N/(bhfc), column collapse may occur when the interstorey drift ratio, δ/H (equal
to the sum of the average column chord rotations and beam chord rotations around
a frame bay plus the average shear distortion of the joint panels, see Fig. 3.30)
exceeds the value of (μR/ν)/(H/h), where H/h is the column slenderness (i.e., length-
to-depth) ratio. Slender columns, lightly reinforced and under high axial load (i.e.,
with low μR/ν values) might then collapse at relatively moderate interstorey drift
ratios. Hence the importance of computing and limiting P-Δ effects.

All seismic design codes require taking into account 2nd-order (P-Δ) effects in
buildings, whenever at any storey the aggregate 2nd-order (P-Δ) effects in vertical
members exceed 10% of the 1st-order ones. The criterion is the interstorey drift sen-
sitivity coefficient, θ , defined for storey i as the ratio of the total 2nd-order moment
in storey i, to the change in the 1st-order overturning moment within that storey:

θi = Ntot,iΔdi

Vtot,i Hi
(4.45)

where:

– Ntot,i is the total gravity load concurrent with the seismic action at and above
storey i.

– Vtot,i is the total seismic shear at storey i.
– Hi is the height of storey i.
– Δdi is the interstorey drift at storey i, i.e., the difference of the lateral displace-

ments at the top and bottom of the storey, di and di–1, at the floor centre of mass,
or at the floor “master” node. In Eurocode 8 (CEN 2004a) it is the inelastic
drift, estimated via the equal displacement rule according to the 2nd paragraph of
Section 4.11.1 (for all practical purposes by back-multiplying by the behaviour
factor q the values of di, di-1 from the linear analysis for the design spectrum).
US codes (BSSC 2003, SEAOC 1999) take for this purpose di and di-1 directly
from the analysis for the design spectrum, underestimating them by a factor of R
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(where R is the force reduction factor incorporated in the design spectrum); the
estimated P–Δ effects are very much on the low side.

Second-order effects may be neglected, if the value of θ i does not exceed 0.1 at
any storey. They should be taken into account for the entire structure, if at any
storey θ i exceeds 0.1. If θ i does not exceed 0.2 at any storey, seismic design codes,
such as Eurocode 8 (CEN 2004a), allow taking P–Δ effects into account without a
2nd-order analysis, but in approximation: by multiplying a-posteriori all 1st-order
action effects due to the horizontal component of the seismic action by 1/(1–θ i).
For given lateral forces, this approximation gives seismic action effects in fairly
good agreement, on average, to those of an exact 2nd-order analysis carried out
as described below. The simplified approach fails to capture, though, the global
effect of the lengthening of the natural periods due to the 2nd-order effects. Note
that, although it is the value θ i of the individual storeys that can be used in this
amplification, it is safe-sided to use for the entire the building the maximum value of
θ i in all storeys. It also respects equilibrium in the framework of 1st-order analysis.

In the very unlikely for RC buildings case that θ i exceeds 0.2 at any storey, an
exact 2nd-order analysis is required (CEN 2004a). This analysis may be performed
with the modelling described below.

If the vertical members connect floors which are considered as rigid diaphragms,
the P-Δ effects can be calculated exactly as highlighted in the next paragraph. If
there are no such floors, or if they may not be taken as rigid diaphragms, P-Δ effects
may be considered at an individual column basis, by subtracting from the column
elastic stiffness matrix its linearised geometric stiffness matrix. If the analysis is
elastic using the design spectrum, the linearised geometric stiffness matrix of each
column should be multiplied by the displacement amplification factor for conversion
of elastic displacement estimates from the analysis into inelastic ones (as pointed
out in the definition of Δdi in connection with Eq. (4.45)). In the context of elastic
analysis, axial forces in the geometric stiffness matrix of the column may be taken
constant and equal to the value due to the gravity loads alone.

If diaphragms can be considered as rigid, P–Δ effects may be accounted for
exactly in the analysis without subtracting the linearised geometric stiffness matrix
of each individual vertical element from the corresponding elastic stiffness matrix.
It has been proposed in Rutenberg (1982) to introduce instead a fictitious vertical
element between adjacent floors i and i–1, with negligible axial stiffness EA and
flexural rigidities EIy, EIz, but with negative shear areas: GAy = GAz = –q(

∑
N)i

and negative torsional rigidity: GC = –q(
∑

Nr2)i, where N and r denote respectively
the axial force in the individual columns of storey i and their distance from the cen-
troid of the axial forces in all the columns. These fictitious vertical elements should
be connected (through horizontal rigid elements or rigid-body kinematic constraints
in the horizontal plane) to the centroids of the axial forces in all columns, (

∑
N)i, of

storeys i and i–1. These centroids differ from the storey centres of mass, as the axial
forces include contributions from all storeys above. P–Δ effects can thus be intro-
duced in a direct and exact way in computer codes that lack the element geometric
stiffness facility.
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4.9.8 Modelling of Masonry Infills

Before any guidance for linear modelling of infills, a few words are in order about
its scope.

Modelling for linear analysis is primarily of interest for the seismic design of
new buildings. The provisions of Eurocode 8 for the design of new frame buildings
having masonry infills are outlined in Sections 2.1.13 (regarding the global aspects)
and 5.7.3.6 (for the potential adverse local effects on columns). Their underlying
concept is to prevent any adverse effect of the infills, while not profiting explicitly
from the beneficial ones to reduce the seismic action effects in structural members.
In this context, analysis of a 3D structural model explicitly including the infills
is required by Eurocode 8 (CEN 2004a) only for new buildings with a severely
irregular layout of the infills in plan. It can be argued that this approach is neither
rational nor cost-effective, as it does not explicitly account for an effect (that of the
infills) which is generally important and normally beneficial. Note that, to account
rationally for this influence, individual infill panels should be:

(a) explicitly included in the model for the seismic analysis of the building, and
(b) considered as structural elements and verified for the seismic action demands

computed for them from the analysis for the seismic action.

In the verifications under (b) above the resistance of the infills should be
expressed in terms of design values of their strength properties. This implies that,
at the design stage, nominal (lower characteristic) values of these properties are
specified and sampling of infill materials (masonry units, mortar, etc.) for testing
takes place during execution, exactly as in masonry buildings designed according
to Eurocodes 6 and 8. It also implies that modifications of infill panels or of their
openings is not allowed at a later stage, without re-visiting the seismic design of the
building and assessing the impact on the seismic safety of the entire system and all
its elements. This would be a major change in the current practice of design, exe-
cution and maintenance of masonry-infilled buildings. Moreover, the costs incurred
for the additional design effort and the quality assurance for masonry infills may
outweigh any savings in the members of the structural system. So, no matter the
rationality of a design approach that explicitly accounts for all individual infill pan-
els, the one adopted by Eurocode 8 seems to provide a good balance of simplicity
in design and execution, overall construction cost and seismic safety.

In the light of the above, what follows regarding linear modelling of masonry
infills is meant to be used primarily for new buildings with a strongly irregular lay-
out of the infills in plan, required by Eurocode 8 to be analysed including the infills
explicitly. It also serves as a prelude to Section 4.10.2, dealing with nonlinear mod-
elling of masonry infills primarily for the purposes of assessment and retrofitting of
existing new buildings.

A solid infill panel can be conveniently modelled as a strut along its compressed
diagonal (see Fig. 4.4). A widely-known strut model is based on the beam-on-
elastic-foundation analogy for the estimation of the strut width (Mainstone 1971).
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Fig. 4.4 Modelling of solid infill panel with strut along the compressed diagonal

According to that model, the strut has the same thickness as the infill wall, tw, and
width in the plane of the infill, winf:

winf = 0.175Lcl

cos θ (λH )0.4 (4.46a)

where:

– λ =
(

Ewtw sin 2θ

4Ec Ic Hcl

) 1
4

(4.46b)

– Lcl : clear horizontal dimension of the infill panel;
– θ : arctan(Hcl/Lcl) = inclination of the diagonal to the horizontal;
– H, Hcl : theoretical and clear column height, respectively;
– Ec, Ew, : Elastic modulus of the column concrete and of infill masonry (rang-

ing according to Eurocode 6 from 500 to 1000 times the masonry compressive
strength), respectively;

– tw : infill wall thickness;
– Ic : moment of inertia of the column section about the normal to the infill panel.

As an alternative to Eq. (4.46a), Eurocode 8 (CEN 2004a) allows a strut width
equal to a fraction of the clear length of the panel diagonal, Lcl/cosθ . A strut width
around 10–15% of the length of the diagonal is a good approximation, at least
for new buildings designed for Life Safety performance (“Significant Damage” in
Part 3 of Eurocode 8 (CEN 2005a)) under the design seismic action. For lower level
response – e.g., that normally associated with Immediate Occupancy performance
(“Damage Limitation” Limit State in Part 3 of Eurocode 8) – a value around 20%
of the length of the diagonal is more appropriate. Whenever the integrity of frame
members is questionable or of interest (notably at the Near Collapse performance
level), it is preferable to assume that the diagonal strut has disintegrated and does
not contribute anymore to the global lateral strength and stiffness. Of course, infill
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panels having clearly adverse effects on the seismic performance of the structural
frame, locally or globally, should be retained in the model with their Life Safety per-
formance width. This may be the case of infills with a strongly irregular heightwise
distribution that may have “open-storey” and “soft-storey” effects, or of partial-
height infills that produce captive columns, etc. In that latter case the strut which
models the infill should run not along the diagonal of the frame panel, but along that
of the infill itself, i.e., between an intermediate node introduced in the column at the
level of the top of the partial-height infill (i.e., at that of the sill) and the diagonally
opposite node at the bottom of the column.

In linear analysis a solid infill panel may be modelled as an elastic strut along the
compressed diagonal, with cross-sectional area equal to tw times winf and modulus
equal to Ew (taken, e.g., according to Eurocode 6). This is realistic for the estimation
of both the panel’s local effects on the surrounding frame members, as well as of its
effects on the global response. A strut only along the compressed diagonal is, how-
ever, a nonlinear modelling feature. The only difference that a strut along the tension
diagonal would make on the response is in the sign of the axial forces in the columns
bordering the panel. Unlike the axial forces due to the overturning moment, those
associated with the action of infills are all tensile and nearly uniformly distributed in
the columns of the entire plan (except in the columns of the “lee-ward” side, where
no axial force is induced in columns by the infills). The resultant of all these axial
forces is equal and opposite to the vertical resultant of all strut forces in the infills.
In static analysis – linear with the lateral force procedure or nonlinear “pushover”
– the diagonal of the panel where the strut is placed can be chosen according to the
perceived sense of deformation of the panel. In frames (about) parallel to the hori-
zontal seismic action component, it is easy to identify the diagonal where the strut
should be placed. By contrast, in frames at (about) right angles to this direction the
choice of panel diagonal for the strut relies on intuition, judgement or – possibly
– iterations. As modal response spectrum analysis gives results without signs, it is
almost immaterial whether the struts modelling the infills are placed along one diag-
onal or the other. However, unlike other seismic action effects from modal analysis
that are taken both positive and negative, strut forces should always be taken com-
pressive (and double its value from the modal response spectrum analysis, if struts
are placed along both diagonals of a panel), while axial forces induced in columns
by the infills should be tensile. It is not easy, however, to identify which part of a
column’s axial force is due to the infills.

The most challenging open issue for modelling infills is the influence of open-
ings. A panel with openings may be modelled with multiple struts starting at oppo-
site corners of the panel, passing near the corners of the openings and ending at
intermediate points along the members framing the panel. A simpler way to take
into account the effect of infill openings on the global response is through reduction
factors on the infill stiffness. The value of these factors depends on the shape, size
and location of the opening(s) within the infill panel, and – in panels with asymmet-
ric openings – the direction of loading. They should be established through system-
atic parametric analyses of infilled RC frame panels with openings, using detailed
FE models for the infill and its interaction with the surrounding frame. Figure 4.5
gives such reduction factors, λ, on the stiffness of the solid infill panel, as derived
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Fig. 4.5 Reduction factor on solid infill stiffness, in terms of fraction of panel area in elevation
taken up by opening. Bottom-right: reduction factor on panel stiffness, for no contact with frame
on one side, as a function of panel height-to-width-ratio (Giannakas et al. 1987)

from elastic FE analyses of single panels with openings. If there are more than one
openings in the panel, the overall reduction factor is bounded by the sum of the
individual λi’s minus 1.0 and by their product (Giannakas et al. 1987). Note that
Eurocode 8 (CEN 2004a) instructs the designer to neglect in the model infill panels
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with two or more significant openings. Models, especially those for nonlinear anal-
ysis (see Section 4.10.2) should be validated or calibrated on the basis of the few
available cyclic test results on infills with an opening, such as those given in CEB
(1996a) and Kakaletsis and Karayannis (2008).

4.9.9 Modelling of Foundation Elements and of Soil Compliance

4.9.9.1 Introduction

No matter whether we are talking about seismic design or design just for other, non-
seismic actions, in order to use analysis results to design or assess piles or elements
of shallow foundations, such as tie- or foundation-beams or a raft (mat) foundation,
we should include these elements in the model and take into account the compliance
of the ground.

The superstructure, especially if founded on two-way deep foundation beams,
as in the box-type systems of Section 2.3.3.3, is sometimes analysed separately
from the foundation, considered fixed at the top of the foundation system. The so-
computed stress resultants at the base of the vertical elements are taken as external
actions for the foundation system, which is in turn analysed accounting for the com-
pliance of the soil, in order to compute the action effects in foundation elements,
necessary for their dimensioning or verification. There are many examples of the
limited accuracy of this uncoupled approach: (1) if the walls of a dual system are
assumed fixed at the base, their contribution to lateral strength and stiffness is over-
estimated, especially at the lower storeys; (2) if a column is taken fixed at the foun-
dation, seismic moments are overestimated at its base and underestimated at the top
of the storey; (3) fixity of vertical elements at the base leads to underestimation of
lateral drifts and of P–Δ effects, etc. Note, though, that, if soil compliance does not
change the magnitude of storey seismic shears and overturning moments, neglecting
it in a linear seismic response analysis does not adversely affect the overall earth-
quake resistance of a ductile structure. Such a structure can redistribute internal
forces from where they have been underestimated in the analysis to adjacent regions
where they were overestimated.

Uncoupled modelling and analysis of the superstructure and the foundation
system is also computationally inconvenient. It requires setting up two different
structural models and transferring the (reaction) output from the analysis of the
superstructure as input to the foundation, for several load cases and their combi-
nations.

Today’s computational capabilities allow including the superstructure, the foun-
dation system and the soil into a single, coupled linear model for seismic response
analysis. Such a model reflects much better the seismic response of the lateral-load-
resisting system, as affected by the degree of fixity of the vertical elements at the
base.

Codes and standards do not seem ready yet to consider full-fledged soil-structure-
interaction in seismic design, especially as its effects are mostly favourable. BSSC
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(2003) has taken the bold step to allow a (up to 30%) reduction of the base shear
computed for rigid ground and full fixity of the structural elements to it, if the length-
ening of the 1st mode period due to the horizontal and rotational (rocking) defor-
mation of the ground and the additional material and radiation damping in the soil
are explicitly and separately accounted for as specified there. Practically all codes
for everyday seismic design of ordinary buildings derive the seismic action effects
implicitly assuming that the structure as a whole is fixed to the ground. For instance,
the global displacement ductility factor implicit in the values of the behaviour fac-
tor, q, or force reduction factor, R, specified by a code refers to a global yield dis-
placement of the structure fully fixed to the ground, without any contributions from
the compliance of the soil. So, when working in the framework of these codes,
incorporation of the effects of soil compliance in the design should not violate this
key point, either by increasing the effective damping, or by overly reducing lateral
force demands. In other words, soil-structure-interaction phenomena to be consid-
ered should have mainly “internal” effects on the structure, notably redistributing
internally seismic action effects, without reducing the overall seismic demands from
the “outside”.

4.9.9.2 Elastic Support Conditions

A convenient way to take into account soil compliance in linear analysis is through
elastic support conditions at support nodes, normally at the bottom of foundation
elements. These nodes should be connected to nodes at the physical ends of struc-
tural elements (walls, columns, tie- or foundation beams) either via rigid connecting
elements, or (preferably) through kinematic constraints expressing rigid-body con-
nection.

Not all 6 DoFs of a support node need to be elastically supported. In a sound
conceptual design of a building for earthquake resistance the base of all foundation
elements is at the same level and all foundation elements are tied together in both
horizontal directions, so that the foundation system moves almost as a rigid body
(see Section 2.3.2). Then both horizontal translations and the rotation about the ver-
tical axis can be fully constrained at all foundation nodes. The main effect of elas-
tic supports in these directions would had been a horizontal rigid-body-component
dominant in the lowest three modes and a significant lengthening of their periods
(in all likelihood reducing the corresponding base shears), without a significant and
physically meaningful effect on the distribution of seismic forces and deformations
in the structure. Moreover, there is significant uncertainty about the elastic con-
stants for soil compliance in the horizontal direction(s), mainly due to the effect of
embedment.

The displacements of the foundation in a horizontal plane can be fixed only if all
foundation nodes are at the same horizontal level. As pointed out in Section 2.3.2,
if foundation nodes are elastically supported in the vertical direction and against
rotation about the two horizontal axes and, in addition, support nodes placed at dif-
ferent horizontal levels are horizontally constrained, the full overturning moment
will be taken by horizontal reactions at these latter fixed supports, rather than by
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nonuniform vertical reactions. In other words, rocking of the structure will be pre-
vented by an artificial horizontal support condition that distorts the distribution of
seismic action effects in the elements of the foundation and those it supports. Note
that, if there are support nodes at different horizontal levels but only those at the
lowest level are horizontally constrained, no horizontal reactions develop at the
other support nodes and the vertical elements supported there will have zero seis-
mic shears. So, modelling considerations lead to the same end as a sound conceptual
design: a strong horizontal connection of all foundation elements that maybe at dif-
ferent horizontal levels, through stiff tie-beams or foundation walls, so that the entire
foundation is almost rigid in both horizontal directions. Then, only support nodes
at the lowest level may be constrained in both horizontal directions and about the
vertical, without fictitious effects on the seismic shears and axial forces of vertical
structural elements.

When it is meaningful to include elastic support conditions in the horizontal
direction, as e.g., in structures supported on piles (see Section 4.9.9.5), horizontal
elastic supports may be placed at different horizontal levels, as needed.

Note that, if soil compliance in the vertical or horizontal direction is taken into
account, this should be done at all support nodes; translational constraint of just a
few of them may change drastically the pattern of action effects in the foundation.
Constraint of rotations about the horizontal will totally distort the effect of vertically
elastic supports, but not vice-versa.

For foundation on spread footings with tie-beams or on piles, the distribution of
seismic internal forces in the superstructure and in the foundation system is mainly
influenced by the rotational elastic supports and relatively little by the translational
ones. In raft (mat) foundations and foundation beams, the effect of vertical elastic
supports on the distribution of seismic internal forces is at least as much as that of
the rotational ones.

Elastic support “constants” are in general function of the frequency of vibration.
In view of the uncertainty of soil parameters on which these “constants” depend,
the effect of frequency is normally neglected and the (larger) static stiffness is used.
This is safe-sided for internal forces, but not always for deformations.

If there are no elastic supports in the library of the analysis software, the designer
can introduce fictitious elements between the support node and a fictitious one below
at an arbitrary vertical distance h and with all its six DoFs fully restrained. The axial
stiffness of the fictitious element, EA/h, is set equal to the target vertical impedance
at the support node, Kz. With the support node restrained in both horizontal direc-
tions, the fictitious element’s flexural rigidities, EIx, EIy, are chosen so that 4EIx/h
and 4EIy/h match the target rotational impedances, Kϕx and Kϕy, respectively.

4.9.9.3 Foundation Beams and Raft Foundations

Soil compliance under foundation beams or raft (mat) foundations is almost always
modelled using the subgrade reaction modulus (or Winkler spring) approach, which
assumes that a soil pressure p applied at a point of the soil-structure interface causes
an absolute displacement of that point, ys, which is proportional to p:
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p = ks ys (4.47)

The constant ks is the subgrade modulus (or Winkler constant). Note that
Eq. (4.47) entails lack of coupling between different points at the soil-structure
interface, as if the soil were a system of independent vertical springs, each with
spring constant (vertical impedance):

Kz = ks Af (4.48)

where Af is the tributary area of the spring.
Foundation beams should be modelled by special-purpose beam-on-elastic-

foundation elements connecting two adjacent physical joints of the beam with other
structural elements (walls, columns, foundation beams). The stiffness matrix of this
type of element is a function not only of the properties of the beam, but of ks as well.
Shear deformations should always be accounted for, if the depth of the foundation
beam is large.

If the library of the analysis software used does not include the special-purpose
beam-on-elastic-foundation element, recourse to a “poor-man’s” alternative may be
necessary, that is less accurate, but computationally more demanding and inconve-
nient to apply. In this option the length of the foundation beam between two adja-
cent physical joints with other structural elements is broken up, via intermediate
nodes, into a string of conventional 3D beam elements. The intermediate nodes, as
well as those corresponding to physical joints of the beam with other structural ele-
ments, are elastically supported in the vertical direction. The vertical impedance at
these supports may be taken from Eq. (4.48), with Af being the tributary area of the
node at the soil-foundation beam interface. An average soil pressure may be esti-
mated at each support node, as the vertical reaction there divided by the tributary
area, Af. The shear force diagram along the foundation beam is discontinuous at
the support nodes (as only self-weight acts between them), each discontinuity being
equal to the vertical reaction there. The bending moment diagram is multilinear.
Note the inconvenience for dimensioning and detailing of a so-modelled foundation
beam, as the bending moment and shear force diagrams of the subelements along its
length should be assembled into a single moment- or shear-diagram for the whole
beam.

Rotational DoFs about the horizontal axes can be taken as completely free at all
support nodes along the foundation beam, unless its bottom flange is asymmetric
with respect to the web and the so-induced torsion needs to be taken into account,
along with the restraining of the twisting by the subgrade. In that case, an impedance
Kϕ against rotation about the longitudinal axis x of the foundation beam should be
assigned to each support node:

Kϕ = ks

A f b2
f

5.75
(4.49)
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where bf is the width of the bottom flange.12 The x axis of the foundation beam
should pass then through the shear centre of the flanged beam section at the inter-
section of the web and the flange, instead of its centroid. This reflects the horizontal
eccentricity between the web, which takes the torsion, and mid-flange, where the
support nodes are placed.

Raft (mat) foundations, integral with beams connecting the bases of adjacent ver-
tical elements, are sometimes modelled as a two-way system of foundation beams,
each with a flange between panel mid-spans on either side of the beam. This compu-
tationally convenient approximation is fairly good for the calculation of the global
response, but gives insufficient information for the design of the raft slab itself. If
the raft is an inverted flat plate with no beams except at the perimeter, its approxima-
tion as a grid of strip-like “foundation beams” between adjacent vertical elements
is not good enough. A finer two-way grid of intersecting “beams” is certainly an
improvement. However, the best and only accurate model of such a raft is by plate
FEs,13 with each panel of the slab between adjacent vertical elements discretised
into a (fair) number of FEs. All nodes of these elements should be elastically sup-
ported vertically, with elastic constant from Eq. (4.48), using as Af the tributary area
of the node. Such a model can depict well the distribution and magnitude of soil
pressures and is sufficiently accurate for the internal forces in the slab (including
around column bases) to be used in its dimensioning. Beams along the perimeter,
as well as any beams connecting the base of adjacent vertical elements, should be
modelled as a string of conventional 3D beam elements following the discretisation
of the slab. The elastically supported nodes for the plate FEs render the use of spe-
cial beam-on-elastic-foundation elements for these beams not only meaningless, but
also wrong. Note that 4-node plate elements for the slab, having as nodal DoFs the
displacement normal to the mid-plane and the two rotations about axes within that
plane, fit well with the DoFs of the 3D beam elements used for the beams. Note
also that, a rigid-body connection between a raft slab modelled with “shell” FEs
(i.e., with plate elements possessing active DoFs and stiffness in-plane, in addition
to out-of-plane) and the eccentric centroidal axis of a beam’s web induces coupling
of the beam bending with the in-plane deformations of the slab. This is an effective
flange effect in the beam. However, it is questionable if the results would reflect
realistically the composite action of the beam in bending with the slab. Note also
that, unless judiciously placed so that they don’t obstruct any deformation of the
raft’s slab within its plane, constraints of the horizontal DoFs of the slab’s “shell”
elements will obstruct or even suppress any bending of those beams that have rigid-
body connection of their eccentric centroidal axis to the slab’s nodes. It is therefore
preferable and computationally simpler to specify an effective flange width for the
beam and employ for the slab plate FEs (not “shell”), without active in-plane DoFs
and stiffness. Alternatively, the centroidal axis of the beam elements could be shifted

12Equation (4.49) approximates the rotational impedance of a strip footing about its longitudinal
axis from Eq. (4.53b), using Eq (4.54) for ks.
13If the slab is thick, thick-plate FEs, e.g. of the Midlin type, should preferably be used.
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to the mid-plane of the slab. But this may not be meaningful for very deep beams,
e.g., perimeter walls.

4.9.9.4 Footings

According to a common rule-of-thumb, a footing may be considered as rigid, if it
does not protrude in plan from the vertical element it supports by more than twice
the footing depth.

When the footing is considered rigid, the impedance of the underling soil may be
lumped at the centroid of the footing in plan, in 3 uncoupled springs: one vertical
(z) and two rotational about the centroidal horizontal axes x and y of the footing.
Expressions for these impedances have been developed on the basis of analytical
or FE studies of footings embedded in elastic soil and in full contact with it. For
instance, Kausel and Roesset (1975) and Elsabee et al. (1977) developed Eqs. (4.50)
and (4.51) for footings with effective embedment depth d14 in an elastic stratum
having depth Ds above rigid bedrock. The impedance in the vertical direction is:

Kz = 4Gra

1 − ν

(
1 + 0.4

d

ra

)
(4.50)

and for rotation about the x or y axis:

Kϕx ≈ 8Gr3
mx

3(1 − ν)

(
1 + 2d

rmx

)(
1 + 0.7d

Ds

)(
1 + rmx

6Ds

)
,

Kϕy ≈ 8Gr3
my

3(1 − ν)

(
1 + 2d

rmy

)(
1 + 0.7d

Ds

)(
1 + rmy

6Ds

) (4.51)

In these expressions ra = √
(Af/π), rmx = (4Ix/π)1/4 and rmy = (4Iy/π)1/4 are

the radii of a circular footing with the same area or moment of inertia, respectively.
G is the secant shear modulus of the soil at the expected shear strain level at a depth
of 2ra for Kz, or of 0.75rmx or 0.75rmy for Kϕx, Kϕy, respectively. Part 5 of Eurocode
8 (CEN 2004c) gives indicative values of G equal to 80, 50 or 36% of its value
at small strains (<10–5), if the peak ground acceleration, agS, is 0.1, 0.2 or 0.3 g,
respectively. The soil’s Poisson ratio, ν, may be taken equal to 0.4 for stiff clays,
0.45 for soft clays or 0.33 for clean sands and gravels.

The fitting of Eqs. (4.50) and (4.51) to FE results applies if ra, rmx, rmy are all
less than 50% of the stratum depth, Ds, but greater than the effective embedment
depth, d.

More general and recent FE-based alternatives to Eqs. (4.50) and (4.51) are given
in (ASCE 2007):

14Full lateral contact should develop over the effective embedment depth, capable of both sidewall
friction and passive earth pressure. So, d cannot be more than the thickness of the footing and
normally is less.
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(4.52)

Kϕx = Gs b3
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(4.53a)

Kϕy = Gs b3
x
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⎥⎥⎥⎦ (4.53b)

In these expressions bx always denotes the smaller of the two plan dimensions of
the footing and by the larger one (bx < by); the x-axis is normal to bx and the y-axis
normal to by; d is again the effective embedment depth defined for Eqs. (4.50) and
(4.51) and t the soil depth from the surface to the underside of the footing. The
results of Eqs. (4.52) and (4.53) are consistent with those of Eqs. (4.50) and (4.51).

Sometimes, the elastic constants for the compliance of the soil under the foot-
ing are expressed in terms of ks, for consistency with the subgrade reaction modu-
lus approach followed for foundation beams and rafts. In that case, if Eq. (4.48) is
retained for the soil’s impedance in the vertical direction with Af = bxby, the fol-
lowing value of ks should be used for consistent results with Eqs. (4.49) and (4.51)
in approximately square footings:

ks ≈ 2.3G

bx (1 − ν)
(4.54)

where bx is the smaller of the two plan dimensions of the footing. Note that
Eq. (4.54) gives values about 75% higher than the expression normally used for
ks (Horvath 1983):

ks ≈ 1.3G

bx (1 − ν)
(4.54a)

The rotational impedances should then be computed from Eqs. (4.51) or (4.53),
using in them a value of G obtained by inverting Eq. (4.54) for G in terms of ks.

If the footing cannot be considered as rigid, the underlying soil should be mod-
elled via Winkler springs spread out over the underside of the footing, having only
vertical impedance. To better reflect the rotational impedance, the springs should be
concentrated close to the edges of the footing in plan. The simplest layout would
employ just four springs, each one close to a corner of the footing. The constant
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of the springs should be chosen to reproduce the total vertical impedance of a rigid
footing from Eqs. (4.50) or (4.52). With the so-determined spring constant, their dis-
tance in x and y should be chosen so that the rotational impedances from Eqs. (4.51)
or (4.53) is reproduced. All this is arduous enough to dissuade the designer from
choosing flexible footings. As pointed out at the beginning of this section, a thick-
ness not less half the largest outhang of the footing from the vertical element it
supports is commonly considered sufficient for a footing to be considered rigid.

4.9.9.5 Pile Foundations

When piles are used for the foundation of a building elastic supports in the hori-
zontal directions are worth including, provided that this is done at all foundation
elements, regardless of whether they are at the same horizontal level or not.

Groups of piles can be replaced by elastic supports at the group’s centroid at
the underside of the pile-cap. The group vertical or horizontal impedance is the
sum of those of the individual piles, kzi, kxi, kyi. Its rotational impedances about the
horizontal axes are:

Kϕx =
∑

i

(y2
i kzi + kϕxi ), Kϕy =

∑
i

(x2
i kzi + kϕyi ) (4.55)

where xi and yi are measured from the centroid of the pile group. Point bearing is
usually taken for a pile and the pile-head vertical stiffness, kzi, is taken equal to the
pile full axial stiffness, EcA/L. The impedance of an individual pile in the horizontal
directions, kx = ky, the rotational impedance, kϕx = kϕy, and the coupling stiffness,
kϕx,y = kϕy,x, between the force along one axis and the rotation about the other, or the
moment about one axis and the translation along the other, may be taken from the
expressions given in Part 5 of Eurocode 8 (CEN 2004c) in terms of the pile diameter
and Modulus of Elasticity, D and Ec:

– If the Modulus of Elasticity of the soil, Es, is taken constant with depth:

kx = ky = 1.08DEs

(
Ec

Es

)0.21

kϕx = kϕy = 0.16D3 Es

(
Ec

Es

)0.75

kϕx−y = kϕy−x = −0.22D2 Es

(
Ec

Es

)0.5
(4.56a)

– If the soil Modulus is proportional to depth, with value Es at a depth equal to the
pile diameter:

kx = ky = 0.6DEs

(
Ec

Es

)0.35

kϕx = kϕy = 0.14D3 Es

(
Ec

Es

)0.8

kϕx−y = kϕy−x = −0.17D2 Es

(
Ec

Es

)0.6
(4.56b)



4.9 Modeling of Buildings for Linear Analysis 377

For soil Modulus proportional to the square root of depth, the coefficients and
exponents in the applicable expressions assume average values between those in
Eqs. (4.56a) and (4.56b).

4.9.9.6 Separating the Rigid-Body Motion from Seismic Analysis Results
with Soil Compliance

It has been pointed out in Section 4.9.9.1 that, unless a rigid, box-type foundation
system is provided for the entire structure, a representative picture of the distribution
of seismic demands in the lateral load resisting system cannot be obtained, unless
the model includes the compliance of the ground. This is also essential for the cal-
culation of the action effects, seismic or not, which are necessary for the design or
assessment of any tie-beams, foundation beams or a raft foundation.

If the soil compliance is recognised in the model by providing throughout the
foundation elastic supports in the vertical direction and for rotation about the
two horizontal axes, the inertial soil-structure-interaction effect of rocking is fully
reflected in the 1st translational mode in each horizontal direction. Although, at
least for elastic response, the ensuing reduction in the base shear and internal forces
corresponds to physical reality, it might in some cases be beyond what is allowed
by the code, or felt by the designer to be safe-sided. In such cases, most of (if
not all) the favourable effects of soil-structure interaction on the period(s) and
base shear(s) could be removed, without adversely affecting the accuracy of the
distribution of internal forces in the structure. Measures to this end are outlined
below.

Rigid body rocking of the structure is made possible, and affected, mainly by
the vertical elastic supports, and less by the rotational ones about the two horizontal
axes. The effect of rocking is normally confined in the 1st predominantly transla-
tional mode in each horizontal direction. Dunkerley’s rule allows removing it from
the value of the 1st period in direction X, T1X, computed including soil compliance
in the model:

T ∗
1X =

√
T 2

1X − T 2
ϕX (4.57)

where T∗
1X is the estimate of the 1st mode period of the structure fixed to the

ground and TϕX is the period of its rigid-body rocking in the vertical plane through
direction X:

TϕX = 2π

√√√√√√
∑

i
mi (x2

i + z2
i )∑

j
(Kzj x2

j + Kϕy j )
(4.58)

In Eq. (4.58) i indexes the masses of the entire structure and j the support nodes
at the foundation. Heights z are measured from the level of the foundation, while x
is horizontal distance from the centroid in plan of the vertical impedence:
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∑
j

Kzi x j = 0 (4.59)

The (modal) spectral acceleration can then be read from the response spectrum
using the value of the period from Eq. (4.57). Similarly for direction Y.

Rigid-body rocking induces no internal forces. If desired, the influence of rocking
on the 1st mode response in each horizontal direction can be essentially removed,
not only from the internal forces, but also from the modal participation factor, the
modal mass and the displacements that determine interstorey drifts and are of inter-
est for the control of damage in nonstructural elements. Rigid-body rotation in the
1st mode within vertical plane XZ (positive when it is in the +Y direction) can be
estimated from the ratio of the 1st mode overturning moment at the level of the
foundation to the corresponding rotational stiffness:

ΦX ≈

∑
j

(Rzj x j − Myj )∑
j

(Kzj x2
j + Kϕy j )

(4.60a)

where j indexes again the support nodes, Rzj is the modal vertical reaction force (pos-
itive when it acts upwards on the structure) and Myj is the modal reaction moment
about axis Y (positive when its vector on the structure is in the +Y direction). To
remove the effect of rocking from this mode, its eigenvector is modified by:

– subtracting ΦX from all nodal rotations about the positive Y-axis;
– subtracting ΦX zi from all nodal displacements in direction X; and
– adding ΦXxi to all nodal vertical displacements (taken positive upwards).

where i indexes nodes on the structure. Modal internal forces obtained from the
revised mode shape do not incorporate the effect of rocking (i.e., they refer to a
structure fixed to the ground) and will be the same as from a model that includes
soil compliance. The modal participation factor, the modal mass and the modal dis-
placements will be different, though.

The rigid-body rotation in vertical plane YZ, ΦY, (positive when it is in the +X
direction) is estimated as:

ΦY ≈ −

∑
j

(Rzj y j + Mx j )∑
j

(Kzj y2
j + Kϕx j )

(4.60b)

where Mxj is modal reaction moment about axis X (positive when its vector on the
structure is in the +X direction).The eigenvector of this mode is modified by:

– subtracting ΦY from all nodal rotations about the positive X-axis,
– subtracting ΦYzi from all nodal displacements in direction Y, and
– adding ΦYyi to the nodal displacements in direction Z.
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Note that P–Δ effects include the contribution of rigid-body rocking on lateral
drifts and should be computed before removing it.

If design for the vertical component of the seismic action uses the results of an
elastic analysis of the full structure including vertical compliance of the soil, the
effect of the latter should be removed from the calculated dynamic characteristics
of the structure. Dunkerley’s rule can be applied to the computed period, T1Z, of the
mode with the largest modal mass in direction Z:

T ∗
1Z =

√
T 2

1Z − T 2
Z (4.57a)

with the period of rigid-body vertical vibration of the structure on flexible soil com-
puted as:

Tz = 2π

√√√√√√
∑

i
Mi∑

j
Kzj

(4.61)

To remove the contribution of rigid-body vertical vibration from the shape of this
mode, a vertical displacement:

δz =
∑

j

Rzj/
∑

j

Kzj (4.62)

should be added to the modal vertical displacements (taken positive if upwards) of
all nodes i. This changes the modal participation factor and the modal mass, but not
the modal internal forces.

4.10 Modelling of Buildings for Nonlinear Analysis

4.10.1 Nonlinear Models for Concrete Members

4.10.1.1 The Level of Discretisation

Concrete structures are often discretised for nonlinear static analysis under mono-
tonically increasing non-seismic loads at a point-by-point basis and modelled at
the material level. A large number of FEs in 2D or 3D is used, with different Ele-
ments for the concrete and for the reinforcing steel and possibly for their interaction
through bond. Such (micro-)modelling allows us, in principle, reproduce even minor
details in the geometry of the members and follow the history of stresses and strains
at every point. There has been immense progress in constitutive modelling of plain
or reinforced concrete under generalised multiaxial loading (including reversals), in
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mesh-independent FE representation of crack initiation and propagation and of the
behaviour of crack interfaces, etc. (CEB 1996b, fib 2008). These advances notwith-
standing, computational and memory requirements confine point-by-point nonlinear
modelling to the analysis of the seismic response of individual members (especially
shear walls) or subassemblies of members (e.g. beam-column joints, along with the
beams and columns framing into them) and hamper its application to entire struc-
tures in 3D.

Practical nonlinear seismic response analysis, static or dynamic, of full RC
structures is normally carried out using less sophisticated member-by-member mod-
elling, with one-to-one correspondence between elements of the model and mem-
bers of the structure. A single element is used for a beam, a column, the part of
a wall between two floors, a panel of a floor-diaphragm between adjacent frames,
etc. Although this does not account for every minute detail in the geometry and
the reinforcement of a member, it allows a sufficiently close representation of the
key features of its behaviour. Furthermore, it is capable of describing the distri-
bution of inelasticity and damage among and within members with reasonable
computational requirements even for large 3D structures. So, macro- or member-
by-member modelling has been established as the main workhorse for practi-
cal nonlinear seismic response analysis of concrete structures and will remain so
in the foreseeable future. Accordingly, only this modelling approach is covered
here.

The starting point of the overview of member models is Fibre modelling. Fibre
models fall in-between micro- and macro-modelling. They resemble macro-models
in using member models as their building block. To develop the member model,
though, the detailed σ-ε response at a large number of points over several cross-
sections of the member is traced during the entire multi-step response analysis.
Therefore, Fibre models may be considered as an application of the FE method
to the one-dimensional continuum of a prismatic member, using the Bernoulli
assumption of plane sections as a kinematic constraint to express the DoFs of
the various points of a cross-section in terms of the three deformation measures
of the section. They are the most fundamental, physically-based approach, capa-
ble of treating the general case of biaxial flexure and varying axial load, a spe-
cial case of which is uniaxial bending with constant axial force. Fibre models
are also closer to point-by-point FE modelling in what concerns their require-
ments in computer time and memory. Simpler member models are also derived
in Sections 4.10.1.3 and 4.10.1.4 as simplifications of the fundamental Fibre
approach.

If no member yields during the seismic response, nonlinear analysis degenerates
into a linear one. Therefore, the models used in nonlinear analysis and their param-
eters should be such that linear-elastic behaviour can be described as a special case,
without major discrepancies from the results of an ordinary linear analysis. This
does not mean that the level of discretisation should be identical in the two types of
analysis. Nonlinear analysis models may well be more refined, using at the member
level, e.g., Fibre models, provided that they give about the same elastic stiffness as
the simple member models used in linear analysis.
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Before entering the description of the various modelling approaches and mod-
els, it is worth recalling that at each (time-)step i of a nonlinear seismic response
analysis:

– the element tangent stiffness matrix, Km
t, is computed, to be assembled in the

global stiffness matrix Ki in Eqs. (4.23),
– the vector of element internal nodal forces, Fm, should be derived from the cur-

rent deformation state of the element, to be assembled in the global internal force
vector; and

– the difference between Fi in Eqs. (4.23) and the global internal force vector is
equilibrated by iterations within the current step of the analysis, before proceed-
ing to the next one.

4.10.1.2 Fibre Models

The most general, fundamental and powerful model for one-dimensional mem-
bers is the Fibre model. It is also best suited for inhomogeneous materials, like
RC (CEB 1996a). In a Fibre model the member is discretised both longitudinally,
into segments represented by discrete cross-sections or slices, and at the cross-
sectional level, into finite regions. If bending takes place within a single plane (uni-
axial), the discretisation is into strips or “fibres” normal to this plane (e.g. Aziz
1976, Mark 1976). If bending is biaxial, the cross-section is divided into a num-
ber of rectangular finite regions, with sides parallel to the cross-sectional axes, y
and z, see Fig. 4.6 (e.g. Menegotto and Pinto 1973, Aktan et al. 1974, Zeris and
Mahin 1984). The generic fibre comprises concrete and/or reinforcing steel, lumped
at the fibre centroid. The nonlinear uniaxial σ-ε laws of these two materials are

y

z

Fig. 4.6 Monitored sections
and section subdivision in a
Fibre model, adapted from
CEB (1996a)
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employed at that level. They take into account, in principle, stress reversals, con-
crete cracking, tension-stiffening and confinement, buckling of discrete reinforcing
bars, etc.

In a Fibre model the normal strain at a point (y, z) of the member section at x
along its axis is related to the section deformation vector15:

εs(x) = [ϕy(x), ϕz(x), εo(x)]T (4.63)

on the basis of the plane-sections assumption:

ε(x, y, z) = Bs(y, z)εs(x) (4.64)

where:

Bs(y, z) ≡ [z,−y, 1] (4.65)

The section force vector:

Ss(x) ≡ [My(x),Mz(x), N (x)]T (4.66)

is derived from the normal stresses, σ (y, z), over the section A as:

Ss(x) =
∫

A
Bs

Tσ (x, y, z)dA (4.67)

It is incrementally related to εs as:

dSs(x) = Ks
t(x)dεs(x) (4.68)

where the section tangent stiffness matrix is:

Ks
t(x) =

∫
A

E t(x, y, z)Bs
T BsdA (4.69)

The tangent modulus E t(x, y, z) is the ratio of dσ to dε at point (y, z) of
section x. It depends on the type of material at that point (i.e., whether it is steel
or concrete), as well as on its previous σ- and ε-history, through the material cyclic
σ-ε law.

The element nodal force vector at member end nodes A and B:

Sm ≡ [My
A,Mz

A,My
B,Mz

B, N , T ]T (4.70)

15In Eq. (4.63) ϕy denotes the curvature from the analysis and index y signifies the cross-sectional
axis about which ϕy is defined. In this case index y has nothing to do with yielding.
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Mz , θz
A A Mz , θz

B B

My , θy
B BMy , θy

A A

A B
L

N, u
T, θ  T

Fig. 4.7 Internal forces and element deformations at member ends

is incrementally related to the corresponding element deformation vector:

νm ≡ [θy
A, θ z

A, θy
B, θ z

B, N , T ]T (4.71)

where θy, θ z are the chord rotations at nodes A and B16 and u, θT the relative dis-
placement and the twist of these two nodes along and about the member axis x (see
Fig. 4.7):

dSm = Km
tdνm (4.72)

Km
t in Eq. (4.72) is the element tangent stiffness matrix.
Following the classical elastic FE formulation, early Fibre models adopted for

the construction of the element stiffness matrix a “stiffness-based” approach (Aktan
et al. 1974). They postulate an invariant interpolation function matrix Bm(x) for
element deformations such that17:

dεs(x) = Bm(x)Tdνm (4.73)

Then, the principle of virtual displacements is invoked, to compute Km
t as:

Km
t =

∫
L

Bm(x)TKs
t(x)Bm(x)dx (4.74)

16In this section MA and θA denote the moment and the chord rotation from the analysis at member
end node A. Index y signifies the cross-sectional axis about which My

A and θy
A are defined and

has nothing to do with yielding.
17Note that the distribution of inelasticity along the member changes during the response. After
plastic hinging, further flexural deformations take place mainly in the vicinity of the yielding
end(s), spreading thereafter over the rest of the length with further loading. So, an interpolation
function matrix Bm(x) which is invariant during the response is against this physical reality.
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as well as the increment of the internal nodal force vector:

dFm =
∫

L
Bm(x)TdSs(x)dx (4.75)

with dSs(x) from Eq. (4.68), etc.
For the integrations over its area, A, the cross-section at x is discretised into

“fibres” or “filaments” of surface area dA. For the calculation of dσ at point (x,
y, z) and of E t(x, y, z) = dσ /dε, the value of dε calculated at the current step from
Eqs. (4.64) and (4.73) and the cyclic σ-ε law of the material are not sufficient. Any
other past-history information required by this law should be kept in memory at the
section fibre level.

Integration over x along the member length L is in principle performed numer-
ically. Integration stations may be equidistant, if the trapezoidal rule is used, or at
irregular intervals more closely spaced near the ends, if a more elaborate but effi-
cient scheme is adopted, such as Gauss or Gauss-Lobatto (with integration stations
at each end and at three to seven sections in-between). Serious problems sometimes
arise from the numerical integration. Once inelasticity develops at member ends,
the variation of εs(x) with x deviates significantly from that imposed by the use in
Eq. (4.73) of an invariant Bm(x) matrix (typically based on cubic Hermitian poly-
nomials as in elastic FEs). This may cause, e.g., a spurious variation with x of the
internal axial force N(x) = ∫

Aσ (x, y, z)dA, which cannot be corrected through equi-
librium iterations (CEB 1996a). A more serious problem can arise when the analy-
sis proceeds beyond the ultimate strength at an end section. Then, if the end section
continues loading on the post-ultimate strength softening branch, intermediate sec-
tions will unload elastically (CEB 1996a, Zeris and Mahin 1984). If post-ultimate
strength softening is included in the model, this behaviour cannot be reflected by an
invariant Bm(x) matrix and causes numerical problems.

Nonlinear analysis programs with “stiffness-based” Fibre models sometimes
attempt to by-pass the problems above by providing intermediate nodes between
member ends, at a number sufficient to capture the distribution of inelasticity along
the member even when using an invariant Bm(x) matrix between the intermediate
nodes (Izzuddin and Elnashai 1989, Millard 1993). Some programs even have the
capability of automatically generating such internal nodes when member inelastic-
ity develops and subsequently refine the mesh with the progression of inelasticity
(Izzuddin and Elnashai 1989). To reduce computations for the solution of Eq. (4.22),
all DoFs of these intermediate nodes may be condensed out statically, provided that
there are no lumped masses there. Even without condensation, intermediate nodes
do not overly increase the computational demands, as these are determined mainly
from the need to keep track of fibre stresses and strains at the monitored sections
and to perform the integration over the section.

“Flexibility-based” fibre models (Zeris and Mahin 1984, Kaba and Mahin 1984)
tackle the problems above, but not fully. In them the section tangent flexibility
matrix, Fs

t(x), obtained by inverting Ks
t(x), is integrated to give the element tan-

gent flexibility matrix, Fm
t:
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Fm
t =

∫
L

e(x)TFs
t(x)e(x)dx (4.76)

The element equilibrium matrix, e(x), relating Ss(x) to Sm as:

Ss(x) = e(x)Sm (4.77)

is exact irrespective of the distribution of inelasticity along the member, if no loads
are applied between its two ends. As dεs(x) = Fs

t(x)dSs(x) = Fs
t(x)e(x)dSm =

Fs
t(x)e(x)Km

tdvm, incremental internal nodal forces, dFm = ∫
LBm(x)TdSs(x)dx, can

be calculated using a non-invariant flexibility-dependent matrix Bm(x), continuously
updated during the analysis as: Bm(x) = Fs

t(x)e(x)Km
t while the internal nonlin-

earities vary (Mahasuverachai and Powell 1982). An inconsistency persists regard-
less, this time between the section forces Ss(x) computed at the section level from
Eq. (4.67) and those derived from nodal forces through Eq. (4.77). So do most
numerical and physical problems associated with the “stiffness-based” approach.
To solve them without introducing intermediate nodes, more complex mixed two-
field models (with assumed force and deformation distributions) have been proposed
(Taucer et al. 1991).

Although Fibre models are based on the plane-sections assumption, they can
account for nonlinear shear deformations of the member. A shear strain, γ , that
depends on the element shear force V = (MA+ MB)/L through the nodal moments
MA, MB, may be considered as a fictitious chord rotation and added to the flexural
ones at member ends (CEB 1996a). However, the possibility of shear failure cannot
be detected and accounted for in this way.

Fixed-end rotation at the end section of the member due to slippage of longi-
tudinal bars from the joint region beyond that end may be taken into account by
introducing a nonlinear rotational spring at that end, similar to those of the one-
component point-hinge model in Sections 4.10.1.4 and Fig. 4.9. The tangent flex-
ibility of such a rotational spring at end A or B within one of the two orthogonal
planes of bending, xy or xz, is denoted here by fA or fB, respectively. These terms are
added to the diagonal ones, fAA and fBB, relating the increments of inelastic chord
rotations, dθA, dθB, with respect to chord AB to those of the end moments, dMA,
dMB, in the Fibre model’s element tangent flexibility matrix, Fm

t (obtained from
Eq. (4.76) in the “flexibility-based” approach, or by inverting the element tangent
flexibility matrix Km

t of Eq. (4.74) in the “stiffness-based” one):

Fm,total
t =

[
fAA + fA fAB

fAB fBB + fB

]
(4.78)

The total element tangent flexibility matrix, Fm,total
t, obtained by adding diag-

onal flexibility terms, fA, fB, within each one of the two orthogonal planes of
bending, xy or xz, is then inverted to give the tangent stiffness matrix of the ele-
ment. At each end, let’s say A, and within the corresponding plane of bending, this
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term may be approximated as fA = θy,slip/My before flexural yielding and as fA =
Δθu,slip/(Mu-My) afterwards; θy,slip and Δθu,slip may be estimated from Eqs. (3.42)
in Section 3.2.2.3 and (3.63) in Section 3.2.2.9, respectively, while My, Mu can be
obtained as

∫
AσycgdA from the fibre discretisation of the end section, or according

to Sections 3.2.2.2 and 3.2.2.5, respectively (with the effects of any lap-splicing,
FRP-wrapping or prestressing taken into account on the basis of Sections 3.2.3.9,
3.2.3.10 or 3.2.3.11, respectively). As shown in Fig. 3.45(d), the hysteresis loops
of the fixed-end rotation due to bond-slip are narrow, with inverted-S shape. This
type of behaviour may be captured by the hysteresis rules of models with pinching
(Roufaiel and Meyer 1987, Costa and Costa 1987, Park et al. 1987, Reinhorn et al.
1988, Coelho and Carvalho 1990) in Section 4.10.1.6 and Table 4.4, if the pinching
parameters are judiciously chosen.

Fibre models account for the details of the geometry of the cross-section and
of the distribution of the reinforcement, can follow the spreading of inelasticity
along the member and reproduce realistically pinching of moment-curvature
hysteresis loops. As they use directly realistic σ-ε laws of the individual materials
(possibly including confinement of concrete, strength and stiffness degradation
due to low-cycle fatigue, buckling of bars, etc.) Fibre models are “fundamental”
models. In principle, they can take into account the effects of biaxial bending
(see Sections 3.2.3.7 and 3.2.3.8), the coupling between bending and the axial
direction (Section 3.2.3.6), as well as the effects of a varying axial load (see
Section 3.2.2.8). The simplified member-type models described in the following,
by contrast, try to capture the complex overall behaviour of the member through
phenomenological rules and semi-empirical hysteresis relations between moment
and curvature or moment and plastic hinge rotation (see Sections 4.10.1.5 and
4.10.1.6). Notwithstanding their power and rationality, Fibre models require at each
step of the analysis lengthy computations to construct the member tangent stiffness
matrix and calculate stresses and strains at the fibre level at each slice, as well as
tracing all the σ- and ε-history information of each fibre which is necessary for the
calculation of the tangent modulus and the stress at the current strain. So, Fibre
models are far more demanding in computer time and storage than the simplified
member-type models described in Sections 4.10.1.3, 4.10.1.4, 4.10.15 and 4.10.1.6.
Note that the larger the number of nonlinear operations required by a computational
scheme, the higher is the likelihood of a local numerical instability spreading
throughout the structure. Last, but not least, the input properties and parameters of
Fibre models should be carefully tuned, to reproduce the experimental behaviour of
the member, including its connections. Such tuning requires specialised knowledge
and experience, beyond current capabilities of design professionals. All things
considered, it is not at all certain that the power and rationality of Fibre models
warrant their generalised practical use.

To avoid the large computational requirements of Fibre models while retaining
their main strength, namely their ability to capture biaxial effects and axial-flexural
coupling, it has been proposed to replace discretisation of the section and mon-
itoring of the σ-ε history at the fibre level with incremental relations between
the section force and deformation vectors, εs(x) and Ss(x), or between the nodal
force and deformation vectors, Sm and vm. Such models are overviewed in Fardis
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(1991) and CEB (1996a). Some of them use forms of Plasticity Theory in 3D (e.g.
Sfakianakis and Fardis 1991a, b, Bousias and Fardis 1994, Bousias et al. 2002).
They may suffer though from similar or even worse numerical problems than Fibre
models. Besides they do not enjoy their generality. So, they do not seem to be viable
alternatives.

The unique advantage of Fibre models is their ability to take into account the
effects of biaxial bending and the coupling between bending and the axial direction.
When bending is essentially in a single plane and axial-flexural coupling is of no
interest (e.g. in beams) there may be little point in using a Fibre model instead of the
simpler alternatives described in Sections 4.10.1.3, 4.10.1.4, 4.10.15 and 4.10.1.6.
When using a Fibre model in such cases, tinkering with its axial DoFs or with those
associated with out-of-plane bending should be avoided. For example, if the cross-
section is asymmetric with respect to what is considered as a single plane of bend-
ing, restraining its out-of-plane rotation will have a parasitic (normally stiffening)
effect on the computed in-plane flexure. By the same token, constraining the nodal
displacements at the two ends of the element to be the same introduces a fictitious
axial force in the element and changes its inelastic flexural behaviour. If we want to
restrain or constrain such DoFs for reasons of computational efficiency, we would
better use a simple model for uniaxial bending without axial-flexural coupling, of
the type described in Sections 4.10.1.3 or 4.10.1.4.

4.10.1.3 Spread Inelasticity Models with Phenomenological M-ϕ Relations
for Uniaxial Bending Without Axial-Flexural Coupling

In beams bending is uniaxial while axial-flexural coupling is commonly considered
as irrelevant.18 For walls, only inelastic flexure in their strong direction of bending is
of interest, while axial-flexural coupling, although important (see Section 2.2.2.4),
is often ignored. In columns, as we will see in Section 4.10.1.4, the inelastic flexural
response is often treated independently in the two directions of bending for simplic-
ity, while only few aspects of axial-flexural coupling are considered in each direc-
tion. Therefore, uniaxial bending with axial-flexural coupling ignored or treated in
a simplified way, is of prime practical importance.

For uniaxial bending the tangent flexibility matrix of section x, Fs
t(x), degener-

ates into a scalar section flexibility, fst(x) = dϕ /dM and its tangent stiffness matrix
into the section rigidity, ks

t(x) = dM/dϕ. The element tangent stiffness matrix,
Km

t, is of dimension 2×2 and relates the nodal moment increments vector, [dMA,
dMB]T, to the chord rotations increments vector, [θA, θB]T. The spreading of flexural
inelasticity along the member renders meaningless the constant elastic interpolation
vector, bm(x) = (2/L)[(3x/L–2), (3x/L–1)], into which the elastic interpolation func-
tion matrix Bm(x) of Eq. (4.73) degenerates (see footnote to Eq. (4.73)). So, it makes
more sense physically to adopt the flexibility approach and compute the 2×2 mem-
ber tangent flexibility matrix Fm

t of Eq. (4.76), using fst(x) = dϕ /dM for Fs
t(x) and

e(x) = [(x/L-1), x/L] as the equilibrium matrix.

18It is also very uncertain and difficult to model, as it very much depends on the width of the slab
which is effective as a flange of the beam.
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In the present case the prime strength of Fibre modelling at the section level,
namely their ability to capture biaxial effects and axial-flexural coupling, is
irrelevant. So, to determine the tangent rigidity of the section it is not necessary
to discretise the generic cross-section into fibres, monitor the σ-ε response there and
perform the integration in Eq. (4.69). Instead, a hysteretic relation between moment
and (smeared) curvature may be adopted, describing phenomenologically the exper-
imental behaviour or the one analytically derived, e.g., from a fibre model used once
to fit the phenomenological one. The M-ϕ relation may be chosen among the models
presented in Section 4.10.1.6. This is the first simplification advanced here.

The second step for the reduction of the large computational demands of the
fundamental fibre approach and bypassing some of its problems, is to construct
the member tangent flexibility matrix without calculating the tangent flexibility at
various intermediate control sections of the member and numerically integrating
Eq. (4.76). Instead, Eq. (4.76) is integrated analytically, using control sections only
at the ends, but still accounting for the actual distribution of inelasticity along the
member (“spread inelasticity” models). In this way the inconsistency between the
section forces Ss(x) from Eq. (4.67) and those from Eq. (4.77) is bypassed.

If the instantaneous bending moment diagram due to the combination of the seis-
mic and the gravity actions is approximately linear near each member end, plastifi-
cation extends up to a distance (normalised to the member length, L) from end A or
B, respectively, equal to:

λA = (MA − MA
y )/(VAL) ≥ 0, λB = (MB − MB

y )/(VBL) ≥ 0 (4.79)

with the yield moment, My
A or My

B, taken constant throughout each plastic zone. If
the phenomenological M-ϕ relation adopted is multi-linear, having elastic rigidity
EI before yielding and tangent rigidities in primary loading, unloading or reloading
expressed through their piece-wise constant ratios to EI, ϕ will also vary linearly
along each dimensionless length λA and λB. Then, the element tangent flexibility
matrix Fm

t of Eq. (4.76) may be analytically computed, using fst(x) = dϕ/dM for
Fs

t(x) and e(x) = [(x/L–1), x/L] for the equilibrium matrix (Filippou and Issa 1988):

Fm
t =

[
fAA fAB

fAB fBB

]
(4.80)

where:

f AA =
1 + 1 − (1 − λA)3

pA
+ λ3

B

pB

3E I/L
, f AB = −

1 + λ2
A

(
3 − 2λA

)
pA

+ λ2
B

(
3 − 2λB

)
pB

6E I/L
,

fB B =
1 + 1 − (1 − λB)3

pB
+ λ3

A

pA

3E I/L
(4.81)
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In Eq. (4.81) pA and pB denote the ratios of the effective tangent rigidity within
the plastic zone near end A or B, respectively, to the difference of that rigidity from
EI. It is assumed that when the end section unloads, reloads or is in primary loading,
the full length of the corresponding plastic zone does the same. If the plastic zone
near end A is in primary loading, all its sections have the same tangent rigidity, pEI,
where p is the hardening ratio in primary loading. Then pA = p/(1–p). If it unloads
or reloads, the tangent section rigidity is not constant anymore along its length.
It has its minimum value, EIA, at the end section, which unloads or reloads from
the maximum curvature in the zone, while it is equal to EI at a distance λAL from
A, where the section is elastic. If the effective tangent rigidity of the plastic zone
corresponds to the average tangent flexibility along λAL, i.e., to (1/EI+1/EIA)/2,
then pA = 2EIA/(EI–EIA) (which gives 1/pA = 0 in Eq. (4.81) for unloading parallel
to the elastic branch). Similarly for the plastic zone near end B and pB (Filippou and
Issa 1988).

The values of λA, λB in Eq. (4.81) are non-decreasing, giving the maximum
ever length of plastification at the corresponding end. The flexibility matrix evolves
owing to changes in the state of the two plastic zones from loading (or reloading) to
unloading, or vice-versa, or to an increase in their length.

The elastic rigidity, EI, to be used in Eq. (4.81) and as the basis for pA and pB may
be taken equal to My/ϕy, with My and ϕy computed according to Section 3.2.2.2. For
primary loading pA or pB may be taken equal to:

pA(or pB) =
(
Mu − My

)
/
(
ϕu − ϕy

)
My/ϕy − (

Mu − My
)
/
(
ϕu − ϕy

) (4.82)

with Mu and ϕu determined according to Sections 3.2.2.5 and 3.2.2.4, respectively.
The effects of any lap-splicing, FRP-wrapping or prestressing on Mu, My, ϕu, ϕy,
may be taken into account on the basis of Sections 3.2.3.9, 3.2.3.10 or 3.2.3.11,
respectively, as relevant. Different values of unloading or reloading rigidity EIA =
dM/dϕ applies at A for each unloading or reloading branch and a different value
of pA is derived from it as pA = 2EIA/(EI–EIA) (similarly for end B and pB).
The phenomenological hysteretic M-ϕ model determines how the unloading rigidity
depends, in general, on the point of (M and ϕ) reversal where unloading starts and
how the reloading rigidity depends on the value of ϕ where reloading starts and on
the M-ϕ point where it is heading at, etc. (see Section 4.10.1.6).

Strictly speaking the value of EI = My/ϕy in Eq. (4.81) for loading that induces
tension at one side of the section at A and at the opposite side at B (i.e., hogging
moment at A and sagging at B) is different from the EI-value applying for load-
ing that induces compression at these two sides (sagging moment at A, hogging at
B). This is very inconvenient, as the EI values of members determine the global
dynamic characteristics of the elastic structure (natural periods and mode shapes),
which are considered as independent of the direction of loading. So, we should use
in Eq. (4.81) the average EI value of the two ends (also average value for positive
and negative bending, if the section is asymmetrically reinforced). Different values
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of pA and pB can be used at A and B (and for positive or negative bending for asym-
metrically reinforced sections).

Spread inelasticity models with phenomenological M-ϕ relations account only
for flexural deformations within the clear length of the member. Fixed-end rotations
at the end sections due to slippage of longitudinal bars from the joint region beyond
the end may be taken into account as in Fibre models, i.e., via nonlinear rota-
tional springs at the ends as described in Section 4.10.1.2 in conjunction with
Eq. (4.78).

Spread inelasticity models cannot, in principle, account for coupling of the two
directions of bending, and between them and the axial forces and deformations. If
used for columns, they are commonly in the form of two uncoupled uniaxial mod-
els, one for each of the two orthogonal directions of bending. Although the two twin
elements representing the column share its axial force and each has 50% of its full
axial stiffness, the full value of the axial force should be used for the calculation of
the properties of each one of the two twin elements. The value of the elastic stiff-
ness, EI, should be fixed during the response and calculated from the values of My,
ϕy due to the axial force for gravity loads alone. It is fairly simple, though, and
normally does not create numerical problems, to update the yield moment, My, and
(with it) the maximum-ever values of λA and λB from Eq. (4.79), and the hardening
ratios pA, pB from Eq. (4.82) using the current axial force value. This will make a
difference in exterior columns of medium- or high-rise buildings and in piers of cou-
pled walls, where the axial force varies a lot during the response. The value of My,
and the post-elastic primary loading branch derived from it through Eq. (4.82), may
be considered constant during further primary loading. After reversal, by contrast,
and while reloading in the reverse direction, the value of My in that direction should
be updated according to the evolution of the axial force. By the same token, the
value of the uniaxial yield moment signalling plastification of the end section may
be taken to decrease with increasing current moment component in the orthogonal
direction (see Sections 3.2.3.7 and 3.2.3.8). This is computationally more cumber-
some, though, than tracing the axial load and accounting for it, not only owing to
the complications associated with biaxial moment interaction diagrammes, but also
because each one of the two uncoupled uniaxial elements used for the column nor-
mally is unaware of the current state of bending in its companion. All in all, the
returns in accuracy from attempts to emulate Fibre models may not warrant the
sacrifice in simplicity they entail.

4.10.1.4 “Point-Hinge” or “Lumped Inelasticity” Models

Under lateral actions flexural inelastic deformations are concentrated at and near
member ends, since it is there that bending moments have maximum values. So in
the early inelastic beam models inelasticity was taken to be concentrated (“lumped”)
at the ends of the member in zero-length “point hinges”.

In the earliest inelastic model, the two-component element (Clough et al. 1965),
the member is considered as a system of two components in parallel (Fig. 4.8):



4.10 Modelling of Buildings for Nonlinear Analysis 391

Fig. 4.8 Two-component element model

– The first component is an elastic-perfectly plastic beam and represents yield-
ing. Before yielding at the beam’s ends, it is an elastic beam element. After the
moment reaches the yield value at an end, the tangent stiffness matrix becomes
that of an elastic member with a moment release there. If the yield moment is
reached at the other end as well, the tangent stiffness matrix is that of a member
with moment releases at both ends.

– The second component is an elastic beam and represents post-yield hardening.
Its section rigidity is a small fraction, p, of the elastic rigidity, EI, of the member.

The tangent stiffness matrices of the two components are added and the compos-
ite member exhibits a bilinear (elastic-linearly strain hardening) moment-rotation
behaviour with a hardening rigidity of pEI. In order for the sum of the elastic sec-
tion rigidities of the two components to give that of the member, EI, the elastic
rigidity of the elastic-perfectly plastic component is equal to (1–p)EI.

The hysteretic behaviour of the two-component model is bilinear, with unloading
and reloading branches parallel to those in primary (virgin) loading. Such a cyclic
behaviour may fit well steel members with stable hysteresis loops exhibiting a mod-
erate Bauschinger effect. It does not represent well the degradation of unloading
and reloading stiffness and the narrow hysteresis loops of concrete members. So, it
is appropriate only when there is essentially a single inelastic excursion of the mem-
ber and we are interested only in the magnitude of the peak inelastic deformation.
The two-component model significantly overestimates energy dissipation when the
member goes through several inelastic cycles. It has been included regardless in
the libraries of widely used general purpose nonlinear dynamic analysis software,
because in some cases it has certain advantages over the equally simple alternatives
represented by the one-component model described next.
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Fig. 4.9 One-component
element model

To avoid the bilinear hysteresis inherent in the two-component model, a one-
component element has been proposed in Giberson (1967). It is a series model of an
elastic element and nonlinear rotational springs at its ends (Fig. 4.9). All inelastic
deformations are lumped at the two end springs. The two nonlinear end springs are
taken to contribute to the tangent flexibility matrix of the member with diagonal
terms fA, fB alone, as in Eq. (4.78). For uniaxial bending Fm

t is:

Fm
t = L

6E I

[
2 + aA / pA −1

−1 2 + aB / pB

]
(4.83)

where:

– aA and aB are zero-one variables for plastic hinging at the end sections:

• aA = 0 before plastic hinging at end A, i.e., so long as MA < My
A;

• aA = 1 after plastic hinging there, i.e., for MA ≥ My
A;

and similarly for aB at end B;

– pA = (L/(6EI))/fA, pB = (L/(6EI))/fB are the current tangent stiffnesses of the
rotational springs, as a fraction of the elastic stiffness of the member in skew-
symmetric bending, 6EI/L.19 During the course of cyclic loading or response,
piece-wise constant values of fA, fB are derived from the multilinear rules
in Section 4.10.1.5 for primary loading and Section 4.10.1.6 for unloading-
reloading.

Fm
t is inverted to give the member’s tangent stiffness matrix, Km

t. For uniaxial
bending Km

t is:

Km
t = 6E I/L

3 + 2 (aA/pA + aB/pB) + (aA/pA) (aB/pB)

[
2 + aB/pB 1

1 2 + aA/pA

]
(4.84)

19Unlike the two-component element, which turns into a fully elastic model if p = 1, the one-
component element can reproduce elastic overall behaviour only through very large values of the
yield moments, My

A, My
B, at which the point hinges at the ends A and B are activated. As the

rotational springs are in series with the elastic element in-between, setting pA = pB = 1 for them
just increases the overall flexibility of the element (doubles it for skew-symmetric bending).
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In the two- or the one-component element the rigidity of the member section, EI,
may be taken equal to the secant-to-yield-point stiffness, EIeff, from Section 3.2.3.3,
Eq. (3.68). Fixed-end rotations due to slippage of longitudinal bars from the joint
region beyond the member ends can then be reflected in EIeff, through the term
involving asl in Eq. (3.66). If the longitudinal reinforcement is different at the two
end sections of the member, Eq. (3.68) gives two different values of EIeff there.
Moreover, if the end sections are asymmetrically reinforced (as in beams with dif-
ferent reinforcement at top and bottom), the value of EIeff is different for each sense
of bending (positive or negative). According to the reasoning at the 2nd paragraph
from the end of Section 4.10.1.3, the average value of EIeff over the two ends and
the two senses of bending is used then as rigidity of the member section, EI, in the
two- or the one-component model.

The calculated nonlinear seismic response does not depend heavily on the exact
value of the single hardening ratio in primary loading, p, of the two-component
model, or of the two hardening ratios, pA, pB, of the one-component one in the
individual members. So, default constant values, such as 0.05, 0.1, or even some-
times zero, are often used for primary loading. More representative values may be
estimated from the member properties:

p =
(
Mu − My

)
/
(
θu − θy

)
My/θy − (

Mu − My
)
/
(
θu − θy

) (4.85)

For the purposes of Eq. (4.85) Mu, My may be computed according to
Sections 3.2.2.5 and 3.2.2.2, respectively. Sections 3.2.3.5 (or 3.2.3.4) and 3.2.3.2,
may be used for the calculation of the chord rotations θu and θy, respectively. The
effects of any lap-splicing or FRP-wrapping may be taken into account on the basis
of Sections 3.2.3.9 and 3.2.3.10, respectively. Note that hardening ratios for pri-
mary loading have higher values in terms of chord rotations (i.e. from Eq. (4.85))
than curvatures (from Eq. (4.82)), often by a factor of 2 to 3. A single hard-
ening ratio, p, is used in the two-component model, namely the average over
the two ends and for positive and negative bending. The one-component model
can use different values of pA and pB at A and B (and for positive or negative
bending for asymmetrically reinforced sections, although an average value is also
acceptable).

Implicit in the use of the secant stiffness to the yield-point from Section 3.2.3.3,
Eq. (3.68), as EIeff in the one- or two-component model is the assumption of constant
values of the member axial load and of the shear span, Ls, at each end. The same
for the estimation of the hardening ratio in primary loading from Eq. (4.85). For all
practical purposes the axial load may be taken equal to the value due to gravity loads
alone. The choice of a constant value for the shear span (i.e, the distance of an end
section where plastic hinging may take place under lateral loading to the inflection
point) is less clear cut. For a frame member, especially a beam, the natural choice
is to assume that plastic hinges will develop in skew symmetric bending at both
sections where the member frames into transverse ones within the plane of bending.
Then, the shear span is half the clear length from one beam-column joint to the next



394 4 Analysis and Modelling for Seismic Design or Assessment of Concrete Buildings

within the plane of bending: Ls = Lcl/2.20 Plastic hinging in walls takes place only
at the storey’s bottom section and indeed with an imaginary point of inflection well
above that storey. As pointed out in Section 2.2.2.2, the shear span of the entire part
of a wall between floors, defined as the moment-to-shear ratio at the storey’s bottom
section, is about 50% of the height from that section to the top of the wall, Ls =
Htot/2.

An inflection point that stays steady after the first excursion of the member into
the inelastic range is also a necessary condition for the inelastic part of the one-
component model’s tangent flexibility matrix to be diagonal, i.e., with diagonal
terms fA, fB alone, without coupling between the two ends. Establishing the val-
ues of the hardening ratios, pA, pB, of this model on the basis of a fixed shear span
value at the corresponding end implies that a steady inflection point has indeed been
assumed.

A point-hinge or lumped inelasticity member model is intentionally very simple.
So, it does not, and cannot, aspire to account for coupling of the two directions of
bending, and between them and the axial forces and deformations. It can be used
for columns as two separate and uncoupled uniaxial models, one for each of the two
orthogonal directions of bending, sharing the axial force and the column’s full axial
stiffness. As pointed out in the last paragraph of Section 4.10.1.3, any plastic hinge
property in each one of the two twin elements should be calculated on the basis of
the full axial force of the column. The value of EIeff should be considered fixed dur-
ing the response, as calculated from the values of My, θy due to the axial force for
gravity loads alone. It is fairly simple, though, and normally does not give rise to
numerical problems, to activate a hinge when the end moment reaches the current
yield moment, My, as determined from the current value of the axial force. The value
of My and the post-elastic primary loading branch derived from it may be consid-
ered constant during further primary loading. After reversal and during reloading in
the opposite direction, the value of My in that direction should be updated accord-
ing to the evolution of the axial force. The plastic hinge will be activated in the
reverse direction when this updated value of My, or the post-elastic primary load-
ing branch derived from it, are reached. Finally, as pointed out in the last paragraph
of Section 4.10.1.3, in principle a non-zero concurrent moment component in the
orthogonal direction may be taken into account to reduce the value of the uniaxial
yield moment for activation/re-activation of a plastic hinge (see Section 3.2.3.8).
However, with the same reasoning as at the end of Section 4.10.1.3, any gains in
accuracy are not worth sacrificing the inherent simplicity of the one-component
point-hinge model.

20In a beam indirectly supported on another beam at one end, plastic hinging can take place only
at the other end and the beam’s shear span may be taken equal to the beam full clear span. In
girders connected at intermediate points with cross-beams or girders, plastic hinging will develop
only at the girder’s connection with vertical members. Then the shear span is determined on the
basis of the girder clear span between columns into which the girder frames. Although the parts
of a girder between joints with cross-beams may be modelled as individual beam elements, their
effective elastic stiffness and hardening ratios should be taken the same, as established from the
clear span of the overall girder.
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Notwithstanding its lack of generality and inherent limitations, the lumped
inelasticity one-component model has become the workhorse for practical
nonlinear – especially dynamic – seismic response analysis. Obvious incentives for
the user are its flexibility, intuitive appeal, simple computational implementation
and use, minimal computational requirements and superior numerical robustness.
There are good technical reasons as well for its practical application:

– The most common form of the one-component point-hinge model works directly
with chord rotations, which encompass shear deformations of the member and
fixed-end rotations due to bond-slip of longitudinal bars from their anchorage
zones. So, compared with Fibre or spread inelasticity models based on curva-
tures, it lends itself better to fitting or calibrating model parameters using directly
the wealth of member test results, typically given as force-deflection (i.e., -chord
rotation) hysteretic loops, without differentiating between flexural and shear
deformations or bond-slip effects of longitudinal bars from the anchorage. As a
matter of fact, most (if not all) empirical hysteresis rules of Section 4.10.1.6 have
been empirically developed from such test data and suit better models that use
chord rotations. For the same reason, the portfolio of tools offered in Chapter 3
for the derivation of model parameters in terms of chord rotations are wider in
scope and more robust (i.e., associated with smaller scatter or bias) than those for
curvatures.

– The material σ-ε behaviour traced in Fibre models, including yielding, rupture or
even buckling of bars and local crushing of concrete, cannot be directly trans-
lated into loss of member lateral- or axial-load resistance. By contrast, member
ultimate conditions, conventionally identified with permanent loss of peak lat-
eral load resistance, are most conveniently described by response variables at the
member level, notably by chord rotations or shear forces for ultimate condition
due to flexure or shear, respectively.

All things considered, the one-component point-hinge model seems to provide
at present the best option for practical nonlinear seismic response analysis, static or
dynamic, of concrete buildings with realistic size and complexity in 3D, either for
evaluation of the performance of a new design or for assessment and retrofitting of
an existing building. The rationality, power and generality of Fibre models can best
be used in the realm of research.

4.10.1.5 The Uniaxial M-ϕ or M-θ Curve for Monotonic or Primary Loading

To be consistent with the linear analysis into which it degenerates if no member
yields during the seismic response, nonlinear analysis should use about the same
pre-yield stiffness as a usual linear analysis. As emphasised in Sections 3.2.3.3 and
4.9.2, the elastic stiffness of the monotonic force-deformation relation of mem-
bers should be the secant stiffness to the yield-point, so that the global elastic
stiffness corresponds to the elastic branch of a bilinear monotonic global force-
deformation relation. It has also been pointed out there that, if a default elastic
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stiffness of one-half the uncracked gross section stiffness is used, e.g., for con-
sistency with linear analysis, deformation demands are seriously underestimated.
This may ruin the very end of nonlinear analysis, namely the estimation of seis-
mic deformation demands to be compared to the corresponding capacities, be it
for assessment (and/or retrofitting) of existing buildings or for performance evalua-
tion of new designs. Normally, realistic values are used for the capacities, as, e.g.,
given in Chapter 3 and in Annex A of CEN (2005a). Therefore, the estimates of
the demands should also be realistic. This can indeed be achieved if the effective
elastic stiffness of members is taken equal to their secant stiffness to the yield-point
from Eq. (3.68), as Annex A of CEN (2005a) recommends doing in assessment and
retrofitting of concrete buildings on the basis of nonlinear or linear analysis.

A realistic value of the elastic stiffness up to the yield point of all members is
more vital for nonlinear dynamic than for static analysis, because important contri-
butions of higher modes to inelastic response often entail post-yield excursions in
members which may stay in the elastic range under the fundamental mode alone.
In pushover analysis it is primarily (if not only) the “target displacement” that is
affected by the global stiffness of an effective elasto-plastic system normally fitted
to the capacity curve on the basis of equal deformation energy (equal areas, see
Fig. 4.2). This stiffness is in turn not seriously affected by a fictitiously high early
stiffness of certain members.

The corner point of a bilinear force-deformation relation in primary loading is the
yield point of the member, as governed by the member’s most critical (i.e. weakest)
mechanism of force transfer, in flexure, brittle shear or bond of longitudinal bars.
Brittle shear failure before plastic hinging is catastrophic and once it occurs lateral
load resistance is considered to be lost. The M-ϕ or M-θ relation in monotonic or
primary loading stops then at a value of the end moment M = VRLs < My where
VR is the resistance in brittle shear and Ls and My are the shear span and the yield
moment at the end in question. By contrast, ductile shear failure occurs in a flexural
plastic hinge, after the hinge forms. The yield point is still at the yield moment.

In addition to the elastic stiffness and the yield strength, a main parameter
of a bilinear monotonic force-deformation relation is the post-elastic stiffness. A
meaningfully long post-elastic branch is due to flexural inelastic deformations and
normally exhibits strain hardening. A constant hardening ratio (: post- to pre-yield
stiffness) is given by Eq. (4.82) or (4.85) in M-ϕ or M-θ terms, respectively. Recall,
however, that the monotonic (also called primary) M-ϕ or M-θ curve serves as skele-
ton to the hysteresis loops in cyclic loading, which may entail significant strength
decay when ultimate deformation is approached.21 So, to make room for post-elastic
strength degradation, positive strain hardening in flexure may be neglected for sim-
plicity and zero post-yield stiffness may be used, as Eurocode 8 allows doing.

The end point of the primary loading curve is the ultimate deformation. If gov-
erned by flexure, it is the ultimate curvature, ϕu, or chord rotation, θu, in M-ϕ or M-θ
terms, respectively. Sections 3.2.2.4 and 3.2.3.5 (or 3.2.3.4) may be used to com-
pute ϕu and θu, respectively, with the effect of any lap-splicing, FRP-wrapping or

21Recall, in this connection, that the ultimate deformation is conventionally identified with a drop
in peak force resistance after ultimate strength equal to 20% of the ultimate strength value.
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prestressing taken into account on the basis of Sections 3.2.3.9, 3.2.3.10 or 3.2.3.11,
respectively, as relevant. For cyclic loading the primary loading curve may end at
the point where the acting shear force in the plastic hinge is found to exceed the
cyclic resistance against ductile shear failure according to Sections 3.2.4.3, 3.2.4.5
or 3.2.5.4, at a value of the chord rotation less than θu.

A residual post-ultimate moment resistance may be retained in the model after-
wards. However, there is no solid technical support for the selection of its level.
Note, though, that the question of residual resistance is academic. For the perfor-
mance of a structure to be verified as acceptable in practical applications, every
single member (new, retrofitted, or existing and non-retrofitted) should be veri-
fied in the end to have ultimate deformation well above the seismic demand (see
Section 6.5.6 and Table 6.1). So, there is no real need to introduce an abrupt drop in
resistance after the ultimate deformation.

Unlike the elastic stiffness, which should be the same, all other parameters of the
primary loading curve may be different for positive and negative loading, depending
on how symmetric the geometry and the reinforcement of the section is.

Eurocode 8 requires as a minimum a bilinear primary loading curve in nonlin-
ear member models. It allows, though, using instead a trilinear curve, as, e.g., in
Takeda et al. (1970), Park et al. (1987), Reinhorn et al. (1988) and Costa and Costa
(1987) to take into account the difference between pre- and post-cracking stiffness.
If used as skeleton curve for cyclic loading, such a trilinear curve produces certain
hysteretic damping before yielding, which increases from zero at cracking to a max-
imum value at yielding. Moreover, from cracking to yielding the secant stiffness of
the trilinear model does not have a unique value. This ambiguity does not allow
direct comparisons with the elastic response spectrum predictions, let alone confor-
mity with linear analysis in the pre-yielding stage. So, it is strongly recommended to
use in nonlinear dynamic analysis member models with bilinear force-deformation
relationship in primary loading.22 After all, by the time of a strong earthquake con-
crete members most likely will be cracked owing to gravity loads, thermal strains
and drying shrinkage, or even previous shocks. In nonlinear static analysis a trilinear
monotonic force-deformation relationship for members affects only the initial part
of the “capacity curve”, without the problems and ambiguities it causes in nonlinear
dynamic analysis.

4.10.1.6 Phenomenological Models for the Cyclic Uniaxial M-ϕ
or M-θ Behaviour

The M-ϕ or M-θ curve in primary loading suffices for nonlinear static analysis and
serves as skeleton curve in nonlinear response-history analysis. It is supplemented
there with hysteresis rules for post-elastic unloading-reloading cycles.

The main objective of nonlinear response-history analysis in practical
applications is the estimation of member peak seismic deformation demands,
to be compared to the corresponding capacities. Estimates of member peak
deformation demands depend on the hysteretic energy dissipation inherent in

22By the same token, the tensile strength of concrete should be neglected in Fibre models.
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unloading-reloading rules, but are little affected by their precise shape and other
details.23 For this reason, the only requirement posed by Eurocode 8 on hysteretic
models is to realistically reflect energy dissipation within the range of displacement
amplitudes induced in members by the seismic action used for the analysis. More-
over, as the predictions of nonlinear dynamic analysis for peak response are not
highly sensitive to the hysteresis rules, a more essential feature of the hysteretic
model for applications is its numerical robustness under any potential response his-
tory. This is of utmost importance, as any numerical weakness of the model will
certainly show up during at least one of the ground motions for which a system with
hundreds of members is analysed in thousands of time-steps, possibly with a few
iterations in each step. Numerical problems at the member level might spread and
develop into global ones, preventing convergence. Even when the stabilising effect
of inertia forces and damping salvages global stability, local numerical problems
may lead to errors in member demands, which an inexperienced eye cannot detect.
Simple and clear hysteretic models, using few rules to describe the response under
any (small or large, full or partial) cycle of unloading and reloading, are less prone
to numerical problems than elaborate and presumptuous ones, especially when com-
plexity obscures certain unlikely possibilities with dangerous outcomes.

Multilinear unloading and reloading from and to the skeleton curve or to a reload-
ing branch (Fig. 4.10) is simple and computationally efficient. Using δ as the generic
symbol for deformation (ϕ or θ ), unloading from a maximum ever value of δ =
μδy on the primary loading branch is typically taken linear down to a residual
deformation on the δ-axis, δres = εδy, which is different in different hysteretic mod-
els according to Table 4.3. Note that the models in Park et al. (1987), Reinhorn et al.
(1988) and Costa and Costa (1987) have trilinear monotonic or primary loading
curve, using its pre-cracking branch to define the unloading slope. This definition
may be retained even when a bilinear model is used, with the first two branches

Fig. 4.10 Multilinear hysteretic models: (a) straight reloading to past peak point; (b) straight
reloading to point before past peak (Otani 1974, Litton 1975); (c) with pinching

23Residual deformations are very much affected by the details of the hysteresis rules. However,
their estimation is even more influenced by the details of the ground motion. So, if estimation
of residual deformations is indeed of interest, current rules about the minimum number of input
motions and their conformity to 5%-damped elastic response spectrum should be revisited.
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Table 4.3 Residual deformation after unloading from deformation δ = μδy on primary loading
curve (μ > 1, p: hardening ratio of post-yield primary loading branch)

Hysteresis model Unloading rule
Residual deformation
δres=εδy

Takeda et al. (1970), and
Clough and Johnston
(1966)

Unloading stiffness =
elastic stiffness

ε = (1 − p) (μ− 1)

Saiidi and Sozen (1979),
Coelho and Carvalho
(1990),
Anagnostopoulos
(1972), and Costa and
Costa (1987)

Unloading stiffness = μ-a

times the elastic stiffness
(a ≈ 0.5 or from
Eq. (4.90))

ε = μ− (1 + p (μ− 1))μa

Otani (1974), and Litton
(1975)

Unloading to residual
deformation (1–α) times
that in elastic unloading
(α ≈ 0.3 or from
Eq. (4.91))

ε = (1 − α) (1 − p) (μ− 1)

Park et al. (1987), and
Reinhorn et al. (1988)

Extension of unloading
passes through point on
opposite direction’s
pre-cracking elastic
branch where M= aMy

(a ≈ 2)

ε = a (1 − p) (μ− 1)

a + 1 + p (μ− 1)

Roufaiel and Meyer (1987) ε = (1 − p) (μ− 1)

1 + 2p (μ− 1)

replaced by a single one to yielding, as suggested here. The models in Otani (1974),
Litton (1975), Clough and Johnston (1966), Saiidi and Sozen (1979), Roufaiel and
Meyer (1987), Park et al. (1987), Reinhorn et al. (1988), Coelho and Carvalho
(1990) and Costa and Costa (1987) include degradation of unloading stiffness (see
point 2 in Section 3.2.2.6).

If unloading to the δ-axis continues into first-time loading in the reverse direc-
tion, it heads linearly towards the yield point of the primary loading curve in that
direction and follows its post-elastic branch thereafter. If the reverse direction has
been revisited before, we have reloading. It is in reloading that the model accounts
or not for pinching of the hysteresis loops. If it doesn’t, then the extreme point
ever reached on the primary loading curve in that direction normally becomes an
effective yield point to which reloading linearly heads24 (Fig. 4.10). In (Otani 1974,
Litton 1975) this straight reloading branch is directed towards a point on the primary
loading curve before the previous peak, at a deformation of [μ–β(μ–1)]δy instead of
μδy (0 < β < 1). Models without pinching (Takeda et al. 1970, Otani 1974, Litton
1975, Clough and Johnston 1966, Saiidi and Sozen 1979) are more suitable for the
M-ϕ behaviour.

24Except in Saiidi and Sozen (1979), where this branch always heads towards the point on the
primary loading at the maximum deformation ever reached in any of the two directions, even when
this is first-time loading or real reloading.
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Table 4.4 Moment and deformation at corner of bilinear reloading for models with pinching

Model

Reloading branch from (–) to
(+) starting at residual defor-
mation -ε-δy

- mp for Mp = mpMy, and μp for δp = μpδy

Park et al.
(1987)

Reloading heads first toward
point where M = γMy

(γ ≈ 0.5) on extreme
branch of past unloading in
(+) direction from peak
past deformation δ+ =
μ+δy

+ on primary loading
branch to residual
deformation δres

+ = ε+δy. It
stiffens towards δ+ on
primary loading branch
when δres

+ is reached

m+
p =

(ε+ + ε−) γ
[
1 + p+ (μ+ − 1)

]
(ε+ + ε−)

[
1 + p+ (μ+ − 1)

] + γ (μ+ − ε+)

μ+
p = ε+

For reloading from (+) to (–)
m−

p =
(ε+ + ε−) γ

[
1 + p− (μ− − 1)

]
(ε+ + ε−)

[
1 + p− (μ− − 1)

] + γ (μ− − ε−)

μ−
p = ε−

Reinhorn et al.
(1988)

Reloading heads first toward
point where M = γMy

(γ ≈ 0.5) on pre-cracking
elastic branch in (+)
direction. It stiffens towards
past peak point on primary
loading branch when peak
residual deformation
δres

+ = ε+δy is reached

m+
p = (ε+ + ε−) γ

γ + ε−
, μ+

p = ε+

For reloading from (+) to (–):

m−
p = (ε+ + ε−) γ

γ + ε+
, μ−

p = ε−

Roufaiel and
Meyer
(1987)

Reloading to point on elastic
branch where M = mMy

(m = min[1; (0.4Ls/h–0.6)]
≥ 0). It stiffens then
towards peak past
deformation on primary
loading branch

mp = m, μp = m

Coelho and
Carvalho
(1990)

Reloading has stiffness
m-times that of reloading to
the peak past deformation
δ+ = μ+δy

+ on primary
loading branch. It stiffens
towards peak past point on
primary loading branch
when M-axis is reached
(m < 1).

m+
p = mε−

[
1 + p+ (μ+ − 1)

]
μ+ + ε−

, μp = 0

For reloading from (+) to (–):

m−
p = mε+

[
1 + p− (μ− − 1)

]
μ− + ε+

, μp = 0

Costa and
Costa
(1987)

Reloading first has stiffness
μ+

–β-times that of
reloading to the peak past
deformation δ+ = μ+δy

+ on
primary loading branch
(β >0). It stiffens towards
peak past point on primary
loading branch when secant
from origin to that point is
reached.

μ+
p = ε−

[
1 + p+ (μ+ − 1)

]
μ+

(
ε−μ

β−1
+ + μ

β
+ − 1

)
m+

p = ε−
ε−μ

β−1
+ + μ

β
+ − 1

For reloading from (+) to (–):

μ−
p = ε+

[
1 + p− (μ− − 1)

]
μ−(ε+μ

β−1
− − 1 + μ

β
−)

m−
p = ε+

ε+μ
β−1
− + μ

β
− − 1



4.10 Modelling of Buildings for Nonlinear Analysis 401

To include pinching, reloading heads first towards a corner point where the
moment is denoted by Mp = mpMy (mp < 1) and the deformation by δp = μpδy.
It turns then towards the extreme point ever reached on the primary loading curve in
the current direction of reloading (Fig. 4.10). Table 4.4 gives the values of mp and
μp for different hysteretic models that include pinching (Roufaiel and Meyer 1987,
Park et al. 1987, Reinhorn et al. 1988, Coelho and Carvalho 1990, Costa and Costa
1987). Such models are more suitable for the overall M-θ behaviour that includes
the effects of shear deformations and fixed-end rotation.25 With appropriately cho-
sen pinching parameters they may also describe the flexibility of nonlinear rotational
springs added at ends A and B of a Fibre model, to account separately for the fixed-
end rotations due to slippage of longitudinal bars from the joint region beyond that
end (terms fA, fB in Eq. (4.78)).

Reloading after partial unloading (i.e., before the horizontal axis is reached)
follows the unloading path toward the point of last reversal. If unloading resumes
before that point is reached, it continues along the same unloading branch towards
the δ-axis. If reloading turns into unloading before reaching its destination, i.e., the
extreme past point on the primary loading curve in the current reloading direction,
the unloading stiffness is the one corresponding to the original destination of
reloading.

In some models (Park et al. 1987, Reinhorn et al. 1988, Coelho and Carvalho
1990, Costa and Costa 1987) reloading is directed to a point below (i.e. with lower
peak resistance) than the extreme past point on the primary loading curve of that
direction. In new buildings with detailing of members for ductility, degradation
of strength with cycling is negligible. Besides, in general cyclic strength decay
has small effect on the computed response. For given primary loading curve, the
response is more sensitive to the amount of hysteretic energy dissipation, an issue
addressed in the next section.

4.10.1.7 Hysteretic Damping Ratio in Cyclic Uniaxial Models

The hysteretic energy dissipation in post-yield cycles of given amplitude may be
conveniently expressed as an equivalent hysteretic damping ratio, ζ , of a linearly-
damped oscillator with the same natural period, that dissipates the same amount of
energy per cycle as the nonlinear one:

ζ = Eh

4πEel
(4.86)

where Eh is the energy dissipated in a full cycle of loading-unloading-reloading and
Eel is the elastic strain energy, Fmaxδmax/2, at the peak force and displacement of the
cycle.

With ε according to Table 4.3, the first full cycle of loading-unloading-reloading
to peak ductility ratio ±μ gives the following hysteretic damping ratio (Fardis and
Panagiotakos 1996):

25The pinching parameters of the model in Roufaiel and Meyer (1987) depend indeed on the shear
span ratio, to reflect the more pronounced pinching of squat members.
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ζn=1 = 2 (μ− 1) (1 − p + εp) + 3ε

4πμ (1 + p (μ− 1))
(4.87)

except for the Q-hyst model in Saiidi and Sozen (1979), which gives:

ζn=1,Q = (μ− 1) (1 − p + 3εp) + 3ε

4πμ (1 + p (μ− 1))
(4.87a)

Models without pinching (Takeda et al. 1970, Clough and Johnston 1966, Saiidi
and Sozen 1979) or strength decay (Fig. 4.10a) produce the following hysteretic
damping ratio in a full subsequent cycle of unloading-reloading to peak ductility
ratio ±μ (Fardis and Panagiotakos 1996):

ζn>1,no−pinching = ε

πμ
(4.88)

except in Otani (1974) and Litton (1975), where reloading towards a point on the
primary loading curve at deformation [μ-β(μ-1)]δy instead of μδy (Fig. 4.10b)
gives a hysteretic damping ratio in a full subsequent cycle (Fardis and Panagiotakos
1996):

ζn>1,Otani = ε

πμ

(
1 + β (1 − p − pε)

2 (1 − α) (1 + p (μ− 1))

)
(4.88a)

If strength decay is neglected, models with pinching (Roufaiel and Meyer 1987,
Park et al. 1987, Reinhorn et al. 1988, Coelho and Carvalho 1990, Costa and Costa
1987) according to Fig. 4.10c and with mp and μp from Table 4.4 produce the fol-
lowing hysteretic damping ratio in a subsequent full cycle of unloading-reloading to
peak ductility ratio ±μ (Fardis and Panagiotakos 1996):

ζn>1,pinching = 1

2πμ

(
ε − μp + m p (ε + μ)

1 + p (μ− 1)

)
(4.89)

Note that the equivalent damping given by Eqs. (4.87), (4.88), (4.88a) and (4.89)
as a function of ductility ratio ±μ refers to the energy dissipation in a single cycle to
that ductility ratio, at the same period of oscillation as the linear system. If applied
using the peak ductility ratio, μ, that takes place in a seismic response history hav-
ing cycles of varying amplitude, Eqs. (4.87), (4.88), (4.88a) and (4.89) significantly
overestimate the average damping ratio of a linear system with the same period
of oscillation. They can only be used to evaluate a model’s ability to reflect the
hysteretic energy dissipation in members, as derived through Eq. (4.86) from the
experimental response. On this basis, Fardis and Panagiotakos (1996) used about
190 cyclic uniaxial tests with several cycles of pre- and post-yield loading to derive
through Eq. (4.86) experimental pairs of μ and ζ for RC members. The large scat-
ter of individual data, even within a family of specimens with the same geometric
and mechanical properties or even in a single test, obscures the difference between
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the first post-yield cycle and subsequent ones reflected by Eqs. (4.87) and (4.88).
For given value of μ >1, ζ on average increases with increasing shear span ratio,
Ls/h, decreasing axial load ratio, ν, increasing ratio of confining steel and decreasing
ratio of longitudinal reinforcement. However, only the dependence on Ls/h is statis-
tically strong. Statistical fitting with a presumed hardening ratio p=0.02 has given
the following expressions for certain model parameters (Fardis and Panagiotakos
1996):

– exponent a for unloading in (Saiidi and Sozen 1979, Coelho and Carvalho 1990,
Anagnostopoulos 1972, Costa and Costa 1987):

a = 0.84 − 0.09
Ls

h
(4.90)

– coefficient α for unloading in (Otani 1974, Litton 1975):

α = 0.75 − 0.095
Ls

h
(4.91)

– pinching parameter m in (Roufaiel and Meyer 1987):

m = 0.465 (4.92)

The data suggest significant energy dissipation in post-cracking, pre-yield load
cycles, equivalent to a damping ratio of about 8%, almost independently of the
amplitude of loading and of specimen characteristics. This may mean that, if a bilin-
ear model is used, it may be physically more appropriate to use a damping value
higher than 5% in the damping matrix C characterising elastic response. However,
this will bring about inconsistencies with the default, conventional value of 5% asso-
ciated with elastic response spectra in codes.26

4.10.1.8 Concluding Remarks on Concrete Member Models for 3D Analyses

It is natural to expect that a nonlinear seismic response analysis is at least as good as
a linear one in tackling general design situations in their full complexity. However,
the nonlinear static analysis method has been developed for analysis of the seismic
response in 2D (no matter whether the structural model is in 3D) and its applicabil-
ity for truly 3D response is still questionable. The nonlinear dynamic method can, in
principle, be applied for seismic response analysis in 3D, although it has been devel-
oped primarily for 2D analysis. Application of nonlinear seismic response analysis

26As a matter of fact, the universal value of 5% damping associated in codes with elastic response
spectra is just a compromise between the lower values acknowledged for prestressed concrete and
structural steel with bolted or welded connections on one hand and the higher ones for cracked
concrete members.
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in 3D presumes that appropriate member models under 3D loading are available.
As emphasised is Section 4.10.1.2, Fibre models serve well this end. However,
their large requirements in computer time and memory, the exponential increase
of the risk of numerical problems with the amount of calculations and the spe-
cialised knowledge and experience needed to tune Fibre models to the experimen-
tal behaviour, limit currently their applicability in practical design and assessment.
Point hinge models cannot represent well the post-elastic behaviour of members in
two orthogonal directions without sacrificing the simplicity, flexibility and reliabil-
ity/numerical stability that make them the model of choice for practical nonlinear
analysis in 2D. The currently common use of one independent and uncoupled point
hinge model in each horizontal direction is acceptable, when the nonlinear response
is primarily in one of the two directions of bending, as is often the case in fairly
symmetric buildings under a single horizontal seismic action component. However,
it may be insufficient – and as a matter of fact unconservative – for two concurrent
horizontal components and/or for strongly torsional response due to irregularity in
plan. All in all, the lack of reliable, yet simple and inexpensive models for the inelas-
tic cyclic behaviour of vertical members in two transverse directions is still the sin-
gle most serious challenge for full-fledged nonlinear seismic response analysis in
3D, static or dynamic.

4.10.2 Nonlinear Modelling of Masonry Infills

4.10.2.1 Modelling of the Cyclic Behaviour

As the main features of the cyclic behaviour of infills have not been presented else-
where in the book, they are highlighted here, together with their modelling.

The macroscopic behaviour of an infill panel may be described in terms of either:

1. the total infill shear force, V, and the relative horizontal displacement between
top and bottom of the panel, δ; the ratio of δ to the clear infill panel height, Hcl,
gives the smeared shear strain of the panel, γ = δ/Hcl, which is essentially the
interstorey drift ratio of the surrounding frame; or

2. the axial force in the compressed diagonal (the equivalent strut), F, and the cor-
responding shortening of the diagonal, or, equivalently, the compressive strain
along the diagonal, ε.

The panel shear strain, γ , and the diagonal compressive strain, ε, are related as: γ =
2ε/sin 2θ . The infill shear force, V, is the horizontal projection of the diagonal strut’s
axial force, F: V = Fcosθ , where θ is the angle between the horizontal and the panel
diagonal: θ = arctan(Hcl/Lcl). So the pairs V-γ and F-ε are interchangeable. With
this in mind, the infill panel behaviour is described and modelled in what follows in
generic force-deformation terms, F-δ.

The response of an infill panel to monotonic or primary loading may be approx-
imated as a multilinear curve (dashed line OAoUoRo in Fig. 4.11). A minor change
in stiffness at the first separation of the infill from the frame may be neglected and



4.10 Modelling of Buildings for Nonlinear Analysis 405

Fig. 4.11 Cyclic force-deformation model of infill panel in Panagiotakos and Fardis (1994) and
Fardis and Panagiotakos (1997a)

the first change in slope at point Ao may be taken to correspond to the first visible
cracking of the panel. The peak point, Uo, is at ultimate strength. The post-ultimate-
strength branch may also be taken linear, leading to the horizontal residual strength
branch. If there are asymmetric openings, the virgin loading curve in the opposite
direction, OAo

′Uo
′Ro

′, may not be a mirror image of OAoUoRo with respect to O.
Under cyclic loading the primary loading curve is the skeleton and envelope for

reloading. In the model described here (Panagiotakos and Fardis 1994, Fardis and
Panagiotakos 1997a), which is a refinement and extension of Tassios (1984), the
primary loading curve, OAUR in Fig. 4.11 gradually degrades with cyclic deforma-
tions. Specifically, if in a post-cracking half-cycle i, a maximum ever peak defor-
mation is reached, δi, for positive, δi

′, for negative, then the ordinates of the corner
points of the primary curve decrease as:

Fj = Fjo e
−a

∑
i δi

δcr
−a′

∑
i δ

′
i

δ′
cr (4.93)

where j denotes points A (or cr), U (or u) and R, j′ points A′, U′, and R′ in the reverse
direction, δcr = Fcro/Ko is the cracking displacement, (with δcr

′ defined similarly in
the reverse direction) and a, a′ are parameters.

Before the infill cracks, unloading and reloading takes place along the non-
degraded first branch of the virgin loading curve with the initial elastic stiffness
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Ko (respectively K′
o). After cracking, unloading from the skeleton curve, e.g., from

(Fi, δi), takes place initially with a slope equal to the degraded (by cycling) elastic
stiffness, K = Fcr/δcr, until the force is reduced to a fraction α of the non-degraded
value of the ultimate force, Fuo. Unloading below that force level and continuation
into first loading or reloading in the opposite direction after the δ-axis is reached are
softer, as cracks open in the direction of reloading and contact with the frame is lost.
This takes place before full closure of the cracks and re-instatement of contact in the
past (opposite) direction of loading. The softer unloading-reloading branch heads
towards point D′, where cracks and interfaces in the previous loading direction do
close and cracking and loss of contact in the new loading direction stabilises. Point
D is at a force -βFuo

′ and at a horizontal distance γ (δk-δcr
′) from point C′, which is

also at a force -βFuo
′ but on the elastic branch. δk–δcr

′ is the maximum past post-
cracking excursion in the current direction of reloading and γ < 1.0 is a parameter.
If cracking has not taken place in a previous cycle in the direction of reloading, point
D′ coincides with C′. Then, after reaching C′ reloading turns into primary loading
in that direction. If, instead, there has been in the past a post-cracking excursion to
a peak point (Fk, δk) on the degraded skeleton curve beyond A′, reloading from D′

heads straight to a point on the unloading branch from (Fk, δk) at a force level (1–
α)Fk. Reloading past that point continues to the degraded skeleton curve OA′U′R′,
beyond which it follows the skeleton curve as in primary loading.

Reversal during the initial, stiffer part of an unloading branch, e.g., the one start-
ing at (Fi, δi) on the degraded skeleton curve takes place along that same branch until
its starting point (Fi, δi). From there on it follows the primary loading branch from
where the unloading had started. A reversal from the subsequent, softer unloading-
reloading branch starts renewed loading towards a point on the unloading branch
from the most extreme deformation in this direction, δi, but at a lower force level,
(1–α)Fi. Reversal during the subsequent, stiffer reloading branch produces unload-
ing with the degraded elastic stiffness, K = Fcr/δcr, until the nearest force level
at ±βFuo is reached and the softer branch of unloading-reloading begins.

For a full cycle to a peak deformation μδcr in each direction, the above hysteretic
model gives the following equivalent viscous damping ratio:

– in the first full cycle in each direction:

• if the deformation μδcr is less than that at ultimate strength, μδcr, i.e., if μ <
μu = δu/δcr:

ζn=1, pre−ult = 1 − p

2π

(
μ−1

μ

)
2 + p(μ−1) + 0.5β

1 + p(μ−1)
(4.94a)

• if the deformation μδcr exceeds that at ultimate strength, μ > μu = δu/δcr:

ζn=1, post−ult =
(μ−1)(1+p(μu−1))+μu (p1(μ−μu )−p(μu−1))+(μ−1−p(μu−1)+p1(μ−μu ))(1+p(μu−1)−p1(μ−μu )+0.5β)

2πμ(1+p(μu−1)−p1(μ−μu ))
(4.94b)
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– in a full unloading-reloading cycle after the first:

• if the ultimate strength is not exceeded, i.e., if μ < μu:

ζn>1, pre−ult = (1 − p)(μ− 1)

2πμ

2β + (1 − α)(1 − γ ) (1 + p(μ− 1))

1 + p(μ− 1)
(4.95a)

• if the ultimate strength is exceeded, μ > μu:

ζn>1, post−ult =
μ− 1 − p(μu − 1) + p1(μ− μu)

2πμ

2β + (1 − α)(1 − γ ) (1 + p(μu − 1) − p1(μ− μu))

1 + p(μu − 1) − p1(μ− μu)
(4.95b)

In Eqs. (4.94) and (4.95) p is the hardening ratio of the post-cracking primary
branch and p1=K2/Ko the post-ultimate softening ratio.

For nonlinear static (pushover) analysis, the force-deformation response of solid
infill panels may be simplified to the multilinear curve of Fig. 4.12.

Fig. 4.12 Simplified
force-deformation curve of
infill panel for nonlinear
static analysis

4.10.2.2 Model Parameters

Any multilinear infill model for monotonic loading with corner points at infill (vis-
ible) cracking, ultimate strength and post-ultimate residual strength is parametrised
through the force and deformation values at these points. One of these values may
be replaced by the slope to that point, secant from the origin or tangent to an adja-
cent corner of the curve. The values of these parameters should be determined on
the basis of the geometry of the infill panel and of the material properties of the
masonry, especially in the direction of the diagonal of the infill panel.27 Rules for
the calculation of these parameters should be developed or calibrated on the basis

27As there is coupling between the infill and the frame, these parameters cannot be given as if the
infill panel were a stand-alone component, but depend in principle on the properties and sizes of
the surrounding frame members.
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of (cyclic) test results. This is, however, hampered by insufficient information on
the material properties of the masonry of the tested infilled frames in the diago-
nal direction. Rare cases where such information has been reported are Stylianidis
(1985) and Pires (1990). So, they have been used in Panagiotakos and Fardis (1994)
to develop such rules, as highlighted below for the case when the force F is taken
as the total infill shear force, V, and the displacement, δ, as the relative horizontal
displacement between top and bottom of the panel (case 1 in Section 4.10.2.1).

1. The corner point at infill (visible) cracking (Ao in Fig. 4.11) can be specified
through the shear force at cracking in monotonic loading, Fcro, and the initial
stiffness to panel cracking, Ko = Fcro/δcr. Among various (simple) alternatives
examined in Panagiotakos and Fardis (1994), the best agreement with the test
results in Stylianidis (1985) and Pires (1990) is given by:

– an infill initial cracking strength equal to:

Fcro = τcr A (4.96)

– an initial stiffness to panel cracking of:

Ko = Gw A/Hcl (4.97)

where:

• A = Lcltw and Hcl denote the horizontal cross-sectional area of the infill and
its clear height, respectively, and

• τ cr and Gw are the diagonal cracking strength and the shear modulus, respec-
tively, of the masonry as determined from wallette diagonal compression tests
(e.g., according to ASTM E519-81).

2. The ultimate strength point of the infill (Uo in Fig. 4.11) can be specified through
the ultimate shear force in monotonic loading, Fuo, and the secant stiffness to that
point from the origin. Among various (simple) alternatives examined in Pana-
giotakos and Fardis (1994), the best agreement with the test results in Stylianidis
(1985) and Pires (1990) is given by:

– a secant stiffness to ultimate strength, Ku = Fuo/δu, obtained from that of the
elastic diagonal strut given in Section 4.9.8 for linear analysis:

Ku = Ew(winftw) cos3 θ/Lcl (4.98)

where:

• the strut width, winf, is given from Eqs. (4.46) in Sect. 4.9.8 and
• the elastic modulus, Ew, is in the panel diagonal direction, or as close to it as

possible, if the value along the diagonal is not available (e.g., in the horizontal
direction if Lcl> Hcl, or in the vertical if Lcl< Hcl);
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– an ultimate strength 1.3 times the cracking strength:

Fuo = 1.3 Fuo (4.99)

Alternatively Fuo may be taken equal to either:

• the horizontal cross-sectional area of the infill A = Lcltw, times the shear
strength of bed joints, or

• the resistance of the diagonal strut in compression (i.e, its cross-sectional area,
winftw, times the diagonal compressive strength of the masonry) projected on
the horizontal direction.

3. The onset of the residual strength branch (Ro in Fig. 4.11) can be obtained from
the ultimate strength point (Uo in Fig. 4.11), the residual strength and the tangent
stiffness of the post-ultimate-strength softening branch in monotonic loading, K2,
expressed as the post-ultimate softening ratio, –p1, times the initial stiffness to
cracking, Ko. These parameters are hard to quantify from test results, but are for
practical purposes less important than those in 1 and 2 above. For solid panels
well confined by the surrounding frame a value of 0.05 for p1 and of 50% of
the ultimate strength, Fuo, for the residual strength seem to be supported by test
results.

All the above refer to virgin, monotonic loading. Parameters a and a′ determine
according to Eq. (4.93) the cyclic decay of the monotonic curve when it serves as
envelope to the hysteresis loops. If the degradation of the envelope in one direction
is independent of previous infill damage in the opposite direction, then a′ = 0. If
cyclic deformations in either direction affect the same the response degradation in
both directions, parameters a and a′ may be about equal. The test results in Zarnic
and Tomazevic (1985) and Stylianidis (1985) suggest a+ a′ ≈ 0.05.

The value of the damping ratio under cyclic loading is affected by those of
parameters:

– α : percentage-drop in peak force in repeated full unloading-reloading half-cycles
to or beyond the peak past displacement in the same direction of loading,

– β: force at the transition from the initial stiffer unloading to the softer stage of
unloading-reloading, or from this latter stage back to a subsequent stiffer reload-
ing, as a fraction of the initial ultimate strength, Fuo and

– γ , which determines the displacement at the transition between the initial softer
stage of reloading and the subsequent stiffer one, as a fraction of the maximum
previous post-cracking excursion in the current reloading direction.

The outcome of Eqs. (4.94) for the damping ratio in the first full cycle is inde-
pendent of α and γ and rather insensitive to the value of β. It is around 15% in the
1st cycle to μ = 2, in good agreement with the test results in Stylianidis (1985) and
Zarnic and Tomazevic (1985); if the 1st cycle takes place at larger values of μ, the
damping ratio from Eqs. (4.94) increases to about 30%, but there are no 1st cycle
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data at so large μ values for confirmation. For subsequent cycles the damping ratio
from Eqs. (4.95) is nearly proportional to (1-α) and fairly sensitive to the values of
β and γ , increasing slightly with increasing β and with decreasing γ . Values α ≈
0.15, β ≈ 0.1 and γ ≈ 0.8 give fairly good overall agreement with the test results in
Stylianidis (1985) and Zarnic and Tomazevic (1985).

4.10.3 Modelling of Foundation Uplift

Nonlinearities in ground compliance during the seismic response normally derive
more from the no-tension feature of the soil and its interface with foundation ele-
ments, than from the behaviour of the soil itself in shear or compression. This shows
up mostly as uplift of the foundation element from the ground. Uplift of rafts or long
foundation beams is not so extensive and normally can be ignored. To take it into
account, one should model ground compliance with springs of the no-tension type.
The same modelling should be used under flexible footings.

Normally footings may be considered as rigid. The three conventional springs of
Section 4.9.9.4 (the vertical one and one rotational spring per horizontal direction)
at the node at the centre of the underside of a rigid footing have constant stiffness
based on full contact at the footing-ground interface. So, they are sufficient for linear
analysis and before any significant uplift takes place. After the onset of uplift the
linear springs do not reflect:

– the significant reduction of rotational compliance (softening), due to loss of con-
tact area;

– the (usually upward) displacement at the centre of the footing due to rotation
about an axis which does not pass through the centre of the footing in plan;

– the different magnitude (normally larger) of the absolute vertical displacements
of the ends of tie-beams connecting to the uplifting part of the footing perimeter,
relative to those connected to the down-going part.

Such effects may be captured by using a pair of nonlinear vertical springs at
opposite ends of the footing that account for uplifting. The spring at the uplifting
end has lower stiffness than that at the down-going end. Such springs may be derived
from the dependence of the rotation, θ , and vertical displacement at the centre of the
footing, δo, on the applied moment M fitted in Crémer (2001) to results of nonlinear
2D FE analyses of uplifting strip footings on elastic or inelastic soil. According to
Crémer (2001), if B is the width of a footing in the plane of M, the relations giving
θ and δo in terms of a monotonically increasing M are:

θ ≈ θo

2 − M
Mo

(4.100)

δo ≈ Bθo

2

[
M
Mo

− 1

2 − M
Mo

+ ln

(
2 − M

Mo

)]
(4.101)
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In Eqs. (4.100) and (4.101) Mo denotes the moment at the onset of uplift
and θo=Mo/Kθo the associated (elastic) rotation derived from the elastic rotational
impedance Kθo of a footing in full contact with elastic soil. According to Crémer
(2001), if the vertical load N at the base of the wall is very much lower than the
bearing capacity of the (concentric) footing, Nu, the value of Mo on elastic soil may
be taken approximately equal to:

Mo ≈ 0.25B N (4.102)

Note that the outcome of Eq. (4.102), fitted to the results of 2D FE analyses
of elastic soil, exceeds by 50% the value of BN/6 predicted for a rigid footing by
the subgrade reaction modulus approach. For higher values of N a more accurate
approximation is (Crémer 2001):

Mo ≈ 0.25B N exp

(
−2.5

N

Nu

)
(4.102a)

The secant relation between the force F=M/B at two nonlinear vertical springs
introduced at the ends of the footing to model uplift and the associated vertical
displacements are:

– at the uplifting edge (δ1>0):

δ1 = Bθo

2

(
F B
Mo

2 − F B
Mo

+ ln

(
2 − F B

Mo

))
(4.103a)

– at the down-going opposite edge (δ2>0):

δ2 = Bθo

2

(
1 − ln

(
2 − F B

Mo

))
(4.103b)

giving tangent stiffnesses:

d F

dδ1
= 2Kθo

B2

(
2 − F B

Mo

)2

F B
Mo

(4.104a)

d F

dδ2
= 2Kθo

B2

(
2 − F B

Mo

)
(4.104b)

If the axial load N is low compared to Nu, there is very little hysteresis in cyclic
loading, i.e. the cyclic M-θ and F-θ relations are nonlinear-elastic, recentring to
approximately zero displacement for zero moment or force and dissipating very
little energy. Then Eqs. (4.104) may be applied also for nonlinear response-history
analysis, considering the springs as nonlinear elastic.
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Column footings may uplift and rock in both orthogonal horizontal directions.
Then, a different pair of nonlinear springs based on Eqs. (4.104) should be used
in each horizontal direction, in a cross-like arrangement around the centre of the
footing.

This procedure is exemplified in Section 6.9.2.2 for the pushover analysis of a
plane frame with a shear wall at its central bay.

4.10.4 Special Provisions of Eurocode 8 for Nonlinear Analysis

Gravity loads concurrent with the seismic action should be applied on the relevant
elements of the model in the course of the nonlinear analysis, as separate analy-
ses and superposition cannot be used. Eurocode 8 (CEN 2004a) implicitly allows
neglecting the effect of the variation of axial force of vertical elements during
the seismic response and determining (the parameters of) their force-deformation
relations on the basis of the axial force due to gravity loads alone. As we have
seen in Sections 4.10.1.2, 4.10.1.3 and 4.10.1.4, however, most element models can
take into account – be it approximately – the effect of this variation on the force-
deformation relations of vertical elements .

For simplicity, Eurocode 8 (CEN 2004a) allows neglecting in nonlinear analysis
bending moments in vertical members due to gravity loads, unless they are signifi-
cant with respect to the yield moment. Note, however, that including such moments
and starting the nonlinear seismic response analysis from a non-zero initial force
state presents no special difficulty.

The parameters of force-deformation models for nonlinear analysis should use
the best-estimate (mean) values of material strengths, which are higher than the
nominal or design values.28 For existing buildings the best-estimate of the strength
of a material is the one inferred from in-situ measurements, lab tests of samples or
any other relevant source of information (e.g., in the absence of hard data, from lit-
erature and judgment). Regarding the mean strength of materials to be incorporated
in future, the mean strength of concrete is normally taken as 8 MPa greater than
the characteristic strength, fck (CEN 2004b). For the reinforcing steel, the locally
applicable data should be used, if known (e.g., from test reports of the same type of
steel produced in about the same period). Statistics drawn from the widest available
survey of ductile steels of the type used in the seismic regions of Europe in the early
1990s are summarised in Table 3.2. Notwithstanding the fairly large inter-country
variation of the ratio of the mean yield strength, fym, to the nominal, fyk, the average
fym/fyk ratio of the five columns of Table 3.2 is exactly equal to the commonly used
default value of 1.15.

28Recall that, even in linear analysis, the Elastic Modulus of concrete is derived from the best-
estimate (mean) value of concrete strength, fcm, and not from the nominal one, fck (CEN 2004b).
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4.10.5 Example Applications of Nonlinear Analysis in 3D
and Comparison with Measured Dynamic Response

4.10.5.1 Computational Modelling for Seismic Response Analysis, Assessment
and Retrofitting

A computational capability has been developed at the Structures Laboratory of
the University of Patras for modelling and seismic response analysis of concrete
buildings, as well as for their seismic assessment and retrofit design according to
the relevant provisions of Eurocode 8, Part 1 (CEN 2004a) and Part 3 (CEN 2005a).
It has been incorporated in computer program ANSRuop, a significantly improved
and expanded version of the ANSR-I program (Mondkar and Powel 1975). All types
of seismic response analysis in Eurocode 8 are covered, always in 3D. The mod-
elling approach may be considered as the simplest one allowed in Eurocode 8, Parts
1 and 3. Yet, it represents fairly well the inelastic behaviour of members and the
structure as a whole.

The key points of the nonlinear modelling approach adopted and illustrated in
the present applications are the following:

1. Prismatic beam elements in 3D are used for all members (see Section 4.10.1.1).
A point hinge model is adopted for them (see Section 4.10.1.4) with bilin-
ear M-θ curve for primary loading (see Section 4.10.1.5). Nonlinear dynamic
analysis uses modified-Takeda-type hysteresis rules (Otani 1974, Litton 1975)
(see Section 4.10.1.6 and Table 4.3), with unloading parameter α = 0.3 (see
Table 4.3) and reloading parameter β = 0 (cf. definition of β in Section 4.10.1.7
in relation to Eq. (4.88a)).

2. The element elastic stiffness is the secant stiffness to yield-point, (EI)eff, from
Eq. (3.68) and Section 3.2.3.3. Its calculation is based on the member axial
force due to gravity loads alone and on the values of the shear span at the yield-
ing end(s) of the member suggested in Section 4.10.1.4: for beams or columns,
half the clear length from one beam-column joint to the next within the plane of
bending; for walls, 50% of the height from the bottom section in a storey to the
top of the wall. The average secant-to-yield-point stiffness at the two end sec-
tions, in positive or negative bending is used (see Section 4.10.1.4). For beams
that end at an indirect support on another beam (e.g., for beams B3, B7 and
B9 in Fig. 4.14(a)) the shear span is taken equal to the beam full clear span.
For girders connected at intermediate points with cross-beams or girders, the
shear span is determined on the basis of the girder clear span between adja-
cent columns into which the girder frames (see Fig. 4.18-right for several such
girders, two of which are indirectly supported at one end by another girder).
Although the parts of the length of a girder between joints with cross-beams
are modelled as individual beam elements, their elastic stiffness is taken the
same all along the girder and equal to the value established from the secant-to-
yield-point stiffness at the (two) end section(s) and the clear span of the overall
girder. The effective flange width, in tension or compression, of T- or L-beams
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on either side of their web is taken as 50% of the beam shear span or of the
distance to the adjacent parallel beam (whichever is shorter). Slab bars parallel
to such a beam and falling within this width are considered fully effective as
longitudinal reinforcement of the beam’s end section.

3. The strength, stiffness and behaviour of vertical members are considered inde-
pendent in the two orthogonal planes of bending. The yield moment of each
element is determined from the current value of its axial force, but considered
constant during further primary loading. After reversal and during reloading in
the reverse direction, the value of My is updated according to the evolution of
the axial force (see last paragraph of Section 4.10.1.3 and further discussion in
Section 4.10.1.4). Walls with non-rectangular section (e.g., the U-shaped wall
around the elevator shaft in Fig. 2.21 and the two large walls with L-section
at the corners of the right-hand side of the building in Fig. 4.18) are modelled
with a single prismatic element per storey at the shear centre of the section.

4. Joints are considered as rigid, but slippage of longitudinal bars through or from
a joint is accounted for, by including the effect of the resulting fixed-end rota-
tion of member end sections on the secant-to-yield-point stiffness of Eq. (3.68)
and the ultimate chord rotation (i.e., by setting asl = 1 in Eqs. (3.42) and (3.78),
etc.).

5. Eccentricities in the connections between members are modelled through rigid
elements.

6. The in-plane flexibility of floor diaphragms is included at the level of individual
panels in plan, by considering the beams at the boundary of a panel (including
the balconies) as prismatic elements in 3D with moment of inertia about an axis
normal to the floor plane and cross-sectional area according to Eqs. (4.44) in
Section 4.9.5.2.

7. Staircases are included in the model. Landings between floors, along with their
supporting beams, are modelled in-plane according to point 6 above. Flights are
modelled according to points 1–5 as oblique column elements (i.e. with strength
and stiffness in both transverse directions) between the two nodes belonging to
vertical elements closest to the axis of the flight at the two horizontal levels it
connects.

8. P-Δ effects are included.
9. Masses are lumped at the nearest node of the model.

10. Rayleigh damping is used, with 5% damping ratio at the average period of the
two modes with the highest modal base shears in two orthogonal horizontal
directions and at half that value.

11. Damage is evaluated at member ends, using as index the ratio of the demand
from the analysis to the corresponding capacity. Flexural damage is evaluated in
terms of chord rotations, using as capacity the empirical ultimate chord rotation
from Eqs. (3.78) in Section 3.2.3.5, with modifications due to lack of detailing
for earthquake resistance, lap-splicing of vertical bars in plastic hinge zones,
jacketing with FRP, etc., according to Sections 3.2.3.9 and 3.2.3.10. Shear dam-
age is evaluated in terms of forces, using capacities for failure due to diago-
nal tension after yielding from Eqs. (3.114) in Section 3.2.4.3 and for shear
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failure by diagonal compression before or after yielding from Eq. (3.115) in
Section 3.2.4.5 or Eq. (3.127) in Section 3.2.5.4, as relevant. Demand-capacity-
ratios of vertical members in the two orthogonal planes of bending are com-
bined via the SRSS rule (see Eq. (3.84) in Section 3.2.3.8). In the calculation of
the damage ratio (demand-to-capacity) both demand and capacity are updated
during the response-history. The most adverse (i.e., the maximum) value of the
damage index during the entire response is reported in the end. Values of this
index near 1.0 signify likely or incipient failure.

The seismic response analysis and assessment capability has been applied to
three concrete buildings, all designed with codes and practices applying in Greece
from the 1950s to the 1970s, having various types and degrees of irregularity in plan
that induce torsional response. The results of three Pseudo-Dynamic (PsD) tests of
the first of these buildings provide, indeed, the basis for validation of the computa-
tional capability for seismic response analysis and member assessment, as well as
of the modelling adopted here.

4.10.5.2 Verification of Modelling, Analysis and Assessment on the Basis
of Pseudo-Dynamic (PsD) Test Results

The 3-storey full-scale building of Figs. 4.13 and 4.14 has been subjected to PsD
testing under bi-directional excitation at the ELSA facility of the JRC in the frame-
work of the SPEAR project. It has been designed in (Kosmopoulos et al. 2003) sim-
ulating practices of the 1950s in Greece (Fig. 4.14(a)). It was PsD-tested at ELSA
(Molina et al. 2005) in three different versions (Mola and Negro 2005):

• As unretrofitted (Figs. 4.13(a) and 4.14(a));
• Retrofitted with FRPs as follows: All 0.25 m-columns were wrapped with uni-

directional Glass FRP (GFRP) over a length of 0.6 m from each end section,

(a) (b)

Fig. 4.13 SPEAR test structure (a) unretrofitted: (b) retrofitted with FRP jackets
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Fig. 4.14 SPEAR test structure: (a) framing plan of unretrofitted building: (b) framing plan with
RC jackets at columns C2, C6; (c)–(h) centres of mass (CM), rigidity (CR), strength CV) and
twist (CT) of 1st, 2nd and 3rd storey (from bottom up) – (left) unretrofitted structure; (right) with
jacketed-columns (Kosmopoulos and Fardis 2008)
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for confinement and clamping of short lap-splices (Fig. 4.13(b)). For the same
purpose, but also for shear strengthening, column C8 in Fig. 4.14(a) (with 0.25
m-by-0.75 m section) was wrapped with bidirectional GFRP over its full height.
Finally, the exterior faces of corner joints were strengthened in shear with bidi-
rectional GFRP, not continued into the columns (Fig. 4.13(b)).

• In the 2nd phase the FRPs were removed and the central columns of the two
“flexible” sides (C2 and C6 in Fig. 4.14(a)) were concrete-jacketed from 0.25 to
0.4 m square (Fig. 4.14(b)), to mitigate the torsional imbalance.

Further details about the retrofitting are given in Section 6.10.1.
In both its retrofitted or unretrofitted versions the building is torsionally flexible.

The radius of gyration of overlying masses exceeds at every floor the torsional radius
of the frame with respect to the centre of overlying masses in horizontal direction
Y, violating therefore Eq. (2.4) in Section 2.1.6. To quantify further the irregularity
in plan of the building, this centre, CM, is shown in Fig. 4.14(c) and (d) along with
the following points:

(a) CR-uncracked: centroid of the gross section rigidity, (EI)c, of storey vertical
members, from Eqs. (2.2) in Section 2.1.5;

(b) CR-col: centroid of the secant stiffness of the storey vertical members at yield-
ing, (EI)eff, from Eq. (3.68) and according to the modelling in point 2 of Section
4.10.5.1;

(c) CR-effective: the storey centre of rigidity defined and determined as in Cheung
and Tso (1986) and Tso (1990) (see Section 2.1.5);

(d) CV: centroid of resistances of storey vertical members, as controlled by shear
or flexure – whichever is most critical.

(e) CT: pivoting point of the floor under storey torques with an inverted triangular
heightwise pattern (see Section 2.1.5), as obtained from elastic analysis with
member stiffness equal to their secant-to-yield-point stiffness from Eq. (3.68).

The nonlinear dynamic analysis follows the general modelling approach high-
lighted in Section 4.10.5.1, points 1–11. An additional assumption is introduced,
to emulate the very tight fixing of the building’s stiff and strong foundation to the
laboratory’s strong floor:

12. Vertical members are considered fixed at their connection with the
foundation.

The bidirectional input motion applied at the PsD test and in the nonlinear anal-
yses consists of the two Herzeg Novi records in the Montenegro 1979 earthquake,
modified to simulate EC8-spectra-compatible ground motions for ground type C.
Pre-test nonlinear response-history simulations have been carried out for the fol-
lowing PsD tests at ELSA (Kosmopoulos and Fardis 2004, Fardis et al. 2005):

• The unretrofitted structure under bidirectional motion scaled to a peak ground
acceleration (PGA) of 0.15 g (Fig. 4.15, top);

• The same bidirectional motions, but scaled to a PGA of 0.2 g, applied to the test
structure after its retrofitting with FRPs (Fig. 4.15, middle);
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Fig. 4.15 Translation and twist histories, 3rd (left) and 2nd (right) floor in PsD test or anal-
ysis: (top) unretrofitted SPEAR building; (middle) with FRP-wraps; (bottom) with RC jackets
(Kosmopoulos and Fardis 2004) (See also Colour Plate 11 on page 725)

• The same motions scaled to a 0.2 g PGA, applied to the test structure without
FRPs but with columns C2 and C6 concrete-jacketed (Fig. 4.15, bottom).

Figure 4.15 compares the predictions of floor translation and twist time-histories
for the bidirectional input ground motions applied in the PsD tests to the mea-
sured ones (Kosmopoulos and Fardis 2004, Fardis et al. 2005). Overall agreement is
good, confirming the modelling assumptions above, including the use of the secant
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stiffness to yield-point, Eq. (3.68). Witness, though, the initial overestimation of
the dominant period of the response and of the displacements in the test of the
unretrofitted building (top part of Fig. 4.15), until the time (at ∼3 s) when crack-
ing took place. From that point on the effective stiffness used in the analysis (from
Eq. (3.68)) was indeed consistent with the actual member stiffness. As the peak
member deformations induced by this test at ∼13 s inflicted significant damage (see
predicted flexural damage index at the top part of Fig. 4.16), members seem to have
entered the strength degradation range of their moment-rotation relationship, not
reflected in the bilinear model used in the analyses. So, the model fails to capture
the ensuing lengthening of the dominant period of the measured response and the
associated increase in displacement amplitudes. The pre-cracking and post-ultimate
strength mismatch between predictions and test does not appear in the retrofitted
versions, which were cracked from the outset and did not come as close to gener-
alised member failure as the unretrofiited building. Witness also that analysis under-
shoots the twisting measured in all three tests, owing to the lack of inelastic coupling
between the two directions of bending in the model used for columns. The softening
and strength reduction induced by this coupling seem to have a measurable effect.

Figure 4.16 shows the maximum values of the computed damage index by the
end of the dynamic response, separately for flexure and shear. Values near 1.0 sig-
nify likely or incipient failure. Failure is considered almost certain if the damage
index exceeds 1 (numerals in bold in Fig. 4.16). Section 6.10.1 comments on how
the predicted damage patterns for the two retrofitted versions of the SPEAR struc-
ture in Fig. 4.16 compare with the observed one.

4.10.5.3 Seismic Assessment of Two Real Buildings on the Basis of Nonlinear
Dynamic Analysis

Section 2.4.2 and Figs. 2.21, 2.22 and 2.23 have presented the L-shaped building
(with 5-storeys plus basement and penthouse), whose wing (to the right of the ele-
vator shaft and of the column across the floor in Fig. 2.21) collapsed during the
Athens 1999 earthquake. To identify the mechanism that led to collapse, a series of
nonlinear response-history analyses have been carried out (Kosmopoulos and Fardis
2006), for six ground motions that had been derived as “most likely” at the site on
the basis of several ground motion records in the Athens area and of the detailed
subsoil conditions at the recording stations and at the building site.

The seismic response analyses were in accordance with the relevant rules and
guidance of Eurocode 8 and followed the modelling approach highlighted in Sec-
tion 4.10.5.1 under points 1–11, as well as assumption no. 12 in Section 4.10.5.2
for the SPEAR building, namely that vertical members, in this case all of them at
the perimeter of the building, are fixed at their connection with the stiff, storey-high
perimeter wall of the basement, which provides the foundation. An analysis has
been carried out with each one of the six ground motions applied in one horizontal
direction and any other one applied at right angles, giving in total 30 bidirectional
motions. The displacement time-histories for each individual bidirectional motion
and the natural periods and modes of the elastic structure show that the response
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Fig. 4.16 Column damage index in flexure (left) or shear (right): (top) unretrofitted SPEAR
building, 0.15 g PGA; (middle) 0.2 g PGA with FRP-wraps; (bottom) ibid, with RC jackets (See
also Colour Plate 12 on page 726)
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was controlled by higher modes. Moreover, due to the non-rigid connection of the
floors to the stiff elevator shaft and to the staircase next to it, higher mode response
generally entails out-of-phase twisting of the shaft/staircase and of the rest of the
floor. The demand-to-capacity ratios (damage indices) in Fig. 4.17 show how close
to its cyclic flexure-controlled ultimate deformation or to its cyclic shear resistance
each member came. These results suggest that most critical in the building were the
penthouse above the 5th floor and several columns in the upper storeys of the right-
hand wing. Figure 4.17 shows also that the penthouse columns are near-critical in
biaxial bending and certainly in shear. Critical in shear are also at least five of the
other columns in the upper storeys, as well as the base of the elevator shaft wall. This
supports the scenario advanced in Section 2.4.2 as most likely for the collapse: that
it started with shear failures of columns at the penthouse and in the upper storeys
of the part of the building to the right of the elevator shaft. Floor diaphragms, being
almost unreinforced in their secondary direction, were unable to transfer forces from
the deficient right-hand-side wing to the more resistant wing on the left of the eleva-
tor shaft. So, they teared off along a line next to the shaft, extending to the opposite
side in plan.

The last case addressed here is a building constructed on the highly seismic
island of Kephalonia (GR) in the early 1970s to house a theatre. As shown in
Figs. 4.18 and 4.19, it consists of two structurally independent units, separated by an
expansion joint that runs through the foundation. Both units are torsionally stiff, in
the sense that Eq. (2.4) in Section 2.1.6 is met at all floors. Extensive vertical crack-
ing had been observed at perimeter vertical members, owing to severe reinforcement
corrosion.

The structure, designed according to codes of the 1950s for a base shear coeffi-
cient of 0.17 without detailing for ductility (corresponding to a peak ground accel-
eration – PGA – of about 0.1 g), is grossly inadequate against the 475 year return
period earthquake with a PGA of 0.36 g specified for ordinary buildings at the site
in the post-1995 seismic design code.

On the occasion of the rehabilitation of those members that suffer from rein-
forcement corrosion, it was decided to upgrade the entire structure to survive the
design earthquake of the present-day seismic code. The seismic assessment and the
retrofit design were the first application of Eurocode 8 Part 3 (CEN 2005a) to a real
building.

The two parts of the as-built structure have been subjected to nonlinear dynamic
analysis under semi-artificial bidirectional (two component) ground motions. Each
motion emulates the two components of seven historic earthquakes, with each com-
ponent modified to fit the 5%-damped Type 1 elastic spectrum recommended in
Eurocode 8 for soil type C.29 The two components of each bidirectional motion
are normalised to a PGA of 0.1 g and interchanged between horizontal directions
X and Y. Owing to certain asymmetry of the framing plan, each component of the

29One of these bidrectional motions was used in all PsD tests of the SPEAR building and in the
analyses of Sect. 4.10.5.2, but scaled to a different PGA.
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Fig. 4.17 Column damage index (demand-capacity ratio) in flexure (top) or shear (bottom); mean
values from seismic response analyses of the 6-storey building subjected to the 30 “most likely”
bidirectional ground motions at the site in the Athens 1999 earthquake (Kosmopoulos and Fardis
2006) (See also Colour Plate 13 on page 727)
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Fig. 4.18 Framing plan of the two-parts of the theatre facility. Top: roof; bottom: ground floor. Left:
Stage part. Right: Theatre part (Continuous-line ovals: retrofitting with one-sided FRP; dashed-line
ovals: added walls; continuous-line rectangles: jacketing into single wall across joint; broken-line
rectangles: walls connceted with steel rods across joint; see Section 6.10.2)

motion is applied in the positive or in the negative sense, giving 8 orientations of
the components of each bidirectional motion. So 7×8 = 56 nonlinear analyses have
been carried out. The PGA level of 0.1 g has been chosen for the assessment of
the as-built structure on the basis of pushover analyses with inverted triangular and
1st mode force patterns, which show that a seismic action with a PGA of 0.1 g in
any of the two horizontal directions would cause violation of the limits specified in
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Fig. 4.19 Centres of mass (CM), stiffness (CR) or resistance (CV) and centre of twist (CT) at
three levels of the stage (left) and the theatre (right) part of the theatre facility (Kosmopoulos and
Fardis 2007)
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Fig. 4.20 Shear force demand-capacity-ratio (damage index) in vertical members of stage (top)
and theatre (bottom) of as-built theatre facility (mean value over 56 bidirectional ground motions
at PGA 0.1 g) (Kosmopoulos et al. 2007) (See also Colour Plate 14 on page 728)
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Eurocode 8-Part 3 for Life Safety or Near Collapse in few members of both parts of
the structure (Kosmopoulos et al. 2007).

The seismic response analyses follow the general modelling approach, points
1–11, of Section 4.10.5.1. Assumption no. 12 in Section 4.10.5.2 is also made. Ver-
tical members are considered fixed at their connection with the foundation of the
building (a two-way system of deep and heavy foundation beams for the theatre part,
a basement-deep perimeter wall plus heavy two-way interior foundation beams at
the stage part). Pounding between the two parts of the building at the vertical joint
between them is neglected.

The shear force demand-capacity ratios (damage index) in Fig. 4.20 show that
indeed a seismic action with a PGA of 0.1 g causes shear failures in two pairs of
shear walls adjoining the expansion joint between the two parts of the building. The
critical walls of the stage part are the two interior ones parallel to the joint. In the
theatre part, critical are the two exterior walls at right angles to the joint. Twisting
about a vertical axis near the side of the building opposite to the joint is one of
the causes of shear failure at these locations. It is induced by the large eccentricity
between the centres of stiffness (CR) or resistance (CV) or the centre of twist (CT)
and the centre of overlying masses in the theatre part of the facility (Fig. 4.19, right).

Section 6.10.2 highlights the retrofitting of the building and the seismic response
of the retrofitted structure.

4.11 Calculation of Displacement and Deformation Demands

4.11.1 Estimation of Inelastic Displacements and Deformations
Through Linear Analysis

The prime role of seismic analysis for current force-based seismic design of new
buildings is the estimation of seismic action effects in terms of internal forces,
for use in force-based dimensioning or verification of members. As pointed out
in Sections 1.2 and 4.1.2, linear-analysis, based on a 5%-damped elastic spectrum
divided by the “behaviour factor” q of European codes or the “Force reduction” or
“Response modification” factor R of US codes, is presently considered to serve well
this end. Seismic displacement and deformation demands enter in member dimen-
sioning and detailing only in an average sense and indirectly, via the ductility ratio,
global or local, that determines the value of q (or R) for the estimation of seismic
internal forces or the member detailing requirements, respectively. Their absolute
magnitude is needed only for the calculation of P-Δ effects (see Section 4.9.7), the
checks of interstorey drifts limits (e.g., for Eurocode 8 those listed in Section 1.1.3
under (i)–(iii)) and of the clearance between adjacent structures to avoid pound-
ing, etc. These aspects are of secondary importance in force-based design of new
buildings. So, an approximate estimation of seismic displacement demands seems
sufficient.
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In Eurocode 8 (CEN 2004a) the equal displacement rule suffices for the estima-
tion of seismic displacements in the design of new buildings. In the period range
where the design spectrum is not inversely proportional to q (notably up to the first
corner period TB, see Eq. (4.5a) in Section 4.2.2) the computed displacements are
the elastic ones, as obtained from the elastic spectrum. For longer periods, displace-
ment results of linear analysis for the 5%-damped elastic spectrum divided by the q-
factor are back-multiplied by q. Eurocode 8 (CEN 2004a) allows National Annexes
to refine the displacement calculation rules, e.g., through a q-μ-T relation, such as
that of Eqs. (1.1) and (1.2) in Section 1.2.

In US codes for the design of new buildings displacements are calculated by
back-multiplying the results of a linear analysis with the 5%-damped elastic spec-
trum divided by R, not by the full value of R but by 0.7R (SEAOC 1999), or by a
value between about 0.7R (for systems with high R-values) and R (for low R-values)
(BSSC 2003).30

The equal displacement rule, with variants such as Eqs. (1.1) and (1.2) in
Section 1.2, is a well established approximation of the global displacement demand
in a bilinear SDOF system, be it an equivalent one in the sense of Section 4.6.1.3
and Eqs. (4.13), (4.14) and (4.15) therein. However, its universal extension down
to the level of nodal displacements and member deformations, just on grounds of
their secondary importance in the context of force-based seismic design, may not
be warranted. Implicit in this extension is the presumption of inelastic deformation
demands spreading throughout the structural system. Indeed, codes for the seismic
design of new buildings make every effort to prevent concentration of these demands
in few members or locations (notably in a single “soft” storey): by providing a stiff
and strong vertical spine over the full height of the building, by controlling the loca-
tion of plastic hinges and the inelastic response mechanism through an imposed
hierarchy of strengths and by guiding the designer towards a favourable structural
layout. One of the returns is the permission to apply the equal displacement rule
at the level of nodal displacements and member deformations. Indeed its applica-
bility has been confirmed in Panagiotakos and Fardis (1999a) on the basis of over
one thousand nonlinear dynamic response analyses of several planwise symmetric
multistorey buildings designed in full accordance with the ENV-Eurocode 8.

The situation is very different in seismic assessment of existing substandard
buildings. These buildings do not have an engineered hierarchy of strengths to
spread inelastic deformation demands throughout the structure. Instead, their struc-
tural layout often promotes concentration of these demands in few members or loca-
tions. Moreover, in seismic assessment and retrofitting, which is nowadays fully
displacement-based, member deformation demands are not anymore 2nd-class out-
comes of the analysis but have the prime role in member verifications. So, they

30Except in the calculation of P-Δ effects, for which US codes use the displacements from the
linear analysis with the 5%-damped elastic spectrum divided by R, without removing at all the
effect of R (see Section 4.9.7).
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should be estimated as reliably and accurately as practically feasible. For these rea-
sons, recent codes for seismic assessment and retrofitting (ASCE 2007, CEN 2005a)
are more prudent than those for new designs. They allow estimation of inelastic
member deformation demands through linear analysis only when their variation
between different members or locations is within certain limits:

– According to Part 3 of Eurocode 8 (CEN 2005a), linear analysis is applicable for
the estimation of deformation demands in structural members, if the distribution
of ductility demands over the entire structure is fairly uniform. A conveniently
computed measure of the local ductility demand is employed: the demand-to-
capacity ratio, D/C, in flexure, where D is the bending moment at the end of a
member due to the seismic action and the concurrent gravity loads from elas-
tic analysis and C the corresponding moment resistance. Note that, if the equal
displacement rule indeed applies, D/C is about equal to the demand value of
the chord-rotation ductility ratio, μθ. For linear analysis to be applicable, the
maximum D/C-ratio in all “primary seismic” elements (defined and discussed in
Section 4.12) should not exceed by more than a factor of about 2.5 its mini-
mum value over those having D/C > 1.31 D/C is taken not to exceed 1 (elastic
response) at those sections around beam-column joints where the comparison
of the sum of beam moment resistances, ΣMRb, to that of the columns, ΣMRc,
precludes plastic hinging. No limit is set on the absolute magnitude of D/C for
the applicability of linear analysis. However, there will always be an end sec-
tion or two in the whole structure where plastic hinging will marginally be pre-
dicted, with a value of D/C a little over 1.0. So, the relative limit on the value of
D/C is essentially an absolute one. In this respect the limitation on the basis of
the D/C-ratio is quite restrictive for those Limit States where inelastic response
is allowed. However, we will see in Section 4.11.2 that this restriction is not
fully supported by hard evidence. Anyway, if this criterion is met (CEN 2005a)
allows estimation of nodal displacements and member deformations through lin-
ear analysis with the 5%-damped elastic spectrum. If, in addition, both con-
ditions (a) and (b) in Section 4.3.1 are met (CEN 2005a) allows using linear
static analysis (“lateral force” procedure), instead of modal response spectrum
analysis.

– The US Standard for seismic rehabilitation (ASCE 2007) uses as a criterion the
maximum value of the elastic internal force demand (due to the seismic action
and the concurrent gravity loads) to the corresponding capacity, DCR, through-
out an “element”. In this case an “element” is not just a single structural mem-
ber, but a subsystem of the lateral-force resisting structure, such as a wall or
plane frame. Estimation of deformation demands from linear analysis with the
5%-damped elastic spectrum is allowed, if the nonlinearity of the response is

31As a matter of fact, the value of this factor may be determined nationally within the range 2 to 3,
as a Nationally Determined Parameter. 2.5 is the value recommended in Eurocode 8 (CEN 2005a).
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either limited overall, or uniformly distributed throughout the structure. More
specifically, either one of the following two conditions should be met:

(a) the maximum DCR value over the entire structure does not exceed 2.0, or
(b) all three of the following conditions are met:

1. all “primary” walls and plane frames of the building continue throughout
its height, without out-of-plane offsets;

2. the weighted-average DCR of the “elements” in a storey, using as
weight the (seismic) shear force of the “element”, does not differ by
more than 25% from that of an adjacent storey (to avoid a weak
storey);

3. the “element” DCR does not increase from one side of the storey’s centre
of resistance to the other by more than 50% (for torsionally balanced
strength).

The criteria in ASCE (2007) are harder to check or meet than those in CEN
(2005a), as they use the demand-to-capacity ratio in the most critical internal force
of a subsystem, which assumes more extreme values than the corresponding ratio in
flexure alone.

4.11.2 Evaluation of the Capability of Linear Analysis to Predict
Inelastic Deformation Demands

Panagiotakos and Fardis (1999a) have confirmed that linear analysis with the
5%-damped elastic spectrum provides indeed an acceptable approximation of
inelastic chord rotation demands in planwise symmetric multistorey (and in most
cases very regular in elevation) concrete buildings designed to the ENV-Eurocode 8,
under unidirectional ground motions up to twice the design seimic action. However,
what is at issue is the applicability of linear analysis for the prediction of inelastic
deformation demands in existing buildings with poor structural layout, including
strong irregularities in plan and/or elevation and subjected to bidirectional ground
motions. This question has been addressed in Kosmopoulos and Fardis (2007) and
Fardis and Kosmopoulos (2007), using as testcases the substandard and irregular
buildings of Section 4.10.5, including as separate cases the unretrofitted and the
partly concrete-jacketed versions of the SPEAR building and the two parts of the
theatre facility. Like those in Panagiotakos and Fardis (1999a), these buildings are
typical of multistorey concrete ones in that their 1st and 2nd mode periods are in
the velocity-controlled part of the spectrum, TC<T <TD, where the equal displace-
ment rule is considered to apply well for SDOF systems (see Eq. (1.1)). Nonlinear
response-history analyses of these buildings have been carried out under the suite
of 56 bidirectional ground motions described in Section 4.10.5.3 in connection with
the theatre facility, with each component comforming to the smooth 5%-damped
elastic response spectrum in Eurocode 8 for soil type C. The PGA of the motions
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applied to the two versions of the SPEAR building increased from 0.15 to 0.3 g in
steps of 0.05 g, to study the effect of motion intensity. The motions applied to the
“Athens” building of Sections 2.4.2 and 4.10.5.3 and Figs. 2.21, 2.22 and 2.23 and
to both parts of the theatre facility of Section 4.10.5.3 and Fig. 4.18 have a PGA of
0.15 and 0.1 g, respectively.

The results of the nonlinear response-history analyses of these buildings were
compared to those of:

– linear static analysis according to Section 4.3, except that in Eq. (4.6) meff,1 was
taken equal to the full mass, m, and not reduced to 0.85m, as allowed in CEN
(2004a, 2005a), and

– modal response spectrum analysis in 3D according to Section 4.4, with CQC
combination of peak modal responses (Eq. (4.11)).

Member stiffness in the linear analyses was equal to the corresponding elas-
tic stiffness in the nonlinear ones (i.e., from Eq. (3.68)). The smooth 5%-damped
Eurocode 8 elastic spectrum, to which the individual components of the suite of 56
bidirectional ground motions of the nonlinear response-history analysis are compat-
ible, has been applied separately in horizontal directions X and Y. Member chord
rotations from the separate analyses in X and Y were combined via the rigorous
SRSS rule, Eq. (4.24). The oucome was added or subtracted from that due to the
concurrent gravity loads, giving an elastic estimate of the chord rotation, θ el, to
be compared to the average over the 56 nonlinear response-history analyses of the
peak inelastic chord rotation at the same member end, θ inel. The conclusions of the
comparison are the following:

– For elastic chord rotations estimated through modal response spectrum analysis,
the average θ inel/θ el ratio is overall very close to 1.0. When linear static analysis
is used, the building-average θ inel/θ el ratio is systematically less than 1.0; from
a few percent to one-third in the different building cases, but giving an overall
average value of 0.835 for θ inel/θ el (very close to the factor of 0.85 given by
CEN (2004a) for meff,1/m in Eq. (4.6), with only slight upwards deviations in the
two out of the five buildings that indeed violated the Eurocode 8 condition of
T1<2TC for meff,1/m=0.85, see Section 4.3.2). Note, however, that the average
θ inel/θ el ratio in the various regular and fully symmetric multistorey buildings in
Panagiotakos and Fardis (1999a) under unidirectional ground motions was equal
to 1.07, both for modal response spectrum and linear static analysis. Provided,
therefore, that the outcomes of separate linear analyses in X and Y are combined
through the SRSS rule, Eq. (4.24), peak inelastic chord rotations are overall bet-
ter estimated by their linear counterparts in real situations of geometry and load-
ing in 3D than in rather idealised cases of near-perfectly regular and symmetric
buildings under one-component seismic actions.
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– The building-average inelastic-to-elastic-chord-rotation-ratio decreases with
increasing PGA, despite the spreading of inelasticity and the increase of its mag-
nitude, but the scatter of individual results increases.

– The storey-average θ inel/θ el ratio does not systematically depend on elevation in
the building. If elastic chord rotations are estimated via static analysis, there is
a weak tendency of the storey-mean to increase on average from the base to the
roof; but when modal response spectrum analysis is used instead, this tendency
is weakened further or sometimes reversed.

– Linear static analysis does not produce as heightwise uniform a value of θ inel/θ el

as modal response spectrum analysis, especially when higher modes are impor-
tant, as in the “Athens” building of Sections 2.4.2 and 4.10.5.3 and Figs. 2.21,
2.22 and 2.23. However, it gives more consistent results (i.e., with lower scat-
ter within a storey) than modal response spectrum analysis for the beams and
the two different axes of column bending. Only in the “Athens” building, for
which higher modes are important, did modal response spectrum analysis pro-
duce lower scatter of individual θ inel/θ el ratios in a storey than linear static analy-
sis. In all other buildings linear static analysis gave much more uniform θ inel/θ el

ratios within a storey than modal response spectrum analysis. Note that this latter
method is the only type of linear analysis allowed by Eurocode 8 for the “Athens”
building and the two parts of the theatre facility, owing to their heightwise irreg-
ularity and for the “Athens” building to its long 1st and 2nd mode periods
as well.

– Column θ inel/θ el ratios are very consistent between top and bottom of the storey
for the same axis of bending, regardless of the type of linear analysis.

– The pattern of deviations of individual θ inel/θ el ratios in the various member
types of each building, with respect to the storey-average for that member
type, suggests a tendency of linear static analysis to overestimate inelastic
torsional effects at the flexible side(s) and the central part of the torsionally
flexible buildings (i.e., those violating Eq. (2.6)) and underestimate them at
the stiff side(s). There is no clear trend in this respect for the torsionally
stiff buildings. By contrast, the tendency of modal response spectrum anal-
ysis is to overestimate inelastic torsional effects at the stiff side(s) and the
central part of the torsionally stiff buildings and underestimate them some-
what at the flexible side(s). This trend is less clear in the torsionally flexible
buildings.

– In every single case the D/C (or DCR) values (with elastic demands, D, from the
separate analyses in X and Y combined via the SRSS rule, Eq. (424)) violate
the applicability criteria of ASCE (2007) or CEN (2005a) for the estimation
of inelastic deformation demands at member ends through 5%-damped linear
analysis.

The overall conclusion of the comparative analyses is that elastic modal response
spectrum analysis with 5% damping gives on average unbiased and fairly accu-
rate (within a few percent) estimates of member inelastic chord rotation demands



432 4 Analysis and Modelling for Seismic Design or Assessment of Concrete Buildings

in multistorey concrete buildings typical of existing substandard construction. This
might be taken to mean that there is room for revisiting and possibly relaxing the
relevant criteria in ASCE (2007) or CEN (2005a), in order to allow wider use
of 5%-damped elastic analysis for estimation of member inelastic chord rotation
demands.

4.12 “Primary” V “Secondary Members”
for Earthquake Resistance

4.12.1 Definition and Role of “Primary”
and “Secondary Members”

Most current seismic codes recognise that certain structural members may have a
secondary role and contribution to earthquake resistance. The main goal of the dis-
tinction of these “secondary members” from the rest, termed “primary”, is to allow
a certain simplification of the seismic design, assessment or retrofitting:

– In the design of new buildings, the contribution of “secondary members” to stiff-
ness and resistance against seismic actions is not included in the structural model
for the seismic analysis. The building structure is taken in design to rely for its
earthquake resistance only on its “primary members”. Only them are designed
and detailed for earthquake resistance, in accordance with all the relevant rules in
the seismic design code. “Secondary members” are fully considered and designed
for the non-seismic actions and are subject to special verifications under the
design seismic action and the concurrent gravity loads (see Section 4.12.3).

– In seismic assessment and retrofitting of existing buildings we accept more severe
seismic damage in “secondary members”, as they are less important for the per-
formance and safety of the whole. Accordingly, their verification criteria for the
seismic action are relaxed compared to those of “primary members”. According
to Eurocode 8 (CEN 2005a) in existing or retrofitted buildings the contribution of
“secondary members” to stiffness and resistance against seismic actions should
be neglected in the model for linear seismic analysis, like in new buildings, but
should be included in a nonlinear analysis model.32 Note, however, that, unless
“secondary members” are fully included in the model for the seismic actions, it
is not easy to check whether they meet their (relaxed) compliance criteria (see
Section 4.12.5).

The classification of members into “primary” and “secondary” (as they are called
in CEN 2004a, 2005a, ASCE 2007) is equivalent to the old-time distinction in US

32According to (ASCE 2007), cyclic degradation of strength and stiffness shoud be accounted for
in the model of “secondary members” for a nonlinear analysis, while it may be disregarded for
“primary members”.
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seismic design codes for new buildings (BSSC 2003, SEAOC 1999) of members
which are part of the lateral- (or seismic) force-resisting system from those that are
not. In Eurocode 8 (CEN 2004a, 2005a) the qualification “seismic” has been added
to “primary” or “secondary”, to make it clear that the differentiation applies only
for the seismic action.

4.12.2 Constraints on the Designation of Members as “Secondary”

Besides the vague feature that it is not part of the lateral-load-resisting system, there
is no precise definition of a “secondary member”. It is up to the designer to decide
which members, if any, he/she may consider as “secondary”. To establish a limit to
the discretion of the designer of a new building, Part 1 of Eurocode 8 (CEN 2004a)
gives three conditions to be met:

1. The total contribution to lateral stiffness of all “secondary members” should not
exceed 15% of that of all “primary” ones. Unless it is obvious that this condition
is met (e.g., through back-of-the-envelope calculations on the basis of moments
of inertia of vertical elements, or when the “secondary members” are few and/or
truly secondary), to check it the designer should carry out two analyses per hor-
izontal component of the seismic action. One including and another neglecting
the contribution of “secondary members” to lateral stiffness (see Section 4.12.5).
For the condition to be met, storey drifts computed from the latter analysis should
be less than 1.15 times those from the first one.

2. The characterisation of some of the structural members as “secondary” should
not change the classification of the structure from irregular to regular. As outlined
in Sections 2.1.5, 2.1.6, 2.1.7 and 2.1.8, most Eurocode 8 regularity criteria –
both in plan and in elevation – are qualitative and can be checked by inspection
without analysis of the structural system for the seismic action. As far as reg-
ularity in elevation is concerned, this condition implies that (see Sections 2.1.7
and 2.1.8):

(i). if a frame, column or wall does not continue throughout the full height of
the relevant part of the building, it cannot be classified as “secondary”; and

(ii). if in a frame buildings there is an abrupt change in the storey overstrength –
as measured by the ratio of the sum of lateral force capacities of vertical
elements and of masonry infills to the design storey shear – the overstrength
variation cannot be smoothened out by classifying some vertical elements
as “secondary”.

As far as regularity in plan is concerned, this condition implies that, classification
of some vertical elements as “secondary”:

(i). does not reduce the eccentricity between any storey’s centres of mass and
stiffness from more than 30% of the storey torsional radius to less (see
Section 2.1.5), and
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(ii). will not increase the torsional radius in any direction from less than the
radius of gyration of the masses to more (see Section 2.1.6).

3. “Secondary members” should meet the special requirements applying to them
(see Section 4.12.3).

According to Part 3 of Eurocode 8 (CEN 2005a), seismic assessment and
retrofitting of existing buildings is still subjected to the 2nd condition above, but
not to the 1st one. Moreover, instead of the special requirements of Section 4.12.3,
“secondary members” should meet the same verification criteria as “primary” ones,
albeit with less conservative estimates of their capacities (see Section 6.5.6).

4.12.3 Special Design Requirements for “Secondary Members”
in New Buildings

“Secondary members” of new buildings do not have to meet the rules and require-
ments of seismic design codes for dimensioning and detailing of structural members
for earthquake resistance through energy dissipation and ductility. They only need
to satisfy code rules for design for non-seismic actions and the additional require-
ment to maintain support of gravity loads under the most adverse displacements and
deformations induced by the design seismic action applied together with the concur-
rent gravity loads. These seismic deformation demands are determined according to
the equal displacement rule, on the basis of the results of normally two linear anal-
yses per horizontal component of the design seismic action:

1. one neglecting the contribution of “secondary members” to lateral stiffness (see
Section 4.12.5.1 for guidance), and

2. another including it.

The effect of the behaviour factor, q, is removed then according to Section 4.11.1
from the seismic deformations resulting from analysis no. 2 and the outcome is
multiplied by the ratio of the interstorey drifts in the storey from analysis no. 1
to those of no. 2, to give our estimate for the seismic deformation demands in the
“secondary members” when their contribution to lateral stiffness is ignored. If the
value of the sensitivity ratio θ (from Eq. (4.45) in Section 4.9.7) exceeds 0.1, the
1st-order values should be divided by (1–θ ) to account for 2nd-order (P–Δ) effects

According to Part 1 Eurocode 8 (CEN 2004a), internal forces (bending moments
and shears) in “secondary members” calculated from their cracked stiffness (taken
equal to the default value of 50% the gross, uncracked section stiffness) and the
deformations induced by the design seismic action and computed according to the
previous paragraph, should not exceed the design value of their flexural and shear
resistance, MRd and VRd, respectively, when applied together with the concurrent
gravity loads. This severely penalises “secondary members”, as it requires them to
remain elastic under the design seismic action. It amounts to an overstrength factor
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of q in “secondary members” relative to the “primary” ones, if the strength of both is
governed by the design seismic action and the concurrent gravity loads. Verification
of “secondary members” on the basis of these requirements may not be feasible,
unless:

– the global stiffness of the system of “primary members” and its connectivity to
the “secondary” ones is such that seismic deformations imposed on the latter are
low; or

– the lateral stiffness of “secondary members” is indeed very low.

4.12.4 Guidance on the Use of the Facility
of “Secondary Members”

4.12.4.1 Seismic Design of New Buildings

A prime reason for the designer to consider as “secondary” some of the members
of a new building designed for ductility, is when they are not within the scope of
the rules for seismic design based on energy dissipation and ductility. For instance,
flat slab frames and post-tensioned girders are not covered by seismic design codes.
So, when using them, the designer may have to resist the full seismic action with
walls or strong frames (usually at the perimeter), designating the flat slabs, the post-
tensioned girders, as well as their supporting columns, as “secondary members”.
In a frame or frame-equivalent dual system, the columns supporting post-tensioned
girders would better be taken as “secondary” anyway, because normally the large
size of prestressed girders makes it unfeasible to satisfy Eq. (1.4). Moreover, such
columns should have as small a cross-section as necessary for the support of gravity
loads, to reduce the “parasitic” shears developing in them during post-tensioning at
the expense of the axial force in the girder.

The designer may also want to consider as “secondary” those members of a new
building that – owing to architectural constraints – cannot be made to conform to the
seismic design rules for geometry, dimensioning or detailing for energy dissipation
and ductility. Examples in DC M or H buildings designed according to Part 1 of
Eurocode 8 (CEN 2004a) are beams which:

– are connected to a column at an eccentricity of the centroidal axes more than
25% of the largest cross-sectional dimension of the column at right angles to the
beam, bc, which is the limit specified in CEN (2004a);

– are supported on a column with cross-sectional depth, hc, in the direction of the
beam axis that cannot be made to satisfy the Eurocode 8 rule for bond and max-
imum diameter of the top bars of the beam within the joint (see Sections 3.3.2
and 5.4.1);

– have a width, bw, greater than bc plus the minimum of bc or the depth of the
beam, hw, violating the relevant restriction in CEN (2004a);
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– have top reinforcement (as governed by the combination of factored gravity
loads) that cannot comply with the maximum allowed reinforcement ratio (see
Section 5.3.2);

– connect two closely spaced columns, having a capacity-design shear from
Eq. (1.9a) in Section 1.3.6.2 which is so large owing to the small clear span,
Lcl, that the beam cannot be verified against the shear resistance for diagonal
compression in the web, VRd,max; or, in a DC H building, the value of the ratio ζ i

in Eq. (1.10) of Section 1.3.6.2 is so close to –1, that the diagonal reinforcement
required in the beam is too much to place.

Unlike the cases which are outside the scope of design rules for energy dissi-
pation and ductility, those of the type above should preferably be accommodated
through proper selection of the local structural layout, instead of resorting to the
facility of “secondary members”. There are two good reasons for doing so:

– The earthquake “sees” the structure as built, neither “knowing” much, nor “car-
ing” about the considerations and assumptions made in its design calculations.
So, the “primary members” may perform well thanks to their ductility, but the
“secondary” ones may suffer serious damage.

– A structural system that cannot be utilised in its entirety for the engineered earth-
quake resistance of the building is a waste of resources. This is more so, given the
conservatism of the special design requirements for “secondary members” (see
Section 4.12.3).

That said, the option of designing the entire structural system for strength, instead
of ductility (see Section 1.4.1) could be considered. In the framework of Eurocode
8, this means selecting DC L (Low) and q = 1.5. Then a distinction between “sec-
ondary” and “primary” members does not need to be made, as all members can be
designed and detailed according to Eurocode 2 for non-seismic actions, without any
regard to the special detailing and dimensioning rules of Eurocode 8 (CEN 2004a)
for energy dissipation and ductility.

4.12.4.2 Seismic Assessment or Retrofitting

Unlike in the design of new buildings, where it may create more problems than it
solves, the facility of “secondary members” can be used to advantage in seismic
assessment and retrofitting of existing buildings. The designer may designate at the
outset of the assessment (almost) all members as “primary” and, depending on the
outcome of the verifications, consider whether few elements that (marginally) vio-
late the verification criteria for “primary members” have reduced importance for
seismic safety and performance to justify downgrading them to “secondary mem-
bers”, so that they can be checked with the relaxed pertinent criteria. In the frame-
work of Part 3 of Eurocode 8 (CEN 2005a), the designer can do so free of constraints
on the contribution of “secondary members” to the overall lateral stiffness (i.e., of
condition no. 1 in Section 4.12.2, which applies only to new buildings). Besides, if
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the structural model used from the outset is retained, there is no need to re-do the
analysis with a new model either of the structure as a whole, or with its “primary
members” alone.

The facility of “secondary members” is even more convenient for the retrofitting.
It can be used to retrofit the structure by upgrading the earthquake resistance of only
certain major existing elements and/or by adding a few new but large ones (e.g.,
concrete walls). The upgraded and/or the new elements may then be designed to take
almost the full seismic action. They will be verified with the stricter criteria applying
to “primary members”, while the rest will be allowed to stay with their substandard
detailing and poor earthquake resistance, if they meet the lax criteria for “secondary
members”. This may turn out to be a very cost-effective retrofitting strategy, as it
allows limiting the disruption, including collection of information about the material
properties and reinforcement of the as-built structure, to a small part of the building
where the intervention takes place.

4.12.5 Modelling of “Secondary Members” in the Analysis

4.12.5.1 Modelling for the Design of New Buildings

In seismic design of new buildings based on linear analysis the strength and stiffness
of “secondary members” against lateral loads is neglected in the analysis for the
seismic action, but it may be considered in that for all other actions (e.g. gravity
loads). Then, two different structural models may be used for the linear analysis
(see also analysis types no. 1 and 2 in Section 4.12.3):

1. A model that completely neglects the contribution of “secondary members” to
lateral stiffness.

2. Another which includes fully the “secondary members”.

As pointed out in Section 4.12.3, the seismic deformation demands in the “sec-
ondary members” may then be obtained in a two-step procedure:

I. The elastic deformation demands in the “secondary members” due to the design
seismic action are estimated from a linear seismic analysis using Model no. 2
(with the design spectrum, but removing afterwards the effect of the behaviour
factor, q, from displacements and deformations according to Section 4.11.1).

II. The outcome of the Step I for storey i is multiplied by the ratio of interstorey
drifts in that storey using Model no. 1 in the linear analysis for the design seismic
action to those using Model no. 2.

Using two different structural models is not convenient, especially if linear analy-
sis and design take place in an integrated computational environment. Among other
problems, we have to use in the verifications:
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– seismic action effects from an analysis with Model no. 1 (with seismic defor-
mation demands in “secondary members” modified according to the paragraph
above) and

– action effects of the concurrent gravity loads coming from an analysis with Model
no. 2.

If we don’t need to design the building for another lateral action, e.g., wind, it
may be possible to use in some cases a single structural model for the seismic action
and for gravity loads, namely one in which “secondary members” are included only
with those properties that are essential for their gravity-load-bearing function. In
such a model “secondary” columns and walls may be considered only with their
axial stiffness and with zero flexural rigidity, or with moment releases (i.e., hinges)
introduced between their ends and the joint they frame into. Such an approximation
is acceptable, so long as the bending moments and shears induced in these members
by gravity loads are negligible and their axial forces due to the seismic action also
small. This precludes vertical elements on the perimeter of the building from such
treatment. It is not good practice, anyway, to consider such members as “secondary”.

If a single model is used for the seismic action and gravity loads according to the
previous paragraph, “secondary” beams cannot in general be modelled with zero
flexural rigidity or moment releases at the nodes, because this rigidity and the con-
tinuity of their spans are essential for their gravity-load bearing function. If they are
not directly supported on vertical elements at all (e.g., when they are supported on
girders), their seismic action effects will be negligible anyway, even when they are
included in the model with their full flexural stiffness and connectivity. “Secondary”
beams which are directly supported on vertical elements and continuous over two
or more spans should be modelled with their full flexural stiffness. Their connec-
tivity with the vertical elements depends on whether the latter are also “secondary”
or not. If they are, zero flexural rigidity of these “secondary” vertical members, or
moment releases at their connections with the beam-column joint are satisfactory
also for the “secondary” beams they support. If the vertical elements are “primary”,
then two separate nodes can be introduced at the beam-column joint with pin con-
nection between them: one node for the beam and another for the vertical element.
The beam and the vertical element that continue past the joint will resist with their
full flexural stiffness the gravity loads or the seismic action, respectively.

Note that, if a single structural model is used for the seismic action and for gravity
loads along the lines of the two paragraphs above, internal forces in “secondary
members”due to their seismic deformation demands can be estimated only by ad-
hoc and approximate procedures for the verifications according to Section 4.12.3.
For example, for a frame of “secondary” beams and/or columns, one may use the
seismic interstorey drifts in the plane of the frame computed from the single model,
remove from them the effect of the q-factor according to Section 4.11.1, use the
corrected values as Δδi in Eq. (2.8) and solve for the column average seismic shear
in that storey. If the columns of the frame have different moments of inertia, the total
storey seismic shear in the frame is computed from the column average shear (with
a weight of 0.5 on exterior columns) and back-distributed to the frame columns
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in proportion to their moment of inertia. Individual column shears may then be
multiplied by the clear column height to estimate the column end moments. The sum
of these column seismic moments above and below a joint may then be distributed
to the ends of the beams framing into the joint in inverse proportion to their span.
The whole thing is as onerous as it sounds, especially as it is difficult to set it in
a computational framework and most calculations may have to be done by hand or
with spreadsheets.

It may be argued that, for damage limitation checks on the basis of interstorey
drifts the contribution of “secondary members” to lateral stiffness may be consid-
ered in the linear analysis, as it is very unlikely that seismic deformations under the
damage limitation seismic action will jeopardise their lateral stiffness and strength.
However, seismic design codes do not differentiate the structural model to be applied
in the analysis for the damage limitation seismic action from the one used for the
design seismic action. Besides, for the designer’s convenience, normally a single
linear analysis is required for both levels of the seismic action. Analysis results for
the damage limitation action are computed then by multiplying those for the design
seismic action by the ratio of peak ground accelerations of the two actions. So, the
contribution of “secondary members” to lateral stiffness should be neglected also at
the damage limitation verifications.

4.12.5.2 Modelling for Seismic Assessment or Retrofitting

There is no real requirement to differentiate the modelling approach for “sec-
ondary members” from the normal one used for “primary” in seismic assessment
and retrofitting. First of all, an analysis that neglects their contribution to stiffness
against lateral loads (as Part 3 of Eurocode 8 allows doing for linear analysis) cannot
determine the seismic deformation demands against which the capacities of “sec-
ondary members” should be verified (see Section 6.5.6). If the cyclic degradation of
strength and stiffness is thought to be indeed much larger in “secondary members”
than in “primary” ones,33 it can be included in a nonlinear model. This can be done
through a post-yield branch of the force-deformation curve in primary loading that
is descending (with negative slope), instead of hardening or horizontal. If nonlinear
dynamic analysis is used, the hysteresis rules may include degradation of strength
with cycling, as in Park et al. (1987), Reinhorn et al. (1988), Coelho and Carvalho
(1990), and Costa and Costa (1987).

33Note that, unless they are retrofitted, even the “primary members” of an existing substandard
structure have larger cyclic degradation of strength and stiffness than a new member well designed
and detailed for ductility.
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Chapter 5
Detailing and Dimensioning of New Buildings
in Eurocode 8

Like Chapter 2, this chapter is devoted solely to new concrete buildings. More-
over, Chapter 5 is the only one in the book referring exclusively to EN-Eurocode 8,
notably to the rules in its Part 1 for the dimensioning and detailing of the members
of new concrete buildings for earthquake resistance. It starts with an overview of
Eurocode 8’s detailing rules, deriving the most important of them from fist princi-
ples and from background information presented in Chapters 3 (mainly) and 1. It
then presents Eurocode 8’s special dimensioning rules in shear for various types of
concrete components, relating them to the Eurocode 2 rules for non-seimic loading
and documenting them – to the extent possible – on the basis of background infor-
mation from Chapter 3. It proceeds then with proposals on how to implement in
practice the Eurocode 8 dimensioning and detailing rules, appropriately sequencing
them for the purposes of cost-effective detailed design.

The second half of Chapter 5 is devoted to two examples of detailed design
according to Part 1 of Eurocode 8, including design of the foundation. The design of
the superstructure in these two examples is just application of what has been said in
Chapters 1, 4 and 5, while the design of the foundation gives the only opportunity in
the book to present (and apply) expressions and rules for the verification of the foun-
dation system (both for the soil and for the concrete elements). The two examples
have been chosen so that, with certain simplifications for the analysis, calculations
can be done by hand and presented in detail.

Overall, Chapter 5 serves as a justification document for the rules in Part 1 of
EN-Eurocode 8 for dimensioning and detailing new concrete members for earth-
quake resistance and as a guide for the application of this part of EN-Eurocode 8 for
practical seismic design of buildings.

5.1 Introduction

5.1.1 “Critical Regions” in Ductile Elements

The overview in Section 3.1 of the cyclic behaviour of concrete and reinforcing
steel has concluded that RC members can dissipate energy only in bending (see

441M.N. Fardis, Seismic Design, Assessment and Retrofitting of Concrete Buildings,
Geotechnical, Geological, and Earthquake Engineering 8, DOI 10.1007/978-1-4020-9842-0 5,
C© Springer Science+Business Media B.V. 2009
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Section 3.1.4). Usually energy dissipation takes place by alternate positive and neg-
ative bending in flexural plastic hinges at member ends.1 Part 1 of Eurocode 8
(CEN 2004a) calls the zones where energy is dissipated “critical regions”, a term
with a more conventional connotation than the term “dissipative zone” used in CEN
(2004a) for the part of a concrete, steel, composite or timber member or connec-
tion where energy dissipation takes place by design. In concrete members a “critical
region” is a conventionally defined part of a “primary member”, up to a certain
distance from an end section – or in beams from the section of maximum positive
(hogging) moment under the combination of the design seismic action and the con-
current gravity loads.

Part 1 of Eurocode 8 (CEN 2004a) prescribes the length of “critical regions”
and special detailing rules for them, depending on the type of “primary member”
and on the Ductility Class (DC) of the building. In buildings designed for energy
dissipation (i.e., for DC Medium and High) a “critical region” is defined at an end of
a “primary” column or beam framing into a beam or vertical element, respectively,
no matter whether the relative magnitude of the moment resistances of the cross-
sections around the joint suggests that a plastic hinge at that end is likely. Framing
action and large seismic moments cannot develop at the end of a beam supported
on another one at certain distance from a joint of that latter beam with a vertical
member. The same applies at the end(s) of a cantilevering beam, unless that beam
is explicitly designed against the vertical seismic action component (see Section
4.5.1). So, we can preclude plastic hinging at such beam ends and we don’t need to
consider a “critical region” there.

5.1.2 Geometry, Detailing and Special Dimensioning Rules
in Eurocode 8: An Overview

Tables 5.1, 5.2 and 5.3 give a comprehensive overview of the detailing and dimen-
sioning rules in CEN (2004a) for beams, columns and walls, respectively, for the
three DCs. Some detailing rules are prescriptive and originate from the tradition of
earthquake resistant design in different seismic regions of Europe. The most impor-
tant among the detailing and special dimensioning rules, though, have a rational
basis, explained in the individual sections of this Chapter.

Prescriptive detailing rules are overall slightly stricter in Eurocode 8 than in
US codes (BSSC 2003, SEAOC 1999, ACI 2008) for the corresponding DC (with
“Intermediate” being the counterpart of DC M and “Special” of DC H). Rules for
anchorage of beam bars at or through beam-column joints in particular are much
more detailed and demanding than in US codes.

1One-sided plastic hinges may form under positive (sagging) moments at some distance from the
end section(s) of long span beams with significant gravity loading.
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Table 5.1 EC8 rules for detailing and dimensioning of primary beams (secondary beams: as in DCL)

DCH DCM DCL

“Critical region” length 1.5 hw hw

Longitudinal bars (L)
ρmin, tension side 0.5fctm/fyk 0.26fctm/fyk, 0.13%(1)

ρmax, critical regions(2) ρ’+0.0018fcd/(μφεsy,dfyd)(2) 0.04
As,min, top and bottom 2Φ14 (308 mm2) –
As,min, top-span As,top-supports/4 –
As,min, critical regions bottom 0.5As,top

(3) –
As,min, supports bottom As,bottom-span/4(1)

dbL/hc – bar crossing interior joint(4) ≤ 6.25(1 + 0.8νd )(
1 + 0.75

ρ ′

ρmax

) fctm

fyd
≤ 7.5(1 + 0.8νd )(

1 + 0.5
ρ ′

ρmax

) fctm

fyd
–

dbL/hc – bar anchored at exterior joint(4) ≤ 6.25(1 + 0.8νd )
fctm

fyd
≤ 7.5(1 + 0.8νd )

fctm

fyd
–

Transverse bars (w)
(i) outside critical regions
Spacing sw≤ 0.75d
ρw≥ 0.08

√
(fck(MPa)/fyk(MPa))(1)

(ii) in critical regions
dbw≥ 6 mm

Spacing sw≤ 6dbL,
hw

4
, 24dbw, 175 mm 8dbL,

hw

4
, 24dbw, 225 mm –
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Table 5.1 (continued)

DC H DCM DCL

Shear design

VEd, seismic(5) 1.2

∑
MRb

lcl
± Vo,g+ψ2q

(5)

∑
MRb

lcl
± Vo,g+ψ2q

(5) From analysis for design seismic
action plus gravity

VRd,max seismic(6) As in EC2: VRd,max=0.3(1–fck(MPa)/250)bwozfcd sin 2δ(6), 1≤ cot δ≤2.5
VRd,s, outside critical regions(6) As in EC2: VRd,s=bwzρwfywdcotδ(6), 1≤ cot δ≤2.5
VRd,s, critical regions(6) VRd,s=bwzρwfywd (δ=45◦) As in EC2: VRd,s=bwzρwfywdcot δ, 1≤ cot δ≤2.5
If ζ≡VEmin/VEmax

(7) < –0.5: inclined bars at
angle ±α to beam axis, with cross-section
As/direction

If VEmax>(2+ζ)fctdbwd
As=0.5 VEmax/fydsin α and
stirrups for 0.5 VEmax

–

(1)NDP (Nationally Determined Parameter) according to Eurocode 2. The Table gives the value recommended in Eurocode 2.
(2)μφ is the value of the curvature ductility factor that corresponds to the basic value, qo, of the behaviour factor used in the design (Eqs. (5.2)).
(3)The minimum area of bottom steel, As,min, is in addition to any compression steel that may be needed for the verification of the end section for the ULS in
bending under the (absolutely) maximum negative (hogging) moment from the analysis for the design seismic action plus concurrent gravity, MEd.
(4)hc is the column depth in the direction of the bar, νd = NEd/Acfcd is the column axial load ratio, for the algebraically minimum value of the axial load due to
the design seismic action plus concurrent gravity (compression: positive).
(5)At a member end where the moment capacities around the joint satisfy:

∑
MRb>

∑
MRc, MRb is replaced in the calculation of the design shear force, VEd,

by MRb(
∑

MRc/
∑

MRb).
(6)z is the internal lever arm, taken equal to 0.9d or to the distance between the tension and the compression reinforcement, d–d1.
(7)VEmax, VE,min are the algebraically maximum and minimum values of VEd resulting from the ± sign; VEmax is the absolutely largest of the two values, and is
taken positive in the calculation of ζ; the sign of VEmin is determined according to whether it is the same as that of VEmax or not.
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Table 5.2 EC8 rules for detailing and dimensioning of primary columns (secondary columns as in DCL)

DCH DCM DCL

Cross-section sides, hc, bc ≥ 0.25m; hv/10 if θ=Pδ/Vh>0.1(1) –
“Critical region” length (1)≥ 1.5hc, 1.5bc, 0.6 m, lc/5 hc, bc, 0.45 m, lc/5 hc, bc

Longitudinal bars (L)
ρmin 1% 0.1 Nd/Acfyd, 0.2%(2)

ρmax 4% 4%(2)

dbL≥ 8 mm
Bars per side ≥ 3 2
Spacing between restrained bars ≤150 mm ≤200 mm –
Distance of unrestrained bar from nearest

restrained bar
≤150 mm

Transverse bars (w)
Outside critical regions

dbw≥ 6 mm, dbL/4
Spacing sw≤ 20dbL, hc, bc, 400 mm 12dbL, 0.6hc, 0.6bc, 240 mm
At lap splices, if dbL>14 mm: sw≤ 12dbL, 0.6hc, 0.6bc, 240 mm

Within critical regions(3)

dbw≥(4) 6 mm, 0.4(fyd/fywd)1/2dbL 6 mm, dbL/4
sw≤ (4),(5) 6dbL, bo/3, 125 mm 8dbL, bo/2, 175 mm –
ωwd≥(6) 0.08 –
aωwd≥ (5),(6),(7),(8) 30μφ

∗νdεsy,dbc/bo–0.035 –
In critical region at column base

ωwd≥ 0.12 0.08 –
aωwd≥ (5),(6),(7),(9),(10) 30μφνdεsy,dbc/bo–0.035

1.3
∑

MRb≤
∑

MRc

–

Capacity design check at beam-column joints(11)

No moment in transverse direction of column –
Verification for Mx-My-N Truly biaxial, or uniaxial with (Mz/0.7, N), (My/0.7, N)
Axial load ratio νd=NEd/Acfcd ≤ 0.55 ≤ 0.65 –
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Table 5.2 (continued)

DCH DCM DCL

Shear design

VEd seismic(12) 1.3

∑
Mends

Rc
(12)

lcl
1.1

∑
Mends

Rc
(11)

lcl
From analysis for design seismic

action plus gravity
VRd,max seismic(13) As in EC2: VRd,max=0.3(1–fck(MPa)/250)bwozfcdsin 2δ, 1≤ cot δ≤2.5
VRd,s seismic (13),(14),(15) As in EC2: VRd,s=bwzρwfywdcot δ+NEd(h–x)/lcl, 1≤ cot δ≤2.5

(1)hv is the distance of the inflection point to the column end further away, for bending within a plane parallel to the side of interest; lc is the column clear
length.
(2)Note (1) of Table 5.1 applies.
(3)For DCM: if a value of q not greater than 2 is used for the design, the transverse reinforcement in critical regions of columns with axial load ratio νd not
greater than 0.2 may just follow the rules applying to DCL columns.
(4)For DCH: In the two lower storeys of the building, the requirements on dbw, sw apply over a distance from the end section not less than 1.5 times the critical
region length.
(5)Index c denotes the full concrete section and index o the confined core to the centreline of the perimeter hoop; bo is the smaller side of this core.
(6)ωwd is the ratio of the volume of confining hoops to that of the confined core to the centreline of the perimeter hoop, times fyd/fcd.
(7)a is the “confinement effectiveness” factor, computed as a = asan; where: as= (1–s/2bo)(1–s/2ho) for hoops and as= (1–s/2bo) for spirals; an= 1 for circular
hoops and an=1–{bo/((nh–1)ho)+ho/((nb–1)bo)}/3 for rectangular hoops with nb legs parallel to the side of the core with length bo and nh legs parallel to the
one with length ho.
(8)For DCH: at column ends protected from plastic hinging through the capacity design check at beam-column joints, μφ

∗ is the value of the curvature ductility
factor that corresponds to 2/3 of the basic value, qo, of the behaviour factor used in the design (see Eqs. (5.2)); at the ends of columns where plastic hinging
is not prevented because of the exemptions listed in Note (11) below, μφ

∗ is taken equal to μφ defined in Note (2) of Table 5.1 (see also Note (10) below);
εsy,d= fyd/Es.
(9)Note (2) of Table 5.1 applies.
(10)For DCH: The requirement applies also in the critical regions at the ends of columns where plastic hinging is not prevented, as falling within the exemptions
in Note (11) below.
(11)The capacity design check does not need to be fulfilled at beam-column joints: (a) of the top floor, (b) of the ground storey in two-storey buildings with
axial load ratio νd not greater than 0.3 in all columns, (c) if shear walls resist at least 50% of the base shear parallel to the plane of the frame (wall buildings or
wall-equivalent dual buildings), and (d) in one-out-of-four columns of plane frames with columns of similar size.
(12)At a member end where the moment capacities around the joint satisfy:

∑
MRb<

∑
MRc, MRc is replaced by MRc(

∑
MRb/

∑
MRc).

(13)z is the internal lever arm, taken equal to 0.9d or to the distance between the tension and the compression reinforcement, d–d1.
(14)The axial load, NEd, and its normalised value, νd, are taken with their most unfavourable values for the shear verification under the design seismic action
plus concurrent gravity (considering both the demand, VEd, and the capacity, VRd).
(15)x is the neutral axis depth at the end section in the ULS of bending with axial load.
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Table 5.3 EC8 rules for the detailing and dimensioning of ductile walls

DCH DCM DCL

Web thickness, bwo≥ max(150 mm, hstorey/20) –
Critical region length, hcr ≥ max(lw, Hw/6)(1)

≤ min(2 lw, hstorey) if wall ≤ 6 storeys
≤ min(2 lw, 2hstorey) if wall > 6 storeys

–

Boundary elements
(a) in critical region
– Length lc from edge ≥ 0.15lw, 1.5bw, length over which εc> 0.0035 –
–Thickness bw over lc ≥ 200 mm; hst/15 if lc≤max(2bw, lw/5), hst/10 if lc>max(2bw, lw/5) –
–Vertical reinforcement:

ρmin over Ac=lcbw

0.5% 0.2%(2)

ρmax over Ac

4%(2)

– Confining hoops (w)(3):
dbw≥ 8 mm In the part of the section where ρL>2%: as over the rest of the wall

(case c, below)
spacing sw≤(4) min(25dbh, 250 mm)

ωwd≥(3) 0.12 0.08 –

aωwd≥(4),(5) 30μφ(νd+ωv)εsy,dbw/bo–0.035 –

(b) Storey above critical region As in critical region, but aωwd

and ωwd: 50% of the ones
required in critical region

As over the rest of the wall (case c, below)
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Table 5.3 (continued)

DCH DCM DCL

(c) Over the rest of the wall height In parts of the section where ρL>2%:
– Distance of unrestrained bar in compression zone from nearest restrained bar ≤150 mm;
– hoops with dbw≥ max(6 mm, dbL/4) and spacing sw≤ min(12dbL, 0.6bwo, 240 mm)(2) up to a distance
of

4bw above or below floor beams or slabs, or sw≤ min(20dbL, bwo, 400 mm)(2) beyond that distance
Web
–Vertical bars (v):

ρv,min
Wherever εc>0.2%: 0.5%; elsewhere 0.2% 0.2%(2)

ρv,max
4%

dbv≥
8 mm –

dbv≤
bwo/8 –

Spacing sv≤
min(25dbv, 250 mm) min(3bwo, 400 mm)

–Horizontal bars:

ρh,min
0.2% max(0.1%, 0.25ρv)(2)

dbh≥
8 mm –

dbh≤
bwo/8 –

Spacing sh≤
min(25dbh, 250 mm) 400 mm

Axial load ratio νd= NEd/Acfcd ≤0.35 ≤0.4 –
Design moments MEd If Hw/lw≥ 2, the design moments from linear envelope of maximum

moments MEd from analysis for the “seismic design situation”, are
shifted up by the “tension shift” al

From analysis for design seismic
action and gravity
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Table 5.3 (continued)

DCH DCM DCL

Shear design
Design shear force VEd = shear

force V’Ed from the analysis for
the design seismic action, times
factor ε

If Hw/lw≤2(6): ε=1.2 MRdo/MEdo≤q
if Hw/lw>2(6),(7):

ε =
√(

1.2
MRdo

MEdo

)2

+ 0.1

(
q

Se (TC )

Se (T1)

)2

≤ q

ε=1.5 ε=1.0

Design shear force in walls of dual
systems with Hw/lw>2, for z
between Hw/3 and Hw

(8)

VEd (z) =
(

0.75z

Hw

− 1

4

)
εVEd (0) +

(
1.5 − 1.5z

Hw

)
εVEd

(
Hw

3

)
From analysis for design seismic

action and gravity

VRd,max outside critical region As in EC2: VRd,max=0.3(1–fck(MPa)/250)bwo(0.8 lw)fcdsin 2δ, with 1≤ cot δ≤2.5
VRd,max in critical region 40% of EC2 value As in EC2
VRd,s outside critical region As in EC2: VRd,s=bwo(0.8 lw)ρhfywdcot δ , 1≤ cot δ≤2.5
VRd,s in critical region; web

reinforcement ratios: ρh, ρv

(i) if αs=MEd/VEdlw≥ 2 :
ρv=ρv,min, ρh from VRd,s:

As in EC2: VRd,s=bwo(0.8 lw)ρhfywdcot δ, 1≤ cot δ≤2.5

(ii) if αs< 2: ρh from VRd,s:(9) VRd,s=VRd,c+bwoαs(0.75 lw)ρhfyhd As in EC2: VRd,s=bwo(0.8 lw)ρhfywdcot δ, 1≤ cot δ≤2.5
ρv from:(10) ρvfyvd≥ ρhfyhd-NEd/(0.8 lwbwo)
Resistance to sliding shear: via

bars with total area Asi at angle
±α to the horizontal (11)

VRd,s=Asifydcos α+ Asvmin(0.25fyd,
1.3

√
(fydfcd))+ 0.3(1–fck(MPa)/250)bwoxfcd
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Table 5.3 (continued)

DCH DCM DCL

ρv,min at construction joints (10),(12) 0.0025,
1.3 fctd − NEd

Ac

fyd + 1.5
√

fcd fyd
–

(1)lw is the long side of the rectangular wall section or rectangular part thereof; Hw is the total height of the wall; hstorey is the storey height.
(2)Notes (1) and (2) of Tables 5.1 or 5.2 apply.
(3)For DC M: If, under the maximum axial force in the wall from the analysis for the design seismic action plus concurrent gravity the wall axial load ratio νd=
NEd/Acfcd satisfies νd≤ 0.15, the DCL rules may be applied for the confining reinforcement of boundary elements; these DCL rules apply also if this value of
the wall axial load ratio is νd≤0.2 but the value of q used in the design of the building is not greater than 85% of the q-value allowed when the DC M confining
reinforcement is used in boundary elements.
(4)Notes (5), (6), (7) of Table 5.2 apply for the confined core of boundary elements.
(5)μφ is the value of the curvature ductility factor that corresponds through Eqs. (5.2) to the product of the basic value qo of the behaviour factor times the value
of the ratio MEdo/MRdo at the base of the wall (see Note (6)); εsy,d= fyd/Es, ωvd is the mechanical ratio of the vertical web reinforcement.
(6)MEdo is the moment at the wall base from the analysis for the design seismic action plus concurrent gravity; MRdo is the design value of the moment resistance
at the wall base for the axial force NEd from the same analysis (design seismic action plus concurrent gravity).
(7)Se(T1) is the value of the elastic spectral acceleration at the period of the fundamental mode in the horizontal direction (closest to that) of the wall shear
force multiplied by ε; Se(Tc) is the spectral acceleration at the corner period TC of the elastic spectrum.
(8)A dual structural system is one in which walls resist between 35 and 65% of the seismic base shear in the direction of the wall shear force considered; z is
distance from the base of the wall.
(9)For bw and d in m, fcd in MPa, ρL denoting the tensile reinforcement ratio, NEd in kN, VRd,c(in kN) is given by:

VRd,c =
⎧⎨
⎩max

⎡
⎣180(100ρ1)1/3, 35

√
1 +

√
0.2

d
f 1/6
cd

⎤
⎦(

1 +
√

0.2

d

)
f 1/3
cd + 0.15

NEd

Ac

⎫⎬
⎭ bwd

NEd is positive for compression; its minimum value from the analysis for the design seismic action plus concurrent gravity is used; if the minimum value is
negative (tension), VRd,c=0.
(10)NEd is positive for compression; its minimum value from the analysis for the design seismic action plus concurrent gravity is used.
(11)Asv is the total area of web vertical bars and of any additional vertical bars placed in boundary elements against shear sliding; x is the depth of the
compression zone.
(12)fctd=fctκ,0.05/γc is the design value of the (5%-fractile) tensile strength of concrete.
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5.2 Curvature Ductility Requirements According to Eurocode 8

It has been repeatedly pointed out (notably in Sections 1.3.6.1, 3.1.4 and 5.1.1) that
the only reliable mechanism of force transfer that allows using to advantage the
fundamental ductility of steel in tension and effectively enhancing the ductility of
concrete and of the compression bars through lateral restraint, is in flexural “plastic
hinges” that develop at member ends. The plastic hinge regions are then detailed
for the inelastic deformation demands expected to develop there under the design
seismic action.

Eurocode 8 pursues linking the local displacement and deformation demands
on plastic hinges to the value of the behaviour factor q used in the design. Note
that, unlike the discrete values of the force reduction R of US codes (BSSC 2003,
SEAOC 1999), a q-factor which is proportional to the system overstrength factor
αu/α1 assumes continuous values. So, the link between q and the local displacement
and deformation demands should be algebraic. The link is provided via the global
displacement ductility factor, μδ, related to q through Eqs. (1.1) and (1.2). Recall
that an overstrength factor of 1.5 (for materials and elements) is already built in
the q-factor values for buildings of DC M or H (see Table 1.1). So, normally Eqs.
(1.1) and (1.2) should be applied using in the right-hand-side the value q/1.5 that
corresponds to inelastic action and ductility. As the full q-value is used instead, a
safety margin of 1.5 is hidden in the resulting value of μδ.

The link between local deformation demands on plastic hinges and the global dis-
placement ductility factor, μδ, is based on the kinematics of the beam-sway mecha-
nism, ensured by the walls of the structural system, or by the fulfillment of Eq . (1.4)
around almost every beam-column joint. If the intended pattern of distributed plastic
hinging in such a mechanism (shown in Figs. 1.3b–e of Section 1.3.2) occurs simul-
taneously throughout the structure, the demand value of the local ductility factor of
the chord rotation at all member ends where plastic hinges form, μθ, is about equal
to the demand value of the global displacement ductility factor, μδ.2 The demand
value of μθ is linked, in turn, to that of the curvature ductility factor at the end
section, μϕ, via Eq. (3.71).

Part 1 of Eurocode 8 (CEN 2004a) has followed Eurocode 2 (CEN 2004b) in
adopting the confinement model in the CEB/FIP Model Code 90 (CEB 1991), given
by Eqs. (3.8), (3.9), and (3.13) in Section 3.1.2.2. So, the curvature ductility require-
ments in CEN (2004a) are based on that model. Annex A in Part 3 of Eurocode 8
(CEN 2005a) gives the values of steel strain at rupture, εsu, mentioned in Section
3.2.2.10 as case a(ii), for use together with the confinement model in CEB (1991) to
calculate the ultimate curvatures in cyclic loading. If ϕu is computed that way, then,
according to Annex A of CEN (2005a), the value of Lpl to be used in Eq. (3.70a)
is that from Eq. (3.76) in Section 3.2.3.4. As pointed out in Section 3.2.3.4-Case

2Normally plastic hinges form sequentially, starting at the lower part of the building and never
extending throughout their full intended pattern. So the maximum value of μθ in the building is
about double its ideal value of μδ: μθ ≈ 2μδ. Plastic hinges form essentially simultaneously only
in wall systems having walls of similar size fixed at the base. In these walls μθ≈ μδ.
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I(ii), the set of Eqs. (3.70a) and (3.76) and of the values of εsu, εcu specified in CEN
(2005a) or CEB (1991), respectively, underestimates, on average, by about 20% the
currently available cyclic test results on member chord-rotation at flexure-controlled
failure.

For the range of parameters Ls, h, dbL, fy and fc commonly found in structural
members of buildings, the value of Lpl from Eq. (3.76) ranges from 0.35Ls to 0.45Ls

for columns (mean value 0.4Ls), from 0.25 to 0.35Ls in beams (mean value 0.3Ls)
and from 0.18 to 0.24Ls in walls (mean value 0.21Ls). These values are on the high
side, because εcu (and hence μϕ= ϕu/ϕy too) is underestimated by the confinement
model in CEB (1991), adopted in Eurocode 2 and used in Eurocode 8 to implement
the required curvature ductility through confinement (see Fig. 3.11c). In principle,
for the value of μθ = μδ that corresponds through Eqs. (1.1) and (1.2) to the value
of q used in the design, the demand value of the curvature ductility factor of the end
section, μϕ, can be computed for each member from Eq. (3.71), using the particular
value of Lpl from Eq. (3.76). Eurocode 8, instead, has opted for a single relation
between μϕ and q,based on a conservative approximation of Eq. (3.71) as: μθ= 1 +
0.5(μϕ–1):

μϕ = 2μθ − 1 (5.1)

Presuming that the full value of q corresponds to inelastic action and ductility,
within the full range of values of q for DC M and H buildings and the usual ranges
of Lpl for the three types of concrete members, Eq. (5.1) gives a mean safety factor
of about 1.65 for columns, about 1.35 for beams and about 1.1 for ductile walls,
with respect to the more realistic values provided by inverting Eq. (3.71). If we
take into account that inelastic deformations and ductility demands correspond to
a value of just q/1.5, the average safety factor implicit in the demand value of μϕ

becomes 2.45 for columns, 1.9 for beams and 1.2 for ductile walls. This safety factor
increases further, when the value of μϕ is used for the calculation of the confining
reinforcement in the “critical regions” of columns (see Section 5.3.3 and Table 5.2)
and the boundary elements of the “critical region” of ductile walls (see Section
5.3.3 and Table 5.3), or of the compression reinforcement in beam end sections (see
Section 5.3.2 and Table 5.1).

Eurocode 8 gives the demand value of μϕ in terms of the basic value of the
behaviour factor, qo, by combining Eq. (5.1) with Eqs. (1.1) and (1.2) and with
μθ ≈ μδ

μϕ = 2qo − 1 if T ≥ TC (5.2a)

μϕ = 1 + 2(qo − 1)
TC

T
if T < TC (5.2b)

where T and TC are as in Eqs. (1.1) and (1.2) and qo, T refer to the vertical
plane in which bending of the member being detailed takes place. Note that the
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basic value qo of the behaviour factor is used in Eqs. (5.2), instead of the final
value q that may be lower than qo owing to irregularity in elevation or to walls
with low aspect ratio. Such features are considered to reduce the global duc-
tility capacity for given local ductility capacities (e.g., because of non-uniform
distribution of ductility and deformation demand in heightwise irregular build-
ings). Note that, by the same token, in torsionally flexible systems a q-factor
value higher than the one used to reduce the elastic spectrum should had been
specified for use in Eqs. (5.2), as their perimeter elements may be subjected to
higher ductility and deformation demands than the rest. As this is not done in
Eurocode 8, the designer is advised to detail the perimeter elements of torsionally
flexible systems with additional caution and conservatism. This is not necessary
in buildings considered as inverted pendulum systems, because, with their already
very low qo values, such systems will respond elastically to the design seismic
action.

Recall that the values of qo in Table 1.1 (and the final q-factor value derived
from them after reductions for heightwise irregularity or wall aspect ratio) are
upper limits of q for the derivation of the design response spectrum from the
elastic one. Even if the designer uses a lower q value than the upper limit
for the ductility class of a particular building, the required curvature ductility
factor from Eqs. (5.2), or the prescriptive detailing rules for elements are not
relaxed.

In ductile walls designed according to Eurocode 8 the lateral force resistance
– i.e., the quantity directly related to the q-factor – depends only on the moment
capacity of the base section. The wall overstrength is the ratio MRd/MEd – where
MEd is the bending moment at the base from the analysis for the design seismic
action and MRd the design value of moment resistance under the corresponding axial
force from the analysis. Eurocode 8 allows computing μϕ at the base of individual
ductile walls using in Eqs. (5.2) the value of qo divided by the minimum value of
the wall MRd/MEd–ratio among all combinations of the design seismic action with
the concurrent gravity loads. It would had been more representative – albeit less
convenient – to use instead the ratio ΣMRd/ΣMEd, with both summations extending
to all the walls in the system. Note that the plastic hinge at a wall base controls the
lateral force resistance of the entire wall, which in turn may be an important contrib-
utor to the global lateral force capacity. By contrast, a frame system’s lateral force
resistance depends little on the moment resistance of individual beams or columns.
So, there is no one-to-one correspondence between the deformation demands on
a beam or column plastic hinge and its flexural overstrength, to support a simple
rule for reduction of the local demand value of μϕ in critical regions of beams or
columns thanks to their overstrength.

Recognising the possible reduction of member flexural ductility when less ductile
steel is used as longitudinal reinforcement (see Eqs. (3.1) and (3.2) in Section 3.1.1.4
and Eqs. (3.64) in Section 3.2.2.10), if steel of class B in Eurocode 2 (CEN 2004b) is
used in the “critical region” of a primary element (as allowed in buildings of DC M,
see Table 3.1) Eurocode 8 uses for its detailing a value of μϕ increased by 50% over
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that given by Eqs. (5.2). Note that the resulting value of μϕ is used for the detailing
of the compression reinforcement and of the confinement of the compression zone.
So, the increase will not make up directly for the possible reduction in ductility
due to the more brittle steel. It may have an indirect impact, though, by alerting
the designer on the effects of such steels and encouraging the use of steel class C
(or choosing DC L, instead, where design does not rely on ductility and there is no
penalty for using steel class B).

5.3 Detailing Rules for Local Ductility of Concrete Members

5.3.1 Minimum Longitudinal Reinforcement Throughout a Beam

Concrete cracking may be considered as brittle fracture, releasing significant defor-
mation energy when it happens. If a beam’s cross-sectional area is large, its longi-
tudinal reinforcement may fracture too upon beam cracking, if it is not sufficient
to resist the cracking moment without yielding. So, the amount of longitudinal
reinforcement should ensure that the yield moment exceeds the cracking moment.
Because the magnitude and the distribution of seismic moments in a beam are very
uncertain, all sections of a beam should meet this requirement, for both signs of the
bending moment. More specifically, the minimum reinforcement area, As,min, should
be enough to sustain, with its yield force, As,min fy, the full tensile force released
when concrete cracks. For linear stress distribution across the beam section, this
force is equal to 0.5fctbht, where b and ht are the width and the depth of the tension
zone, respectively, before cracking. Beams commonly have a T- or L-section and
when their flange is in compression the neutral axis is very close to it (also before
cracking). So, it can be conservatively assumed that: ht ≈ 0.9h ≈ d. If the flange is
in tension, the depth and width of the tension zone are quite uncertain. It may be
assumed again that bht ≈ bd, where b and d are the width and effective depth of the
rectangular web of the beam. Then the minimum ratio of reinforcement with respect
to bd is:

ρmin = As,min

bd
= 0.5 fct bht

bd fyk
≈ 0.5

fctm

fyk
(5.3)

where the (28-day) mean value, fctm, is used for the tensile strength of concrete,
fct, and the characteristic or nominal value, fyk, for the yield stress of the longi-
tudinal reinforcement. Note that the margin between the steel tensile strength, ft,
and the nominal yield stress, fyk, is in the order of 25%, providing a safety margin
against fracture due to overstrength of the concrete in tension (the 95%-fractile of
fct exceeds fctm by about 30% and, unlike the compressive strength of concrete, its
tensile strength does not increase significantly over time).
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5.3.2 Maximum Longitudinal Reinforcement Ratio in “Critical
Regions” of Beams

The value of μϕ at plastic hinges of beams from Eqs. (5.2) is provided through
an upper limit on the tension longitudinal reinforcement ratio in beam “critical
regions”, ρ1,max = As1,max/bd. The value of ρ1,max is derived as follows.

If the tension reinforcement is less than the compression reinforcement, As1 <
As2, the ultimate deformation at the end of the beam takes place when the effective
ultimate strain of the tension reinforcement, εsu, is exhausted. The requirements for
the steel class in DC M or H buildings posed by Eurocode 8 (see Table 3.1 in Section
3.1.1.4) and the penalty on μϕ if class B steel is used in DC M buildings (see last
paragraph of Section 5.2) prevent fracture of tension reinforcement before the beam
end reaches its ultimate flexural deformation by failure of the compression zone
with the larger of the two reinforcement in tension: As1 > As2. The limit on ρ1,max

refers to that situation. Therefore, Eq. (3.44) in the part Definitions and Assumptions
of Section 3.2.2.4 applies for ϕu in μϕ = ϕu/ϕy, and not Eq. (3.43). In Eq. (3.44) εcu

is taken equal to the ultimate strain of unconfined concrete in Eurocode 2: εcu2 =
0.0035, because beams do not rely for ductility on confinement of their compression
zone. For this value of εcu the right-hand-side of Eq. (3.50a) is about equal to 1/6 and
the condition of Eq. (3.50a) is normally met by the beam. Moreover, for their usual
parameter values (including ωv = 0 and 0.5 ω1 ≤ ω2 ≤ ω1) and with no axial load,
beams satisfy Eq. (3.51) in the part Curvature at Spalling of the Concrete Cover
of Section 3.2.2.4. Then Eq. (3.52) applies for the dimensionless neutral axis depth
ξ cu = xcu/d. The conventional value, εc2 = 0.002, can be used there for εco. Using in
μϕ= ϕu/ϕy the semi-empirical value ϕy = 1.54εy/d from tests of beams or columns
(see Eq. (3.40a) in the part Comparison with Experimental Results and Empirical
Expressions for the Curvature of Section 3.2.2.2), the following upper limit comes
out for the beam’s tension reinforcement ratio, ρ1:

ρ1,max = As,max

bd
≈ ρ2 + 0.0018

εyμφ

fc

fy
(5.4a)

where ρ2 = As2/bd is the ratio of compression reinforcement. Both ρ1 and ρ2 are
normalised to the width b of the compression flange, not of the web. In Eurocode 8
the design values of concrete and steel strengths, fcd = fck/γ c, fyd = fyk/γ s and the
value εyd=fyd/Es of εy=fy/Es are used in Eq. (5.4a):

ρ1,max = ρ2 + 0.0018

εydμϕ

fcd

fyd
(5.4b)

As noted in Section 5.2 just before Eq. (5.1), for the value Lpl/Ls = 0.3 rep-
resentative of typical beams in buildings, application of Eq. (5.2) gives a safety
factor of about 1.35 with respect to the more realistic values provided by inverting
Eq. (3.71) – or to 1.9, if it is recognised that the value of q includes a material (and
member) overstrength factor of 1.5, hence only a value of q/1.5 produces ductility
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demands. The safety factor on μϕ becomes 1.35×1.5/(1.15)2 ≈ 1.55 if the values
γ c = 1.5, γ s = 1.15 recommended in Eurocode 2 for ULS dimensioning under fac-
tored non-seismic actions are used, or just 1.35, if the values γ c = 1.0, γ s = 1.0
recommended in Eurocode 2 for the ULS under accidental actions are used instead.
The ratio between these implicit safety factors is: 1.55/1.35 ≈ 1.15, i.e. equal to the
partial factor of steel recommended for the ULS under factored non-seismic actions.
This is consistent with adopting or not this safety factor for seismic design as well.
This “theoretical” safety factor has been compared in Fardis (2004) to the ratio of:

1. the “demand” value of μϕ from Eq. (5.1) using there the value of μθ at the
ultimate deflection of beams cyclically tested to flexural failure; to

2. the “supply” value of μϕ from inverting Eq. (5.4b) at the value of (ρ1–ρ2) in the
tested beam.

The median value of this ratio in 52 cyclic tests of beams is 0.76 for γ c=1,
γ s=1, or 0.82 for γ c=1.5, γ s=1.15. Being less than 1.0, these values suggest that
Eq. (5.4b) is unsafe. If, however, the value of μθ is determined not as the ratio of
the beam ultimate deflection to the experimental yield deflection, but to the value
MyLs/3(0.5 EcIc) corresponding to the effective elastic stiffness of 0.5 EcIc specified
in CEN (2004a), the median ratio in the 52 beam tests is 2.65 for γ c=1, γ s=1, or
3.0 for γ c=1.5, γ s=1.15, well above the “theoretical” safety factors of 1.35 or 1.55
calculated here.

Equation (5.4b) is very restrictive for the top reinforcement at beam supports,
especially for high values of μϕ (e.g. in DC H buildings with high qo values). To
accommodate the top reinforcement needed to satisfy the ULS in bending at beam
supports for the design seismic action together with the concurrent gravity loads
without unduly increasing the beam section, the bottom reinforcement ratio, ρ2, may
be increased above the value of ρmin of Eq. (5.3) and the prescriptive lower limit of
0.5ρ1 for the bottom reinforcement in beam “critical regions” (cf. Table 5.1).

5.3.3 Confining Reinforcement in “Critical Regions” of Primary
Columns and Ductile Walls

The longitudinal reinforcement of columns and walls is normally symmetric:
ρ1 = ρ2. So, the value of μϕ in plastic hinges from Eqs. (5.2) cannot be achieved
in the same way as in beams, notably through a compression reinforcement ratio,
ρ2, close enough to the tension reinforcement ratio, ρ1, to keep the extreme con-
crete fibres below their ultimate strain (see Eq. (5.4b)). In columns and walls the
extreme concrete fibres are allowed to reach their ultimate strain and spall. We
rely thereafter on the enhanced ultimate strain of the confined concrete core to the
centreline of the hoops and we provide the required value of μϕ through confine-
ment. The amount of confinement reinforcement required to this end is derived as
follows.
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For the same reason as in beams (see 2nd paragraph of Section 5.3.2), ϕu is
taken from Eq. (3.44), this time applied to the section of the confined core inside the
centreline of the hoops, i.e., with:

– depth: ho= hc–2(c+dbh/2),
– width: bo=bc–2(c+dbh/2) and
– effective depth: do=d–2(c+dbh/2),

where (see Fig. 5.1):

c is the concrete cover to the outside of the hoops,
hc, bc are the external dimensions of the original unspalled concrete section and
dbh is the hoop diameter.

The strain at the extreme fibres of the confined core, ε∗
cu, is taken equal to

the ultimate strain of confined concrete, εcu2,c, according to Eurocode 2, i.e., from
Eqs. (3.13) and (3.25). Recall that in Eurocode 2 confinement enhances the concrete
strength and the corresponding strain according to Eqs. (3.8), (3.9) and (3.25). Using
in μϕ = ϕu/ϕy the semi-empirical value ϕy = λεy/h, with λ = 1.75 for columns and
λ= 1.44 for walls (see Eqs. (3.41b) and (3.41c) in the part Comparison with Experi-
mental Results and Empirical Expressions for the Curvature of Section 3.2.2.2), the
strain at the extreme fibres of the confined core, ε∗

cu, required for the target value
of μϕ is:

Fig. 5.1 Geometric terms for concrete confinement in columns (CEN 2004a)
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ε∗
cu = λμϕεyξ

∗
cu

ho

hc
(5.5)

As in Flow Chart 3.2 and in Section 3.2.2.4, variables with an asterisk or subscript
“o” refer to the confined core, while hc is the depth of the original column section.
Note that in the confined core the compression reinforcement is so close to the
extreme compression fibres3 that Eq. (3.50a) is always met. For the same reason,
with ω∗

1 = ω∗
2 the left-hand-side of Eq. (3.51) is negative, while, thanks to the

increase of εcu by confinement, the value of its right-hand-side is positive and high.
So, the dimensionless axial force in the confined core, ν∗ = N/(bohof ∗

c), being low
thanks to the increase of f ∗

c by confinement and the large size of primary columns,4

satisfies Eq. (3.51) in the part Curvature at Spalling of the Concrete Cover of Section
3.2.2.4. The physical meaning is that confinement delays crushing of the extreme
fibres in the confined core till after both the tension and the compression bars yield.
Then, Eq. (3.52) applies for the neutral axis depth of the confined core (normalised
to ho as ξ ∗

cu), giving (for ω∗
1 = ω∗

2 and δ1 ≈ 0):

ξ ∗
cu ≈ ν∗ + ω∗

ν(
1 − ε∗

co

3ε∗
cu

)
+ 2ω∗

ν

≈ ν + ων(
1 − ε∗

co

3ε∗
cu

)
f ∗

c

fc

boho

bchc
+ 2ων

(5.6)

where ω∗
v = Asνfy/bohof ∗

c is the mechanical reinforcement ratio of vertical bars
between the extreme tension and compression bars in the confined core and ωv =
Asνfy/hcbcfc, is the corresponding ratio in the unspalled section. After substituting
ξ ∗

cu from Eq. (5.6) into Eq. (5.5), setting ε∗
cu equal to the value from Eqs. (3.13)

and (3.25), substituting the values of f ∗
c, ε∗

co from Eqs. (3.8) and (3.9) and neglect-
ing 2nd-order terms, the following result is obtained for the effective mechanical
(volumetric) ratio of confining reinforcement, aωw:

aωw ≈ 10λμϕεy (ν + ων)
bc

bo
− 0.0285 (5.7a)

or, after multiplying both sides by (fyd/fy)(fc/fcd) = γ c/γ s:

aωwd ≈ 10λμϕεyd (νd + γsωνd )
bc

bo
− 0.0285γc/γs (5.7b)

In lieu of Eq. (5.7b), Eurocode 8 adopts the following expression:

3δ1 = (ho–do)/ho = (dbL + dbh)/2ho ≈ 0
4Primary columns designed for DC H or M according to Eurocode 8 are large, not so much to
satisfy Eq. (1.4) or the prescriptive upper limits on the dimensionless axial load ratio, νd, (see
Table 5.2), but thanks to the upper limit on the ratio of beam longitudinal bar diameter to column
depth at beam-column joints (see Section 5.4.1 and Table 5.1)
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aωwd = 30μϕεyd (νd + ωνd )
bc

bo
− 0.035 (5.8)

Moreover, in columns Eurocode 8 neglects ωvd, as small compared to νd. The
difference between 10λ and the adopted value of 30 for the coefficient provides a
safety margin on the value of μϕ achieved for given value of aωwd. Regarding the
last term in Eqs. (5.7b) and (5.8), note that for the values of γ c, γ s recommended
in Eurocode 2 for ULS design against non-seismic actions 0.0285γ c/γ s is equal to
0.037, i.e. larger than 0.035 and the difference is on the safe side. However, the
same term is equal to 0.0285 for the values of γ c, γ s recommended for ULS design
against accidental actions and the difference is on the unsafe side. Overall, for the
usual amounts of confining reinforcement the difference of the final confinement
requirements from Eqs. (5.7b) and (5.8) corresponds to the difference in the γ s

values (γ s = 1.15 v γ s = 1.0).
Recall from the paragraph of Section 5.2 before Eq. (5.1) that:

– for the usual values of Lpl/Ls in typical building columns, Eq. (5.1) gives an aver-
age safety factor of about 1.65 with respect to more realistic values obtained by
inverting Eq. (3.71); if it is considered that q includes an overstrength factor of 1.5
and only a value of q/1.5 produces ductility demands, this safety factor increases
to 2.45;

– for the values of Lpl/Ls representative of typical ductile walls in buildings, Eq.
(5.1) gives an average safety factor of about 1.1 with respect to the values
obtained by inverting Eq. (3.71), or of 1.2 when it is taken into account that
only q/1.5 gives rise to ductility demands.

The end result is an average safety factor on μϕ of:

– 1.65 × 30/(10 × 1.75) ≈ 2.8 for columns, or
– 1.1 × 30/(10 × 1.44) ≈ 2.3 for walls.

Such values of the safety factor on μϕ are fully justified for vertical elements, in
view of:

– their crucial importance for the integrity of the whole, and
– the large scatter of experimental results about the correspondence between μϕ

and μθ and the associated uncertainty.

In view of this uncertainty, the “theoretical” safety factor has been compared to the
ratio of:

1. the “demand” value of μϕ from Eq. (5.1) using there the value of μθ at the
ultimate deformation of columns or walls cyclically tested to flexural failure, to

2. the “supply” value of μϕ from inverting Eq. (5.8) for the value of aωwd+0.035 in
the test specimens.
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The median value of the ratio in about 640 cyclic tests of columns with non-zero
axial load is 0.82 for γ c=1, γ s=1, or 0.85 if γ c =1.5, γ s =1.15. The corresponding
median values in about 50 cyclic tests on flexure-controlled walls is 0.9 for γ c=1,
γ s=1, or 1.02 for γ c=1.5, γ s=1.15. Values less than 1.0 suggest that Eq. (5.8)
is unsafe. If, however, the value of μθ is determined as the ratio of the member
ultimate drift not to the experimental yield drift but to the value MyLs/3(0.5EcIc)
corresponding to the effective elastic stiffness of 0.5EcIc specified in Eurocode 8 for
the analysis of concrete buildings, the median ratio becomes (Fardis 2004):

– 1.85 for γ c =1, γ s =1, or 2.0 for γ c =1.5, γ s =1.15 in the column tests, and
– 2.9 for γ c =1, γ s =1, or 3.3 for γ c=1.5, γ s=1.15 in the wall tests,

compared to the “theoretical” safety factors of 2.8 or 2.3 quoted above.
If Eq. (5.8) gives a negative outcome when applied with bo=bc, the target value

of μϕ can be achieved by the unspalled section without confinement. Then stirrups
in the “critical region” may just follow the prescriptive detailing rules of the corre-
sponding DC (cf. Tables 5.2 and 5.3).

The confinement reinforcement from Eq. (5.8) is not required by Eurocode 8 at
all column “critical regions” indiscriminately, but only where plastic hinges may
develop by design. These are the “critical regions” at the base of DC M or H
columns (at the connection to the foundation). In all other “critical regions” of DC M
columns, only the prescriptive detailing rules of Table 5.2 – e.g. against buckling of
bars, etc. – do apply. In DC H buildings, however, the confining reinforcement from
Eq. (5.8) is required by Eurocode 8 in the “critical regions” at the ends of all columns
not checked for fulfilment of Eq. (1.4) (those falling in the exemptions allowed by
Eurocode 8 and listed in Section 1.3.4). Besides, some confining reinforcement is
also required even in the “critical regions” at the ends of DC H columns which are
protected from plastic hinging by meeting Eq. (1.4) in both horizontal directions. In
that case it is computed from Eq. (5.8) for the value of μϕ obtained from Eqs. (5.2)
for two-thirds of the basic q-factor value, qo, used in the design, instead of the full
value.

In columns Eq. (5.8) should be applied separately in the two directions of bend-
ing, using the values of qo (and hence of μϕ) applying to the structural system in
these two directions and the most unfavourable (i.e., maximum) value of the axial
force from the analysis for the seismic action and the concurrent gravity loads. The
largest outcome of Eq. (5.8) from these two separate applications should be used for
ωwd. It should be implemented as sum of mechanical reinforcement ratios in both
transverse directions, (ρx+ρy)fywd/fcd, providing, however, about equal transverse
reinforcement ratios in both directions: ρx≈ ρy. The layout of confining reinforce-
ment in walls, rectangular or not, is the subject of the next section.

Wall or column sections often consist of several rectangular parts: sections with
T-, L-, double-tee, U-, or even Z-shape, hollow rectangular sections, walls with “bar-
bells” at the edges of the section, etc. For such sections ωwd should be determined
separately for each rectangular part of the section that may serve as compression
flange under any direction of the seismic action. Eq. (5.8) should first be applied
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taking as width bc the external width of the compression flange at the extreme com-
pression fibres. This applies also to the normalisation of the axial force, NEd, and
of the area of vertical reinforcement between the tension and compression flanges,
Asv, as νd= NEd/(hcbc fcd), ωvd = Asv/(hcbc)fyd/fcd, with hc denoting the maximum
dimension of the unspalled section at right angles to bc (as if the section were rectan-
gular, with width bc and depth hc). For this to apply the compression zone should be
limited within the compression flange with width bc. To check this, the neutral axis
depth at the ultimate curvature after the concrete cover spalls at the compression
flange is calculated as5:

xu = (νd + ωvd )
hcbc

bo
(5.9)

The outcome of Eq. (5.9) for xu is then compared to the dimension of the rectan-
gular compression flange at right angles to bc (i.e., parallel to hc), after reducing it by
(c+dbh/2) for spalling. If this reduced dimension exceeds xu, the outcome of Eq. (5.8)
for ωwd is implemented with stirrups in the compression flange in question. Again
about equal stirrup ratios should preferably be provided in both directions of this
compression flange: ρx ≈ ρy. However, what mainly counts in this case is the steel
ratio of the stirrup legs at right angles to bc.

If the value of xu from Eq. (5.9) appreciably exceeds the dimension of the com-
pression flange at right angles to bc reduced by (c+dbh/2), there are three alternatives:

1. The difficult one: Eurocode 8 recommends the cumbersome and tricky option
of generalising the rigorous approach highlighted above in the derivation of
Eqs. (5.7) and (5.8), notably by:

– defining μϕ as μϕ=ϕu/ϕy,
– calculating ϕu as ϕu = ε∗

cu/xcu and ϕy as ϕy = εy/(d–xy),
– estimating the neutral axis depths xu and xy from equilibrium over the section,

and
– using Eqs. (3.8), (3.9), (3.13) and (3.25) for the properties of the confined con-

crete.

In principle this can be done using the iterative algorithms mentioned in
Section 5.7.3.1 for the ULS verification of sections with any shape and lay-
out of reinforcement for any My-Mz-N combination, provided that the proper-
ties of confined concrete from Eqs. (3.8), (3.9), (3.13) and (3.25) are used in its
parabolic-rectangular σ-ε law. Confinement reinforcement should be calculated
both for the compression flange of width bc and the adjoining rectangular part
of the section at right angles to it (the “web”). It should provide the same safety
margin on the value of μϕ as given by Eq. (5.8) over Eq. (5.7) (i.e., it should
achieve the safety margin provided by Eq. (5.8) for rectangular sections).

5Equation (5.9) is an approximation of Eq. (5.6).
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2. The easy option. To physically increase the dimension of the rectangular com-
pression flange at right angles to bc, so that, after been reduced by (c+dbh/2)
because of spalling, it exceeds the value of xu from Eq. (5.9).

3. The intermediate option: To provide confinement over the rectangular part of the
section at right angles to the compression flange (the “web”), instead of the com-
pression flange itself. This option is meaningful only if the compression flange
for which the neutral axis depth has first been calculated from Eq. (5.9) is shal-
low and not much wider than the “web”. Eq. (5.8) should be applied then with
width bc the thickness of the “web” (also in the normalisation of NEd and Asv into
νd, ωνd). The value of ωwd from Eq. (5.8) should be implemented through stir-
rups in the “web”. It is consistent with this to sacrifice the compression flange by
placing in its parts that protrude from the “web” transverse reinforcement meet-
ing only the prescriptive rules of the corresponding DC for stirrup spacing and
diameter, without any confinement requirements. It is more prudent, though, to
place in them the same confining reinforcement as in the “web”.

Note that, although the approach above covers also columns with composite sec-
tion, Eurocode 8 specifies it (with option 1) only for walls. Then hc is the length of
the wall section, lw. The only difference of walls from columns in this respect is in
the extent of the confinement in the direction of the length, lw, as described in the
following section.

5.3.4 Boundary Elements at Section Edges in “Critical Regions”
of Ductile Walls

As noted in the definition of walls in Section 2.2.2.1, a wall differs from a column
in its design and detailing as a concrete member. The wall’s moment resistance is
assigned to the “tension and compression chords” or “flanges” at the edges of its
section and its shear resistance to the “web” in-between them. The wall vertical
reinforcement is concentrated in “boundary elements” at the two edges of the sec-
tion. Confinement of the concrete is also limited there (Fig. 5.2).

Confined boundary elements may be limited to the part of the section where at
ultimate deformation the concrete strain exceeds the ultimate strain of unconfined
concrete according to Eurocode 2, εcu = 0.0035. The hoop enclosing a boundary ele-
ment should have a (centreline) length of xu(1–εcu/ε∗

cu) in the direction of the wall
length, lw. In this calculation the neutral axis depth after concrete spalling, xu, is esti-
mated from Eq. (5.9) with hc equal to lw. ε∗

cu is estimated as ε∗
cu = 0.0035+0.1aωwd

(cf. Eqs. (3.13) and (3.25)) using the actual value of aωwd in the boundary element.
The overall length of the confined boundary element, including the concrete cover
of its perimeter hoop, lc ≥ xu(1–εcu2/ε∗

cu)+2(c+dbh/2), should respect the minimum
value in Table 5.3.

According to Eurocode 8, boundary elements with confinement as specified
above are required only in the “critical region” at the base of ductile walls of DC M
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Fig. 5.2 Boundary elements in rectangular wall and strain distribution at ultimate curvature (CEN
2004a)

and H. In DC H walls, boundary elements should be provided for one more storey
above the “critical region”, with half the confining reinforcement required in the
“critical region” below. Although it is not required by Eurocode 8, it is advisable
to provide boundary elements over the full height of a ductile wall, with their mini-
mum length and reinforcement. This is particularly important in “barbelled” walls,
as the “barbells” should be detailed anyway as column-like elements.

5.4 Detailing and Dimensioning of Beam-Column Joints

5.4.1 Maximum Diameter of Longitudinal Beam Bars Crossing
or Anchored at Beam-Column Joints

Shear forces are introduced in beam-column joints primarily via bond stresses along
the beam and column bars around the joint core. Cyclic degradation of bond and
slippage of these bars along their length within the joint increases the apparent flex-
ibility of the joint and the interstorey drifts. It might even prevent development of
the member’s moment resistance at the face of the joint. Although the global conse-
quences of such phenomena are not dramatic, loss of bond along these bars in a joint
would better be avoided through appropriate verifications. Section 3.3.2 mentioned
that an upper limit is obtained for the ratio dbL/hcof beam bars passing through inte-
rior beam-column joints or anchored at exterior ones, by setting the bond stress in
Eq. (3.133) equal to the ultimate bond stress. The dbL/hc-limits set in Eurocode 8
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have been chosen as follows, before the relevant recent advances in the State-of-
the-Art (Cairns 2006, Eligehausen and Lettow 2007).

As pointed out in Section 3.1.3.2, the design value of the ultimate bond stress in
Eurocode 2 is 2.25fctd for “good” bond conditions, or 70% of that value for “poor”
conditions. The design value of the concrete tensile strength is fctd = fctk,0.05/γ c =
0.7fctm/γ c. As the consequences of bar pull-out from the joint core are not catas-
trophic, if the design bond strength is based on the 5%-fractile of the tensile strength
of concrete, it is too conservative to divide it further by the partial factor for concrete.
So, this partial factor may not be applied in this particular case. As bond outside the
confined joint core is neglected, the positive effects of confinement by the joint stir-
rups, the top bars of the transverse beam and the large volume of the surrounding
concrete may be taken into account. This may be done according to CEB (1991), by
doubling the design value of the ultimate bond stress, instead of dividing it by 0.7
according to Eurocode 2. The factor of 2.0 is consistent with the upper limit value
on the confinement terms (the 1st and the 2nd one inside the brackets) in Eq. (3.31),
for the pull-out (or -through) mode of failure. This gives an ultimate bond stress for
the top bars (“poor” bond conditions) of 2.0 × [0.7 × 2.25 × (0.7fctm)] = 2.2fctm.
This value may be further increased by the friction due to the normal stress on the
bar-concrete interface, σcos2ϕ, produced by the mean vertical compressive stress
in the column above the joint, σ = NEd/Ac = νdfcd. When averaged around the bar
perimeter, this bond strength enhancement becomes 0.5 μνdfcd, where μ is the fric-
tion coefficient. For the design value μ= 0.5 specified in Eurocode 2 at an interface
with roughness similar to that of the bar surface, friction enhances the design value
of bond strength to 2.2fctm+0.5 × 0.5νd fcd ≈ 2.2fctm(1+0.8νd).6 The factor 0.8 in
the parenthesis incorporates a value of 10.5 for the ratio of fck = 1.5fcd to fctm.7 By
setting τ b from Eq. (3.133) equal to this design value of bond strength along the top
bars, the following condition is derived for the diameter of beam longitudinal bars
in beam-column joints, dbL:

– in interior beam-column joints:

dbL

hc
≤ 7.5 fctm

γRd fyd
· 1 + 0.8νd

1 + k ρ2

ρ1,max

(5.10a)

–in beam-column joints which are exterior in the direction of the beam:

dbL

hc
≤ 7.5 fctm

γRd fyd
· (1 + 0.8νd) (5.10b)

–where the overstrength coefficient for the beam bars, γ Rd, is taken as:

6The value 0.25νdfcd used here is 25% higher than the value 0.5p = 0.2νdfcd of the corresponding
term in Eq. (3.31) (the 3rd one inside the brackets).
7The ratio fck/fctm varies between 9 and 11.8 for fck from 20 to 45 MPa. The value 10.5 corresponds
to fck= 30 MPa.
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– γ Rd = 1.0 for DC M and
– γ Rd = 1.2 for DC H.

Coefficient k in Eq. (5.10a), standing for (1–ξ eff/ω) in Eq. (3.133), is taken equal to:

– k = 0.5 for DC M and
– k = 0.75 for DC H.

In exterior beam-column joints we have σ s2 = 0, which is equivalent to k = 0, giving
Eq. (5.10b).

The value of νd = NEd/fcdAc to be used in Eqs. (5.10) should be the minimum
value among all combinations of the design seismic action with the concurrent grav-
ity loads. Eurocode 8 does not give any instructions for tensile net axial forces (that
may occur in exterior columns of medium- or high-rise buildings). It is clear from
the derivation of Eqs. (5.10) that in that case νd =0.

It is most convenient to apply Eqs. (5.10) during the initial sizing of columns,
with a target maximum value of the beam bar diameter. This can be done on the
basis of a rough estimate of the minimum axial load NEd in any combination of
the design seismic action with the concurrent gravity loads, minNd in Eq. (2.13)
of Section 2.2.1.5. At that stage the final value of the top reinforcement ratio ρ1

in Eq. (5.10a) is not known. So in Eq. (5.10a) the value of ρ1 in Eq. (3.133) has
been taken equal to the maximum value allowed, ρ1,max, from Eq. (5.4b). At the
same stage the bottom steel ratio ρ2 may be taken equal to the minimum value from
Eq. (5.3), or to 0.5ρ1,max. Although these convenient choices for ρ2 and ρ1,max are
favourable (not safe-sided) for dbL, it should be kept in mind that Eq. (5.10a) is over-
demanding for the size of interior columns. For common values of the axial load (νd

∼ 0.2) and of the steel nominal yield stress (500 MPa) and a relatively low concrete
grade (fck = 20 MPa), a column size hc of about 40dbL is required for DC H (i.e. hc

more than 0.6 m for dbL = 14 mm, or about 0.8 m if dbL = 20 mm)! The required size
is relaxed to about 30dbL for medium-high axial loads and higher concrete grades.
If DC M is chosen, the required column size is reduced by about 25%.

Although onerous, the restrictions of Eqs. (5.10) are justified by the cyclic test
results in Fig. 3.46 (Kaku and Asakusa 1991). These results show that the cyclic
response of a beam-column subassembly with hc = 18.75dbL is governed by bond-
slip of the beam bars within the joint and exhibits low energy dissipation and rapid
stiffness decay. A column size of hc = 37.5dbL is needed in Fig. 3.46 for the cyclic
behaviour of the subassembly to be governed by flexure in the beam and exhibit
stable hysteresis loops with high energy dissipation. Subassemblies with hc = 28dbL

gave mediocre results. According to Kitayama et al. (1991), the energy dissipated
by subassemblies with hc = 20dbL cycled to a storey drift ratio of 2% corresponds
to an effective global damping ratio of only 8%.

Eurocode 8 allows applying Eq. (5.10a), derived for the top bars, also to the
bottom bars of the beam. For them the denominator in the 2nd term of Eq. (5.10a)
should have been replaced by 2 and term 7.5fctm in the numerator divided by 0.7 to
account for the “good” bond conditions. As the end result would be about the same
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as that of Eq. (5.10a), for simplicity the same expression is used for the bottom
bars as well. Note, though, that for bottom bars at exterior joints Eq. (5.10b) is
conservative by a factor of about 0.7 on the required column depth hc, thanks to the
“good” bond conditions there.

For exterior joints Eq. (5.10b) is safe-sided for both top and bottom bars for
another reason: although at the exterior face of such joints top beam bars are nor-
mally bent down and bottom bars up, Eq. (5.10b) takes into account the bond only
along the horizontal part of these bars and discounts completely the contribution of
the 90◦-hook or bend. Behind this assumption is the letter of Eurocode 2, which
says that only the straight part of the bar counts toward anchorage in compression.
Prevention of push-out of 90◦-hooks or bends, if the straight part of the bar is not
sufficient to transfer the full yield force of the bar to the joint, is another goal behind
the adoption of the letter of Eurocode 2 in this respect. However, the dense horizon-
tal stirrups placed in an exterior joint between a 90◦-hook or bend and the exterior
surface prevents push-out of the hook or bend – as well as its opening up and kick-
out of the concrete cover when the bar is in tension. Moreover, top bars are normally
protected from yielding in compression thanks to the overstrength of the top flange
over the tensile capacity of its bottom counterpart. So, only the bottom bars may
yield in compression at an exterior joint. The margin of about 0.7 on hc mentioned
at the end of the previous paragraph is available for them. The same margin of about
0.7 on hc is available according to the Eurocode 2 rules for anchorage of top bars
in tension with a 90◦ standard hook or a bend near the exterior face of the joint. On
these grounds, the value of hc at exterior joints from Eq. (5.10b) may be reduced
by as much as 30%, without reducing their safety margin below that offered by
Eq. (5.10a) for interior joints.

5.4.2 Verification of Beam-Column Joints in Shear

To simplify the design process and on the basis of the fairly good field perfor-
mance of beam-column joints in shear, Eurocode 8 exempts DC M buildings from
explicit shear verification of beam-column joints on the basis of their shear force.
Prescriptive detailing rules are given for them, instead. These rules have proved
quite effective in protecting joints in past earthquakes. So, the shear verification
of beam-column joints according to the present section applies only to DC H
buildings.

The nominal shear stress in the concrete core of the joint is the same, no matter
whether it is computed from the horizontal shear force, Vjh, or the vertical one, Vjv.
In new buildings the beams normally yield before the columns, even when they do
not meet Eq. (1.4). So, from the capacity-design point of view, it is more convenient
to compute the shear stress in the joint from Vjh, using the forces transferred via bond
along the top bars of the beam (cf. Eq. (3.134)). This is on the safe side for the joint,
even when columns yield before the beams. So, the design value of the horizontal
shear force in the joint is taken from an expression resulting from Eq. (3.134), using



5.4 Detailing and Dimensioning of Beam-Column Joints 467

there an overstrength value, γ Rdfyd (with γ Rd = 1.2) for the design yield stress of
beam bars:

Vjhd = γRd (Asb1 + Asb2) fyd − Vc (5.11)

The shear force Vc in the column above may be taken equal to the value from
the analysis for the design seismic action. The shear stress in the joint core is then
computed from Eq. (3.135), using the value of Vjhd from Eq. (5.11).

v j = Vjhd

b j h jc
(5.12)

The verification criterion of interior joints against diagonal compression failure
results from Eq. (3.144), using design values:

Vjhd ≤ n fcd

√
1 − νd

n
bjhjc (5.13a)

At joints which are exterior in the direction of the beam, Eurocode 8 relies on
just 80% of the value from Eq. (5.13a):

Vjhd ≤ 0.8n fcd

√
1 − νd

n
bjhjc (5.13b)

In Eqs. (5.13) νd is computed from the maximum axial force in the column below
the joint, under any combination of the design seismic action with the concurrent
gravity loads.

Eurocode 8 uses Eq. (3.143) to calculate the required total area, Ash, of hori-
zontal legs of hoops within the joint between the top and bottom reinforcement of
the beam horizontal reinforcement, using design values for the strengths (including
fctd = fctk,0.05/γ c = 0.7fctm/γ c):

Ash fywd

bjhjw
≥

(
Vjhd

bjhjc

)2

fctd + νd fcd
− fctd (5.14)

Equations (3.142) are accepted in Eurocode 8 as an alternative for the calculation
of the total area, Ash, of horizontal reinforcement within joints. In terms of design
values, including νd = γ cν for the recommended value of γ c =1.5, Eq. (3.142a)
gives for interior joints:

Ash fywd ≥ γRd (Asb1 + Asb2) fyd (1 − 0.8νd ) (5.15a)

At exterior joints Eq. (3.142b) gives:
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Ash fywd ≥ γRd Asb2 fyd (1 − 0.8νd ) (5.15b)

In Eqs. (5.15) γ Rd = 1.2, as in Eq.(5.11). In Eqs. (5.14) and (5.15a) νd is com-
puted from the minimum axial force in the column above the joint (negative for
tension) among the combinations of the design seismic action with the concurrent
gravity loads. The only difference in Eq. (5.15b) is that νd is from the column below
the joint.

The two options allowed by Eurocode 8, Eqs. (5.14) or (5.15), give very differ-
ent results. The amount of reinforcement from Eqs. (5.14) is very sensitive to the
values of νd and vj (implying that the shear resisted by the diagonal tension mech-
anism is insensitive to the amount of horizontal reinforcement). By contrast, the
joint reinforcement from Eqs. (5.15) is proportional to vj and fairly insensitive to
νd. For medium-high values of νd (around 0.3) Eq. (5.14) requires much less joint
reinforcement than Eqs. (5.15). For low values of νd (around 0.15) it gives less hor-
izontal reinforcement than Eqs. (5.15) if vj < 0.3fcd but the other way around if vj.>
0.3fcd. When νd is close to zero Eq. (5.14) gives much more joint reinforcement than
Eqs. (5.15), especially for high values of vj. If such differences are disturbing, even
less reassuring is the discrepancy between the predictions of both options and the
experimental strength values in Fig. 3.48 (Kitayama et al. 1991). The only case of
acceptable agreement with test results is that of Eq. (5.14) for medium-high values
of νd (around 0.3). At any rate, the least among the steel requirements of Eqs. (5.14)
or (5.15) may be used with some confidence.

One of the strength components in the truss mechanism underlying Eqs. (3.142)
and (5.15) is the vertical reinforcement in the joint core. It provides a vertical ten-
sile field equilibrating the vertical component of the concrete diagonal compression
field. Intermediate bars between the corner ones, arranged along the sides of the
column with depth hc, can play this role, while contributing also to the moment
resistance of the end sections of the column above and below the joint. According
to Table 5.2, such bars should be provided along the perimeter at a spacing of not
more than 150 mm for DC H or 200 mm for DC M, to improve the effectiveness
of concrete confinement. For the purposes of the joint, Eurocode 8 requires at least
one intermediate bar between the corner ones, even on short column sides.

In DC H buildings Eurocode 8 requires a total area of column intermediate bars
between the corner ones, Asv,i, as vertical joint reinforcement:

Asv,i ≥ (2/3) Ash
(
hjc/hjw

)
(5.16)

The factor 2/3 in Eq. (5.11) accounts for the inclination of the strut and of the
truss compression field to the horizontal, which is normally steeper than the diag-
onal of the joint core. It also limits the effect on the vertical reinforcement of the
overestimation of Ash by Eqs. (5.14) or (5.15).

As pointed out at the outset of the present section, beam-column joints are
required by Eurocode 8 to be verificied in shear by calculation on the basis of
Eqs. (5.11), (5.12), (5.13), (5.14), and (5.15) only in DC H buildings. For DC M
ones, the detailing prescribed in CEN (2004a) for both DC H and M joints suffices.
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According to it, the transverse reinforcement in the “critical regions” of the column
above or below the joint (whichever is more) should also be placed within the joint,
unless beams with width at least 75% of the parallel cross-sectional dimension of
the column frame into all four sides of the joint. In that case, the horizontal rein-
forcement in the joint is placed at double the spacing in the columns above and
below, but not more than 150 mm.

To appreciate better what the prescriptive rules above imply for the minimum
horizontal reinforcement in a joint, note that for DC H the “critical regions” of
columns above the base of the building have (a design value of) mechanical volu-
metric ratio of transverse reinforcement, ωwd, at least equal to 0.08 (see Table 5.2).
For S500 steel and fck = 30 MPa, this value corresponds to ρjh = 0.185% per hor-
izontal direction, if the partial factors for steel and concrete are equal to their rec-
ommended values for ULS design against non-seismic actions, or to ρ jh = 0.24%,
if these partial factors are equal to 1.0 as recommended for accidental actions. For
other concrete grades the minimum value of ρ jh is proportional to fck. Of course,
other constraints on the column transverse reinforcement in critical regions (e.g. on
the diameter and spacing of transverse reinforcement: dbh ≥ max(6 mm; 0.4dbL),
sw ≤ min(6dbL; bo/3; 125 mm), see Table 5.2, or on the minimum value of μϕ)
may govern. Note, though, that the ρ jh values above are much less than the value of
0.4% marking the limit of the contribution of horizontal reinforcement to the shear
resistance of the joint according to Kitayama et al. (1991). Eurocode 8 has no lower
limit on ωwd in the “critical regions” of DC M columns, but only bounds on the hoop
diameter: dbh ≥ max(6 mm; dbL/4), and spacing: sw ≤ min(8dbL; bo/2; 175 mm), see
Table 5.2. These limit values give low horizontal reinforcement ratio in the joint.
Considering that the practical minimum for DC M is 8 mm hoops at 125 mm ver-
tically and with horizontal spacing of legs 200 mm, the resulting steel ratio in the
joint is ρ jh = 0.2% per horizontal direction.

5.5 Special Dimensioning Rules for Shear

5.5.1 Dimensioning of Shear Reinforcement in “Critical Regions”
of Beams or Columns

As Tables 5.1 and 5.2 show, the design value of shear resistance for beams or
columns is computed according to the rules of Eurocode 2 for monotonic loading,
both when transverse reinforcement controls the shear resistance (denoted in that
case as VRd,s) and when diagonal compression in the member’s web does (denoted
then as VRd,max). The special rules described below for the values of VRd,s and VRd,max

in “critical regions” of beams of DC H are an exception.
In the “critical regions” of DC H beams the strut inclination, δ, in Eqs. (3.94),

(3.95), (3.97) and (3.104) of the part The Variable Strut Inclination Truss of the
CEB/FIP Model Code 90 and Eurocode 2 of Section 3.2.4.2 is taken equal to
45◦ (tan δ = 1). This is equivalent to a classical Mörsch-Ritter 45◦-truss without
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a concrete contribution term. The underlying reason is the reduction of VR,s with
increasing inelastic cyclic deformations (see Sections 3.2.4.3, 3.2.4.4 and Fig. 3.41)
in plastic hinges, which by design take place in beams and in DC H are subjected to
significant chord rotation ductility demands, μθ ≈ μδ. For simplicity, the reduction
of VR,s with inelastic cyclic deformations is neglected in DC M beams, as the lower
q-factor of DC M design gives, through Eqs. (1.1) and (1.2), lower chord rotation
ductility demands, μθ ≈ μδ.

In columns of new buildings designed to Eurocode 8 for DC M or H, plastic
hinging under the design seismic action is the exception. If it does take place, it will
normally lead to lower chord rotation ductility demands and hence less reduction of
the value of VR,s than in beams. It is expected that, if such a reduction does happen,
its effects on safety will be offset by the γ Rd factor of 1.1 for DC M and of 1.3
for DC H employed in the capacity-design calculation of shear force demands (cf.
Eqs. (1.11) and (1.12) and Table 5.2). So, Eurocode 8 neglects the reduction of
shear resistance in “critical regions” of columns and applies the normal expressions
for shear resistance from Eurocode 2, Eqs. (3.94), (3.95), (3.96a), (3.97), (3.98),
(3.104a), etc.

5.5.2 Inclined Reinforcement Against Sliding Shear in “Critical
Regions” of DC H Beams

Another aspect where shear design in “critical regions” of DC H beams deviates
from the Eurocode 2 rules is the use of inclined bars, at an angle ±α to the axis,
against shear sliding at the end section of the beam (see bottom row in Table 5.1).
Such sliding may occur at an instant in the response when the end section is cracked
throughout its depth and the shear force demand is high. This may happen if the
shear force has a large reversal and a high peak value. Eurocode 8 requires inclined
bars against sliding shear, if both of the following criteria are met:

− 1 ≤ ζ < −0.5 (5.17)

as the criterion for a large shear reversal, with ζ from Eq. (1.10) in Section 1.3.6.2;
and

max Vi,d > (2 + ζ ) fctdbwd (5.18)

where max Vi,d is the maximum design shear force from Eq. (1.9a) of Section
1.3.6.2, at the end section of the beam “critical region” at end i. The limit shear
value of Eq. (5.18) is between one-third to one-half of the value of VRd,max for
δ = 45◦.

As no stirrups cross a section liable to shear sliding, inclined bars with total cross-
sectional area As, should cross that section if both limits in Eqs. (5.17) and (5.18)
are exceeded. They should resist, through the vertical components Asfyd sinα of their
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yield force – in tension and compression – at least 50% of max Vi,d from Eq. (1.9a),
respecting the recommendation of Eurocode 2 to resist at least 50% of the design
shear force through shear links:

As fyd sinα ≥ 0.5 max Vi,d (5.19)

If the beam is short, inclined bars are most conveniently placed along its two
diagonals in elevation (see coupling beam of Fig. 3.44). Then tanα ≈ (d–d1)/Lcl.
If the beam is not short, the inclination of its diagonals to the beam axis is small
and the effectiveness of inclined bars placed along them low. Two series of shear
links, one at an angle α = 45◦ to the beam axis and the other at α = –45◦, are more
cost-effective then. However, constructability and reinforcement congestion hamper
this option. Normally there is neither risk from sliding shear, nor need for inclined
reinforcement, if the layout of the framing is selected as suggested in Section 2.2.1,
notably avoiding beams that are both short and not loaded with significant gravity
loads concurrent with the design seismic action (i.e., beams with small value of
the 1st term and large value of the 2nd term in the right-hand-side of Eqs. (1.9) in
Section 1.3.6.2).

Plastic hinges in columns are subjected to an almost full reversal of shear
(ζ ≈ –1). Moreover Eq. (1.13) normally gives a large design shear force for them.
Inclined bars are not required in columns, nonetheless, because their axial force and
the low magnitude of plastic strains in the vertical bars prevent through-depth crack-
ing of the end section. Sliding is also resisted by clamping and dowel action in the
large diameter intermediate bars between the corner bars, which remain elastic at
the instant of peak positive or negative shear force.

5.5.3 Shear Verification of Ductile Walls of DC H

As shown in Table 5.3, like in beams and columns, the design value of the shear
resistance of ductile walls, as controlled by the transverse reinforcement, VRd,s, or
diagonal compression in the web, VRd,max, is computed according to the rules of
Eurocode 2 for monotonic loading, except in the “critical region” of DC H walls.
There, the design value of cyclic shear resistance, as controlled by diagonal com-
pression in the web, VRd,max, is taken as 40% of the value given by Eurocode 2 for
monotonic loading. The reason is clear from Fig. 3.42. For the sake of simplicity,
ductile walls of DC M are spared from this reduction, but this is certainly not safe-
sided.

Unlike columns, ductile walls of DC H are required to be verified for sliding
shear, as their axial load level is low and the web bars are of smaller diameter and
more sparse than in columns. As an outcome of this verification, inclined bars may
be placed at the wall base (Table 5.3, 2nd row from the bottom). An important
practical difference with columns in this respect is that, thanks to their large size,
less dense transverse and vertical reinforcement and one-directional cross-sectional
shape and function, walls lend themselves better to placing inclined bars.
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The shear design of DC H walls deviates from the general Eurocode 2 rules
also in the calculation of web reinforcement ratios, horizontal ρh, and vertical ρν, at
those storeys where the maximum shear span ratio in the storey (normally at the base
of the storey), Ls/h = MEd/(VEdlw) is less than 2. Note that most tested walls with
Ls/h < 2 have failed in diagonal compression and are included in the 50 specimens
with Ls/h ≤ 2.5 behind Eq. (3.115) and depicted in Fig. 3.42 of Section 3.2.4.5. By
contrast, only four out of 32 tested walls (rectangular or not) that failed in shear by
diagonal tension after flexural yielding and support Eqs. (3.114) in Section 3.2.4.3
have Ls/h < 2. So, there is certain lack of knowledge of the propensity of squat
walls to failure in cyclic diagonal tension. In view of this, for DC H walls Eurocode
8 adopted a safe-side modification of the Eurocode 2 rule for members with 0.5 <
Ls/h < 2 under monotonic loading: the resistance in diagonal tension at those storeys
where maxMEd/(VEdlw) < 2 is:

VRd,s = VRd,c + ρhbwo

(
0.75

max MEd

VEd

)
fyh,d (5.20)

In Eq. (5.20) ρh is the ratio of horizontal reinforcement, normalised to the web
thickness, bwo, and fyh,d is its design yield strength. The VRd,c term is the design
shear resistance of concrete members without shear reinforcement according to
Eurocode 2, from Eq. (3.67) in Section 3.2.3.2 but using the web thickness as bw and
design values of concrete strength. Specially in the “critical region of the wall”, it is
taken VRd,c = 0 if Nd is tensile (negative). The vertical web reinforcement ratio, ρv, is
then dimensioned to provide a 45◦ inclination of the concrete strut in the web, when
acting together with the horizontal reinforcement and the vertical compression due
to the minimum axial force for the design seismic action plus concurrent gravity
loads, min NEd. Note that MEd in MEd/(VEdlw) is from the M-envelope of Fig. 1.7
in Section 1.3.5, which does not exhibit inflection points in any storey, and VEd is
the magnified shear according to Eqs. (1.14) and (1.15) in Section 1.3.6.4 (and the
envelope in Fig. 1.11, for the walls of dual, frame-wall systems). So, the value of
MEd/(VEdlw) may turn out to be less than 2 at upper storeys of walls with large lw. At
such storeys the Eurocode 8 rule, being safe-sided owing to insufficient knowledge,
may give unduly large web reinforcement.

5.6 Systems of “Large Lightly Reinforced Walls” in Eurocode 8

5.6.1 Definitions

As pointed out in Section 2.2.2.4, Eurocode 8 has special design provisions for sys-
tems consisting of several large but lightly reinforced RC walls, sustaining seismic
demands not by dissipating seismic energy through hysteresis in plastic hinges, but
by converting part of it into potential energy of the masses due to upward displace-
ments and returning another part to the ground by radiation from their foundation.
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This is a special feature of Eurocode 8, based on the experience of the application of
similar rules in the seismic region of the south of France. To qualify for Eurocode 8’s
special design provisions for “systems of large lightly reinforced walls”, a building
should have:

1. fundamental period in each horizontal direction not longer than 0.5 s, under pre-
sumed fixity at the base of all vertical elements against rotation. This promotes
walls with low aspect ratio and/or large total cross-sectional area as a percentage
of the total floor plan area and takes better into account the effect of potential
openings in the wall than a mere geometric criterion.

2. Primary seismic walls in each horizontal direction qualifying as “large walls”,
by:

(a) having length of the cross-section lw at least 4 m, or 2/3 of the total height
of buildings shorter than 6 m (see Fig. 5.3 for examples);

(b) resisting together at least 65% of the seismic base shear in the direction of
their length; and

(c) supporting together at least 20% of the total gravity load (i.e. at least 40%
in total for the walls of both directions); this ensures that rocking of the
walls increases the potential energy of at least 20% of the total mass of the
building; and

3. At least two primary walls fulfilling conditions 2(a)–(c) above in each horizontal
direction (for redundancy and torsional resistance). Just one primary “large wall”
meeting these conditions may suffice in one of the two horizontal directions, if
there are at least two of them in the orthogonal direction and conditions 1 and 2
above are met in both directions. In that case the q-factor in the direction having
just one “large wall” is reduced by one-third.

If the structural system meets all conditions 1–3, Eurocode 8 allows all its walls
qualifying as “large” by meeting condition 2(a), to be designed and detailed in a very
economic way, according to the special rules for “large lightly reinforced walls” in
Sections 5.6.2, 5.6.3, and 5.6.4.

(a) (b) (c) (d)

Fig. 5.3 Examples of walls with dimensions qualifying them as “large”, in what may qualify as
systems of “large lightly reinforced walls” according to Eurocode 8



474 5 Detailing and Dimensioning of New Buildings in Eurocode 8

A “system of large lightly reinforced walls” can only be in DC M. Although
designed and detailed to much less demanding rules, it enjoys the same q-factors as
wall systems of uncoupled ductile walls of DC M: a basic q-factor of 3 (or 2, if there
is only one “large wall” in the horizontal direction in question), to be multiplied by
(1+αo)/3 if the mean aspect ratio of the walls, αo, is less than 2. Normally such
systems are not heightwise irregular; so their q-factor is not reduced any further.

If a “system of large lightly reinforced walls” includes one or more primary walls
not meeting condition 2(a) above (i.e., less than 4 m-long), these walls are designed
and detailed according to the rules for ductile walls of DC M. Conversely, if the
building as a whole does not qualify as a “system of large lightly reinforced walls”
by failing to meet one of the conditions 1 to 3 above, all its primary walls should be
designed as ductile walls of the corresponding DC, no matter whether themselves
do qualify as “large” by meeting some of these conditions.

5.6.2 Dimensioning of “Large Lightly Reinforced Walls”
for the ULS in Bending and Axial Force

“Large walls” in “systems of large lightly reinforced walls” are dimensioned for the
ULS in flexure without any increase of their design moments over the results of the
analysis for the design seismic action (in other words, the linear moment envelope
of Fig. 1.7 in Section 1.3.5 is not applied). Their vertical reinforcement should be
tailored to the requirements of the ULS in flexure with axial force, without excess
reinforcement area and with less minimum vertical reinforcement than in ductile
walls. The objective is to spread wall flexural yielding to several floors and not limit
it to the base of the wall. This increases the overall lateral deflection of the wall
and mobilises better, by uplift, the contribution to earthquake resistance of masses
and transverse beams supported on the wall at intermediate floors. Minimisation
of flexural overstrength reduces shear force demands and helps avoid pre-emptive
shear distress.

The small thickness of “large walls” compared to their length increases the risk of
out-of-plane instability. Eurocode 8 requires limiting the magnitude of compression
stresses due to bending with axial force, to avoid out-of-plane instability. It does not
give detailed guidance for that, but refers to the pertinent Eurocode 2 rules:

1. The rules for 2nd-order effects in plain (unreinforced) or lightly reinforced walls:

– The compressive strength of concrete is multiplied by ϕ=min{[1.14(1–
2e/bwo)–0.02lo/bwo]; [1–2e/bwo]} < 1.0, where e is the eccentricity of load-
ing along the wall thickness, bwo, having default value e = lo/400, and lo the
unbraced length of the wall, taken equal to the clear storey height, hst. If the
wall is connected at one or both ends of its length, lw, to a transverse wall
with length at least hst/5 and thickness at least bwo/2, this unbraced length is
further divided by [1+(hst/3lw)2], or [1+(hst/lw)2], respectively.
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– (Only for cast-in-situ walls) The thickness of the wall, bwo, should be at least
4% of its unbraced length, lo.

2. The rule against lateral instability of laterally unrestrained compression flanges
of beams8:

– (hst/bwo)(lw/bwo)1/3 < 70.

The seismic response of “large walls” entails rigid-body rocking on the ground
if they are on footings, or bending as a stack of storey-high rigid blocks. Such a
response causes hard impact(s) of the uplifting footing to the ground or upon clo-
sure of horizontal cracks at floor levels. The hard impact excites high-frequency
vertical vibrations of the entire wall, or of certain storeys. Although high-frequency
vibrations die out fast and do not have significant global effects, they cause a fluctu-
ation of the axial force in the wall itself. As these local phenomena are very uncer-
tain and complex, Eurocode 8 is content with a simplified, safe-sided treatment: a
design axial force of the wall equal to the value due to the concurrent gravity loads
increased or reduced by 50%. The vertical reinforcement is conditioned by the min-
imum axial load. By contrast, the maximum compressive axial force is more critical
for the concrete and the wall’s lateral instability. This increase or decrease of axial
force may be neglected, if a q-factor of 2.0 or less is used in the design.

Owing to the high frequency of the vertical vibrations, the ULS verification for
flexure with axial load may use an increased ultimate strain of unconfined concrete:
εcu = 0.005. The beneficial effect of confinement may be taken into account accord-
ing to Eqs. (3.13) and (3.25), but unconfined concrete is considered to spall if its
strain exceeds 0.005. Because of this, and as the (effectively) confined part of a thin
wall section is normally quite small, it may not be worthwhile to consider the effect
of confinement, as it may not increase the moment resistance of the section.

5.6.3 Dimensioning of “Large Lightly Reinforced Walls”
for the ULS in Shear

To preclude shear failure, “large walls” are dimensioned for a shear force, VEd,
obtained by multiplying the value from the analysis for the design seismic action,
V’Ed, by a factor ε:

ε = VEd

V ′
Ed

= q + 1

2
(5.21)

For the usual value of q = 3 applying to “systems of large lightly reinforced
walls”, ε = 2.0, above the value ε = 1.5 for ductile walls of DC M (see Eq. (1.16)).
Moreover, as:

8A 2nd rule in Eurocode 2: lw < 3.5bwo, is meaningless for walls.
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– the dimensioning rules for the vertical reinforcement explicitly request minimis-
ing the flexural overstrength at the base of the wall, MRd/MEd, and

– the fundamental period in the direction of the length of the wall, T1, is normally
not (much) longer than the corner period of the spectrum, TC,

the value of ε from Eq. (5.21) exceeds that from Eq. (1.14) for squat ductile walls
of DC H and is similar to the outcome of Eq. (1.15) for slender ductile walls of DC
H. So, the design shear of “large lightly reinforced walls” is quite safe-sided. For
this reason, and also because flexure, with its overstrength minimised by design,
governs the inelastic response, Eurocode 8 allows omitting altogether the minimum
smeared horizontal reinforcement in “large lightly reinforced walls” whose design
shear force, VEd = εV’Ed, is less than the design shear resistance without shear rein-
forcement, VRd,c, according to Eurocode 2 (see Eq. (3.67)). Although relaxing a
requirement that applies according to Eurocode 2 even to walls designed for non-
seismic actions sounds weird, it does make sense, because:

– Even if inclined cracks do form despite fulfillment of the verification: VEd ≤
VRd,c, their width will not grow uncontrolled as in walls without horizontal rein-
forcement under force-controlled actions (e.g. wind). Such cracks will close,
when the transient and deformation-controlled seismic response reverses.

– Thanks to the large horizontal dimension of the wall, lw, any inclined crack will
intersect a floor slab and mobilise in shear the horizontal ties placed at its inter-
section with the wall, as well as slab reinforcement parallel to lw and close to the
wall.

If VEd > VRd,c, horizontal reinforcement will be calculated according to
Eurocode 2, using:

1. either the variable-strut-inclination model of shear resistance in the part of
Section 3.2.4.2 on The Variable Strut Inclination Truss of the CEB/FIP Model
Code 90 and Eurocode 2, with strut inclination to the vertical, δ, between 22 and
45◦ (see Eq. (3.104a), or

2. a Strut-and-Tie model (for walls with openings).

When using the variable-strut-inclination model according to Eurocode 2, con-
stant horizontal reinforcement may be dimensioned within lengths of z cot δ up the
wall (with the internal lever arm normally taken as z = 0.8lw) from the minimum
value of VEd in each length. Experimental and field evidence suggests, however, that
in a large wall the struts follow a fan pattern up to a distance z from the base. From
there up they are at an inclination δ ≈ 45◦, intersecting the floors and mobilising
them as ties. The implication is that wall horizontal reinforcement should better be
calculated with δ = 45◦, starting with the value of VEd at a distance of z = 0.8lw
from the base and possibly counting in the shear reinforcement any steel ties at
intersections of the wall and the floors.

Strut-and-Tie models (see Fig. 5.4) should include the floors as ties. If the open-
ings are asymmetric with respect to the wall centreline, a different model should be
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Fig. 5.4 Example of a Strut-and-Tie model for a wall with openings

constructed for each sense of the seismic action parallel to the wall (positive or neg-
ative). Struts should have width not more than 0.25lw or 4bwo (whichever is smaller)
and stay clear of openings.

At construction joints at floor levels the shear force VEd = εV’Ed should be veri-
fied against the sliding shear resistance at the interface owing to cohesion and fric-
tion according to Eurocode 2:

VRdi =
[
0.35 fctd + 0.6

(
NEd

Ac
+ ρν fyd

)]
zbwo (5.22)

where:

– fctd = fctk,0.05/γ c= 0.7fctm/γ c is the design value of the tensile strength of concrete;
– NEd is the minimum axial force from the analysis for the design seismic action

and the concurrent gravity loads (positive for compression), without the 50%
increase or decrease of axial force due to the high-frequency vertical vibrations
induced by hard impact;

– ρv is the ratio of wall vertical reinforcement providing clamping at the interface.
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The coefficient values of 0.35 and 0.6 for cohesion and friction, respectively,
refer to a naturally rough, untreated interface between concretes cast at different
times. If the surface cast first is artificially roughened by raking and exposure of
aggregates to an average 3 mm of roughness every about 40 mm, the coefficient
values may be increased to 0.45 and 0.7, respectively. According to Eurocode 8,
the anchorage length of the clamping bars included in ρv is increased by 50%
over the normal value required in Eurocode 2. This requirement applies only to
those vertical bars crossing the interface that need to be included in ρv so that
VEd ≤ VRdi.

5.6.4 Detailing of the Reinforcement in “Large Lightly
Reinforced Walls”

As pointed out in Section 5.6.3, wherever the design shear force VEd can be resisted
without horizontal reinforcement, the “large lightly reinforced walls” may be con-
structed without such reinforcement. Minimum horizontal reinforcement has to be
placed only where the wall needs horizontal reinforcement to resist VEd. This min-
imum is a Nationally Determined Parameter, with recommended value equal to
the minimum horizontal reinforcement required by Eurocode 2 for walls under
non-seismic actions (at maximum spacing vertically of 0.4 m and at a minimum
ratio which is a Nationally Determined Parameter, with a recommended value
of 0.1% or equal to that of the web vertical reinforcement ratio, whichever is
larger).

There is no specific mention of minimum vertical reinforcement in Eurocode 8.
So, the pertinent rules of Eurocode 2 apply: smeared web reinforcement at maxi-
mum bar spacing of 400 mm or 3 times the web thickness, bwo, in two layers, one
near each face of the wall. The minimum vertical reinforcement ratio is a Nationally
Determined Parameter, with a recommended value of 0.2%. Both the smeared web
reinforcement and the vertical bars placed at the edges of the cross-section for ULS
resistance in flexure with axial force, count into the total vertical reinforcement to
meet the minimum ratio.

The vertical bars supplementing the minimum smeared reinforcement in order
to provide the ULS resistance in flexure with axial force should be concentrated
at boundary elements, one at each edge of the section (Fig. 5.5). The length, lc,
of each boundary element in the direction of the length lw of the wall should
be at least bwo times the maximum of 1.0 or 3σ cm/fcd, where σ cm is the average
concrete stress in the compression zone at the ULS in flexure with axial force.
If the parabolic-rectangular σ -ε diagram is used in this ULS verification, then
σ cm/fcd = ϕ(1–εco/3εcu), with εco = 0.002 and εcu = 0.005, when the additional
force due to the vertical vibration of the wall is downwards (compressive), or
εcu = 0.0035 otherwise; ϕ < 1 is the reduction factor for 2nd-order out-of-plane
effects (see point 1 in Section 5.6.2). At the bottom storey of the wall and at any
storey where the wall length lw is reduced with respect to the storey below by
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Fig. 5.5 Hoops around boundary elements and cross-ties engaging vertical bars in “large lightly
reinforced wall”

more than one-third of the storey height, hst, the vertical bars in the boundary ele-
ments should be at least 12 mm in diameter. Everywhere else, a 10 mm diameter
suffices.

All vertical bars should be laterally restrained at the corner of a hoop or the hook
of a cross-tie. The boundary elements at the edges should be enclosed by hoops
engaging the four corner bars. Intermediate vertical bars in the boundary elements,
as well as vertical bars placed between the two boundary elements as minimum
vertical reinforcement, may just be engaged by cross-ties across the thickness of the
wall. Such hoops or cross-ties should have a minimum diameter of 6 mm or one

Fig. 5.6 Horizontal and vertical steel ties in large lightly reinforced walls with openings
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third of the vertical bar diameter, dbL, whichever is larger, and a maximum vertical
spacing of 100 mm or 8dbL, whichever is less.

A continuous horizontal steel tie should be placed along each intersection of
a “large wall” with a floor, extending into the floor beyond the edge of the wall
at a length sufficient for anchorage and collection of inertia forces from the floor
diaphragm and transfer to the wall. Vertical steel ties are required at any intersection
of the wall with transverse ones or with wall flanges and along the vertical edges
of wall openings. Vertical ties should continue from storey to storey through the
floor, by lapping. When openings are not staggered at different storeys but have the
same width and location, vertical steel ties along their edges should also be made
continuous through lapping (see Fig. 5.6). Horizontal ties should be placed at the
lintels above openings, but do not need to be continuous from one opening to the
next. Specific rules for the dimensions and the capacity of the ties are not given, but
reference to Eurocode 2 is made.

5.7 Implementation of Detailed Design of a Building Structure

5.7.1 The Sequence of Operations in Detailed Design for Ductility

Especially in frames, capacity design introduces strong interdependence between
various phases of a building’s detailed seismic design for ductility, within or
between members:

– dimensioning a column in flexure depends on the amount and layout of the longi-
tudinal reinforcement of the beams it is connected to in any horizontal direction;

– dimensioning of a column or a beam in shear depends on the amount and detail-
ing of its own longitudinal reinforcement, as well as of the members framing into
it at either end;

– verification of the foundation soil and design of foundation elements (espe-
cially of individual footings and their tie-beams) depends on the amount
and layout of the longitudinal reinforcement of the vertical elements they
support, etc.

– dimensioning any storey of a shear wall in shear depends on the amount and
detailing of vertical reinforcement at the base of the bottom storey; etc.

The detailed design operations should follow a certain sequence, so that infor-
mation necessary at a step is already available. More important, if detailed design
takes place within an integrated computational environment (as is not only common,
but also essential nowadays), this information should be appropriately transferred
between the various modules of the system.

Flow Charts 5.1 and 5.2 depict the interdependence of the various components
of a detailed design process. A sequence is suggested there (with roman numerals)
for their execution, with specific reference to equations, sections or tables in this
or previous chapters. Step IVa in Flow Chart 5.1 may be carried out before IVb
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JOINTS BEAMS COLUMNS
Flexure –
Longitudinal 
reinforcement

Shear –
Transverse 
reinforcement

COLUMN
FOOTING

V
Dimension 
confining 

reinforcement 
in “critical 

regions”: Eq. 
(5.2) in Sect. 

5.2 & Eq. (5.8)
in 5.3.3.
Detail

stirrups 
(Table 5.2)

I
Maximum beam 
bar diameter for 
bond in joints:
Eqs. (5.10) in

Sect. 5.4.1

DCH: VI
Capacity-design shear 

force in joint: Eq. (5.11) 
in Sect. 5.4.2.

Joint size check in 
shear: Eqs. (5.13) in 

Sect. 5.4.2.
Horizontal hoops in 

joint: Eqs. (5.14), (5.15)
in Sect. 5.4.2.

Column intermediate 
bars through joint: Eq. 

(5.16) in Sect. 5.4.2

II
Dimension, detail (Eq. 
(5.3) in Sect. 5.3.1 &
(5.4b) in 5.3.2, Table 
5.1) and curtail beam 

longitudinal bars

IVa
Capacity-design shear force:

Eq. (1.9) in Sect. 1.3.6.2.
Check beam cross-section 

size and dimension stirrups:
Sect. 3.2.4.2, Eqs. (3.94),

(3.96a), (3.97), with from 
Eqs. (3.98) (3.104a), but with 

= 45
o
 in DC H crit. regions.

DCH only: Inclined 
reinforcement: Eqs. (1.10), in 

Sect. 1.3.6.2 & Eqs. 
(5.17)-(5.19) in 5.5.2

III
Dimension and detail (Table

5.2) vertical bars. Satisfy
capacity-design check: Eq. 
(1.4) in Sect. 1.3.4, unless 

column is exempted from it

IVb
Capacity-design 
shear force: Eq. 
(1.12) in Sect. 

1.3.6.3.
Check column 

section size: Eqs. 
(3.96a), (3.97), (3.98) 

in Sect. 3.2.4.2.
Dimension column 

stirrups: Eqs. (3.94), 
(3.98), (3.104a) in 

Sect. 3.2.4.2

VII
Magnification factor on

footing’s seismic action effects:
Eq. (2.15a) in Sect. 2.3.4

DCM: VI
Joint hoops as in

column critical regions

Flow Chart 5.1 Steps and interdependencies in dimensioning and detailing frame members in
DC M or DC H

or vice-versa; while Steps V to VII can be executed at any sequence after II and
III, even before IVa and IVb. The same applies to Step IV in Flow Chart 5.2, with
respect to II and III there.

5.7.2 Detailed Design of Beam and Joints

5.7.2.1 Detailed Design of Beam Longitudinal Reinforcement

The maximum size of beam bars passing through joints or anchored there depends
on the size of the column. So, as shown at Step I in Flow Chart 5.1, the detailed seis-
mic design of a building structure for ductility starts from its joints. The maximum



482 5 Detailing and Dimensioning of New Buildings in Eurocode 8

INDIVIDUAL WALL OTHER WALLS

Flexure –
Vertical and 
confining 
reinforcement

Shear –
Horizontal 
(and web 
vertical) 
reinforcement

WALL 
FOOTING

II
Design shear force: Sect. 1.3.6.4 Eq. (1.15) 

in DC H, (1.16) in DC M with V-envelope in 
Fig. 1.11 for dual systems.

Check wall thickness: Sect. 5.5.3 & Sect. 
3.2.4.2, Eqs. (3.96a), (3.97) (with reduction 

to 40% in DC H) (3.104a), (3.98).
Dimension horizontal web reinforcement: 

Sect. 5.5.3 & Sect. 3.2.4.2, Eqs. (3.94), 
(3.98), (3.104a) and detail it: Table 5.3;

Detail vertical web reinforcement: Table 5.3

I
Dimension and detail vertical bars at the edges and the 

web of the section, starting from the base and proceeding 
to the top according to the M-envelope in Fig. 1.7, Sect. 

1.3.5, including boundary elements and their confinement, 
Eq. (5.2) in Sect. 5.2 & Eqs. (5.8), (5.9) in 5.3.3, within 

“critical region” (and storey above for DC H)

III
Dimension 
vertical and 
inclined bars 

at construction
joints for

sliding shear: 
Sect. 5.5.3 & 
Table 5.3, last 

two rows

IV
Magnification factor on footing’s seismic 
action effects: Eq. (2.15a) in Sect. 2.3.4

Ia
Seismic moments and 
shears redistributed 

from walls with 
tensile seismic axial 
force to others with 

compressive

Flow Chart 5.2 Steps and interdependencies in dimensioning and detailing slender ductile walls
of DC M or DC H

diameter of beam bars often controls the size of columns, especially in low-rise
buildings (see Section 2.2.1.5).

Beams are dimensioned in bending (Step II in Flow Chart 5.1) on the basis of the
moment envelope in Eq. (2.9), i.e. from:

(a) the combination of factored gravity loads, γ gG+γ qQ, and
(b) the design seismic action, separately in the plus and minus directions, and the

quasi-permanent gravity loads, G+ψ2Q, acting with it.

The moment due to the design seismic action, MEb, is obtained from Eq. (4.24)
or (4.25) in Section 4.7.1. The action effects of the horizontal components, EX, EY,

include the effect of their accidental eccentricities. Note that, this is one of the very
few cases in the entire structure where detailed design is based exclusively on results
of the analysis. Besides, the so-dimensioned beam longitudinal reinforcement con-
trols through capacity design:

– the vertical reinforcement of columns designed to meet Eq. (1.4) (Step III in Flow
Chart 5.1),

– the design shears in the beam itself and the columns connected to it (Steps IVa
and IVb), and

– (at least in DC H buildings) the shear design of the joints.
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The beam longitudinal reinforcement is dimensioned at the beam sections where
the moment envelope exhibits extreme positive or negative values:

1. the top bars of each end region are determined at the column face under hogging
moments;

2. the bottom bars at an end region are dimensioned at the column face or a section
nearby, but for sagging moment; and

3. the beam’s main bottom reinforcement, from a section near mid-span, under sag-
ging moments.

To reduce reinforcement of type 1 above, beam elastic moments may be redis-
tributed around interior joints according to Section 5.7.2.2. This normally entails
a reduction of peak hogging moments at column faces, increasing the sagging
moments there and at mid-span, but not necessarily the bottom reinforcement of
types 2 and 3 above, which may be governed by minimum requirements or by the
maximum sagging moment due to factored gravity loads, γ gG+γ qQ.

Beam reinforcement is typically dimensioned in uniaxial bending without axial
force. If there is no rigid floor diaphragm, or if the diaphragm has been modelled as
flexible (see Section 4.9.5.2), the axial force from the analysis may also be taken into
account and the beams may be dimensioned in bending with axial force, provided
that:

– the model uses realistic values of the axial stiffness of the beams, consistent with
the effective flange width in tension used in the dimensioning (i.e., the slab rein-
forcement within that width should also count as beam top reinforcement) and

– masses are lumped at floor nodes according to the tributary areas of the nodes
or to the difference in the vertical component of the nodal force vector due to
gravity loads above and below floor joints.

In the end, bars are curtailed and anchored according to the positive and negative
moment envelope and the shift rule. Needless to say, the entire string of beams
(“continuous beam”) in a frame should be designed in bending together. Then, beam
reinforcement requirements can be combined across joints. It is also good practice
to combine different top or bottom bars into continuous ones, if their ends come
close or overlap. To this end, few bar sizes (even a single size) should be used all
along each string of beams.

At the end of Step II, the design values of the moment resistance at the beam
end sections are computed from the final cross-sectional areas of the top and bottom
reinforcement, As1, As2, respectively. The design value of the moment resistance in
hogging (negative) or sagging (positive) bending, respectively, may be estimated as:

M−
Rd,b = min (As1, As2) fyd (d − d2)

+ max [0, (As1 − As2)] fyd
[
d − 0.5 (As1 − As2) fyd/ (bw fcd )

]
(5.23a)
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M+
Rd,b = As2 fyd max

[(
d − 0.5As2 fyd/

(
beff fcd

))
, (d − d1)

]
(5.23b)

where:

– d is the effective depth of the section,
– d2 is the distance of the centre of As2 from the bottom of the beam,
– d1 is the distance of the centre of As1 from the top of the section,
– bw is the effective width of the bottom flange in compression (normally that of

the web),
– beff is the effective width of the top flange in compression, and
– fyd, fcd are the design strengths of steel and concrete, respectively.

The values of MRd,b are used then for the capacity design of columns designed
to meet Eq. (1.4) of Section 1.3.4 (Step III in Flow Chart 5.1) and for the design
shears in the beam itself and the columns connected to it (Steps IVa and IVb in
Flow Chart 5.1).

5.7.2.2 Redistribution of Beam Elastic Moments Around a Joint

Eurocodes 2 and 8 allow redistribution of beam moments from elastic analysis,
under conditions which are commonly met by earthquake resistant beams (including
those of DC L):

– use of steel class B or C; and
– ratios of adjacent span lengths not larger than 2.0.

Unless the plastic rotation capacity of the beam is explicitly checked, the per-
cent reduction of a beam’s elastic moment by redistribution should not exceed
54–125ξ , where ξ is the dimensionless neutral axis depth at the beam design
moment resistance, i.e., when its extreme compression fibres reach the conven-
tional ultimate strain of concrete, εcu = 0.0035. Eq. (3.52) gives ξ=0.81(ω1–ω2)=
0.81(ρ1–ρ2)fyd/fcd. The top reinforcement limit in Eq. (5.4b) gives: ξ ≤ 290/
(μϕfyd(MPa)), which is a small value and allows a large percent reduction of a
beam’s moments by redistribution. The most serious restriction comes from the lim-
itation of redistribution only among different interior joints of the same continuous
beam or around them, but not from beams to columns.

Redistribution of elastic moments from one section to others can take place only
within the same combination of actions, listed in Section 5.7.2.1 as (a) and (b). So
to profit from redistribution, we need the moment diagrams for each combination,
not just their envelope.

Redistribution of beam elastic moments can be used to advantage, in order to:

a. Reduce the total amount and the congestion of reinforcement, by (nearly) equal-
ising design moments with the same sign across the joint, so that they can be
serviced by the same bars.
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b. Respect the maximum tension steel ratio allowed at beam ends by Eq. (5.4b) in
Section 5.3.2, without increasing the beam cross-sectional dimensions and re-
doing the analysis.

c. Prevent minimum reinforcement requirements from controlling the beam
moment resistance, MRb, and, therefore, the column flexural capacities (via
Eq. (1.4)) and the capacity-design shears in beams (Eq. (1.9) in Section 1.3.6.2)
or columns (Eq. (1.12) in Section 1.3.6.3).

d. Prevent the combination of factored gravity loads (combination (a) in Section
5.7.2.1) from governing the beam moment resistance at column faces, and,
therefore, the capacity-design effects listed in (c) above. Redistribution of
moments from this combination takes place not just around interior joints
(as in combinations of the design seismic action with concurrent gravity
loads, (b) in Section 5.7.2.1), but mainly from beam interior supports to
mid-span.

To see how redistribution of beam elastic moments around an interior joint can
serve those aims, let’s introduce the following quantities:

– MG+ψ2Q,i,MG+ψ2Q,j are the beam elastic moments due to the quasi-permanent
gravity loads at face i and j of a joint, respectively, positive if hogging (tension at
the top); their difference is denoted as: ΔMg = MG+ψ2Q,i − MG+ψ2Q,j

– ME,i, ME,j denote the magnitude of the corresponding elastic moments due to the
design seismic action, taken always positive; their sum is :

∑
ME = ME,i+ME,j,

– Mi
t, Mj

t are the final hogging moments (tension at the top) for the design of
the beam at faces i and j of the joint, respectively, after the redistribution, taken
always positive;

– Mi
b, Mj

b are the final sagging moments (tension at the bottom) for the design of
the beam at faces i and j of the joint, respectively, after the redistribution, taken
positive for sagging;

– Li, Lj are the lengths of the beams on side i or j of the joint, respectively, and xi,
xj, denote the distance of a beam section from the corresponding face of the joint
along them.

Redistribution normally entails reduction of the peak hogging moments at the
column faces:

– by superimposing to the moments in the combination inducing hogging moments
next to face i and sagging ones next to face j, a sagging moment diagram equal
to ΔMi(1–xi/Li) along the beam at side i and to ΔMi(1–xj/Lj) along that at side j;
and

– by superimposing to the moments in the combination inducing sagging moments
next to face i and hogging ones next to face j, a sagging moment diagram equal
to ΔMj(1–xi/Li) along the beam at side i and to ΔMj(1–xj/Lj) along that at
side j.
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The redistribution is specified through the reductions in hogging moments, ΔMi

and ΔMj.9

1. Suppose that the objective of the redistribution is:

M t
i = ri M

b
i , Mb

j = rj M
t
j (5.24)

with:

1 ≥ ri, rj ≥ 0.5 (5.25)

(0.5: minimum value according to Eurocode 8, see Table 5.1)
This leads to the following final hogging moments:

Mt
i =

(
1 − r j

)∑
ME + (

1 + r j
)
ΔMg

1 − rir j
, Mt

j = (1 − ri )
∑

ME − (1 + ri ) ΔMg

1 − rir j
(5.26)

The reductions in hogging moments are:

ΔMi = MG+ψ2Q, j − ME, j + r j
(∑

ME − ΔMg
) − rir j

(
MG+ψ2Q,i + ME,i

)
1 − rir j

(5.27a)

ΔM j = MG+ψ2Q,i − ME,i + ri
(∑

ME + ΔMg
) − rir j

(
MG+ψ2Q, j + ME, j

)
1 − rir j

(5.27b)

One aspect to be checked is whether the resulting sagging moment resistances
exceed at both sides i and j of the joint the minimum values, Mi.o

b, Mj.o
b,

respectively, governed by minimum bottom reinforcement, not as a fraction r =
0.5 of the top reinforcement, but in absolute terms (in that case: Mi,o

b = Mj,o
b).

They do, if:

ri Mt
i = ri

(
1 − r j

)∑
ME + (

1 + r j
)
ΔMg

1 − rir j
≥ Mb

i,o,

r j Mt
j = r j

(1 − ri )
∑

ME − (1 + ri ) ΔMg

1 − rir j
≥ Mb

j,o

(5.28)

2. Let’s extend now the above redistribution objective, expressed by Eqs. (5.24),
(5.25), (5.26), (5.27), and (5.28), to achieving the same top reinforcement at
both sides of the joint:

9To avoid the explicit check of the plastic rotation capacity of the beam required by Eurocode 2, the
moment reduction, ΔMi and ΔMj, should be not more than (0.54–1.25ξ ) times the unreduced per-
tinent hogging moment, ME,i+MG+ψ2Q,i or ME,j+MG+ψ2Q,j. Any “critical region” of a beam detailed
for ductility would meet such a check without difficulty, but carrying out the check is a nuisance,
regardless.
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M t
i = M t

j (5.29)

This brings about the following condition:

ri = r j
(∑

ME − ΔMg
) − 2ΔMg∑

ME + ΔMg
(5.30)

and it is ri > rj if ΔMg < 0, i.e., MG+ψ2Q,j > MG+ψ2Q,i. In other words, if we have
in the end the same top reinforcement across the joint, the side subjected to the
larger hogging moment owing to quasi-permanent gravity loads has the smaller
bottom reinforcement of the two. We can have ri = rj, i.e., equalise the reinforce-
ment across the joint both at top and bottom, only if MG+ψ2Q,i = MG+ψ2Q,j.

3. Let’s replace now redistribution objective no. 2 above, Eq. (5.29), with that of
equal bottom reinforcement across the joint:

Mb
i = Mb

j (5.31)

This gives the condition:

r j = ri
(∑

ME+ΔMg
)

∑
ME− (1 + 2ri ) ΔMg

(5.32)

Again, ri > rj if ΔMg < 0, i.e., MG+ψ2Q,j > MG+ψ2Q,i. In this case, for the same
bottom reinforcement in the end across the joint, the side subjected to the larger
hogging moment due to quasi-permanent gravity loads ends up with the larger
top reinforcement of the two. Only if MG+ψ2Q,i = MG+ψ2Q,j, can one equalise
the reinforcement across the joint both at top and bottom. In that case, with ri =
rj = r, Mi

t = Mj
t = ∑

ME/(1+r) and Mi
b = Mj

b = r
∑

ME/(1+r).
4. Let’s see now the case when the target of the redistribution is to match the

value of the hogging moment resistance at one or both faces i and j of the
joint, Mi.o

t, Mj.o
t, respectively, as governed by another consideration (e.g. by

factored gravity loads, γ gG+γ qQ, when redistribution of their moments from
beam supports to mid-span had not prevented them from governing at column
faces):

M t
i = Mi,o

t, M t
j = Mj,o

t (5.33)

The reduction in hogging moment required to match Mi.o
t, at side i and/or Mj.o

t

at side j is:

ΔMi = ME,i + MG+ψ2Q,i − Mi,o
t, ΔMj = ME,j + MG+ψ2Q,j − Mj,o

t (5.34)

respectively, giving final sagging moments at the sides of the joint:

Mb
j =

∑
ME + ΔMg − Mi,o

t, Mb
i =

∑
ME − ΔMg − Mj,o

t (5.35)
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One aspect to be checked is whether the values of ri = Mi
b/Mi,o

t and rj = Mj
b

/Mj,o
t respect the lower limit r = 0.5 set by Eurocode 8. They do, if:

∑
ME−ΔMg ≥ Mj,o

t+ r Mi,o
t,

∑
ME+ΔMg ≥ Mi,o

t+r Mj,o
t (with r = 0.5)

(5.36)

5. As companion to case 4 above, we target now matching the value of the sag-
ging moment resistance at one or both faces i and j of the joint, Mi.o

b, Mj.o
b,

respectively, as governed, e.g. by minimum bottom reinforcement, not as a
fraction r = 0.5 of the top reinforcement, but in absolute terms (in that case:
Mi,o

b = Mj,o
b):

Mb
i = Mi,o

b, Mj
b = Mj,o

b (5.37)

The increase in sagging moment required to match Mi.o
b at side i and/or Mj.o

b at
side j is:

ΔMi = MG+ψ2Q,i − ME,i + Mi,o
b, ΔMj = MG+ψ2Q,j − ME,j + Mj,o

b (5.38)

respectively, giving final hogging moments at the sides of the joint:

M t
j =

∑
ME − ΔMg − Mi,o

b, Mi
t = ΔME + ΔMg − Mj,o

b (5.39)

The values of ri = Mi,o
b/Mi

t and rj = Mj,o
b/Mj

t respect the lower limit r = 0.5 in
Eurocode 8, if:

(1/r )Mj,o
b + Mi,o

b ≥
∑

ME − ΔMg, (1/r )Mi,o
b + Mj,o

b ≥
∑

ME + ΔMg,

(with r = 0.5)
(5.40)

If redistribution takes place according to case 1 and Eqs. (5.24), (5.25), (5.26),
(5.27), and (5.28), extended or not to cases 2 or 3, Eqs. (5.29), (5.30), (5.31), and
(5.32), the sums of beam moment resistances diagonally across the joint,

∑
MRb,

entering in the capacity design calculations of Eqs. (1.4), (1.9) and (1.12), become:
For sagging next to face i and hogging next to face j:

∑
MRb

+ = M t
j + Mb

j =
∑

ME − ΔMg (5.41a)

For hogging next to face i and sagging next to face j:

∑
MRb

− = M t
i + Mb

j =
∑

ME + ΔMg (5.41b)

The same holds if the redistribution is according to cases 4, Eqs. (5.33), (5.34),
(5.35), and (5.36), or 5, Eqs. (5.37), (5.38), (5.39), and (5.40), Therefore, by
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matching the overall elastic moment demands with the minimum requirements of
the code, the redistributions above reduce as much as possible the demands placed
by the beams, through capacity design, on columns designed to meet Eq. (1.4) of
Section 1.3.4 and on the design shears in the beams themselves and in the columns
connected to them (and in DC H buildings on the design of joints in shear).

5.7.2.3 Capacity Design of Beams and Joints in Shear

Unless all the columns to which a beam is connected are capacity-designed in flex-
ure to meet Eq. (1.4) of Section 1.3.4, shear design of beams (Step IVa in Flow
Chart 5.1) should take place after dimensioning and detailing of the vertical steel is
complete for all columns framing into the beam(s) in question. Then, for the calcu-
lation of the capacity-design shear from Eq. (1.9) in Section 1.3.6.2 we know not
only the values of MRd,b

–, MRd,b
+ at the two ends of the beam and of

∑
MRd,b around

the joints there, but also the sum of column moment resistances around the joints,∑
MRd,c, for bending in the vertical plane of the beam. These MRd,c values should

be the maximum possible in all combinations of the design seismic action with the
concurrent gravity loads. To this end, the value of MRd,c should correspond to the
minimum among the two column forces:

1. The maximum compressive axial load in all combinations of the design seis-
mic action with the concurrent gravity loads. This maximum value is addressed
further in Section 5.7.3.5.

2. The “balance load”, where the extreme compression fibres reach the ultimate
strain of concrete, εcu = 0.0035, at the same time the tension reinforcement
yields. Normally Eq. (3.50a) in the part Curvature at Spalling of the Concrete
Cover of Section 3.2.2.4 is satisfied and the balance load in dimensionless terms
is equal to νc,y1 at the right-hand-side of Eq. (3.51). Then the moment resistance,
MRc, is computed from Eq. (3.60) in Section 3.2.2.5, with the value of ξ cu from
Eq. (3.52). All these calculations use the conventional values: εco = 0.002, εcu

= 0.0035 and the design values fyd,, fcd for fy, fc.

Joints are typically two-way. So, the horizontal dimensions of DC H joints
should be verified in shear in Step VI in Flow Chart 5.1 and their horizontal rein-
forcement dimensioned, after all beams framing in them in any horizontal direction
have been fully designed.

5.7.3 Detailed Design of Columns

5.7.3.1 Dimensioning of Column Vertical Reinforcement for Action Effects
from the Analysis

Columns exempted from the capacity-design check of Eq. (1.4) in Section 1.3.4, as
well as the base section of the bottom storey of a column (at the connection to the
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foundation), are dimensioned for the ULS in biaxial flexure with axial force, using
triplets My-Mz-N from the analyses for:

(a) the combination of factored gravity loads, γ gG+γ qQ, and
(b) the design seismic action and the quasi-permanent gravity loads, G+ψ2Q, act-

ing with it.

Combination (a) is normally not critical in primary columns and may even be
ignored in their dimensioning. At any rate, it is not addressed here. The vertical
component of the seismic action is also not considered in this discussion, as it rarely
affects the dimensioning of columns.

Normally, the column sections right above and right below a beam-column
joint are served by the same vertical reinforcement. Besides, as pointed out in
Section 2.2.1.5, it is good practice to avoid changing the column section from storey
to storey. Therefore, these two sections are dimensioned as a single one, for all
My-Mz-N triplets that the analysis yields for them in the combinations of type (b)
above. According to Section 4.7.2, in general there are 4 different seismic triplets
My-Mz-N for a column section, to be superimposed to the single triplet due to the
gravity loads concurrent with the design seismic action. As an exception, if the
effects of the two horizontal seismic action components are combined through the
linear approximation, Eq. (4.25), and a modal response spectrum analysis is used,
the number of seismic triplets My-Mz-N to be considered at each section increases
from 4 to 16 (see Section 4.7.2.2). Most critical among all the (4 or 16) triplets is the
one giving the largest amount of reinforcement in one of the two sections. Unfor-
tunately, it is not easy to screen out non-critical My-Mz-N triplets. The only general
criterion is that, for the usual range of values of the dimensionless axial load, most
critical among triplets with similar biaxial moments, My, Mz, is the one with the
lowest axial compression, N.

There are various iterative algorithms for the ULS verification of sections with
any shape and amount and layout of reinforcement, for any My-Mz-N combination.
They use plane section analysis and the σ-ε laws of steel and concrete (normally
taken in design as elastic-perfectly plastic and parabolic-rectangular, respectively)
to find a strain distribution satisfying equilibrium. It is checked then whether the
conventional ultimate strain of concrete, εcu = 0.0035, is exceeded at (any corner of)
the section. By contrast, there is no general algorithm for direct dimensioning of a
section, i.e., calculation of its reinforcement for a given My-Mz-N combination. The
traditional manual approach with design charts is not practical when the designer is
faced with many columns in a real 3D building. Besides, it is quite restrictive in its
choice of parameters, notably of bar layouts in the section and steel grade. So, a fea-
sible fully computational approach is proposed here for direct dimensioning of sym-
metric reinforcement in rectangular sections under a set of My-Mz-N combinations:

1. The amount of steel along each pair of opposite sides of the section is computed
in uniaxial bending with axial force, neglecting the moment component with
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vector at right angles to these sides. To this end, the expressions in Sections
3.2.2.4 and 3.2.2.5 may be applied:

– considering symmetric reinforcement, ω2 = ω1, and no intermediate bars
between them, ωv =0;

– using the material σ-ε laws and criteria adopted in ULS verifications for bending:

• elastic-perfectly plastic for steel, with fyd as yield stress and unlimited strain
capacity;

• parabolic-rectangular σ-ε law for concrete, with strength fcd at strain εco =
0.002 and ultimate strain εcu = 0.0035;

– assuming that Eq. (3.50a) in the part Curvature at Spalling of the Concrete Cover
of Section 3.2.2.4 is met, which is quite normal for column sizes typical of build-
ings designed for earthquake resistance;

– assuming that νd is less than the limit value νc,y1 at the right-hand-side of
Eq. (3.51), which is also normal for the usual range of dimensionless axial load
in seismic design;

Under these conditions, there are two possible cases:

(i) The dimensionless axial load, νd, satisfies the version of Eq. (3.51) applica-
ble in this case:

δ1

εcu − εco

3
εcu − εy2d

≡ νc,y2 ≤ νd ≤ νc,y1 ≡
εcu − εco

3
εcu + εy1d

(5.42)

The version of Eq. (3.52) applying here gives then a ξ -value independent of
the amount of reinforcement:

ξ = νd

1 − εco

3εcu

(5.43)

to be substituted in terms of νd in the applicable version of the expression
for moment resistance, Eq. (3.60), and solve directly for the amount of rein-
forcement:

(1 − δ1)ω1 = M

bd2 fcd
− ξ

[
1 − ξ

2
− εco

3εcu

(
1

2
− ξ + εco

4εcu
ξ

)]
(5.44)

(ii) The dimensionless axial load, νd, is less than νc,y2 at the left-hand-side of
Eq. (5.42): νd < νc,y2; then the value of ξ is the positive root of the version
of Eq. (3.54) applying here:

[
1 − εco

3εcu

]
ξ 2 −

[
νd + ω1

(
1 − εcu

εyd

)]
ξ − ω1

εcuδ1

εyd
= 0 (5.45)
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The version of the expression for moment resistance, Eq. (3.59), applicable
in this case can be used to express ω1 in terms of ξ and the moment:

ω1
(1 − δ1)

2

(
1 + ξ − δ1

ξ

εcu

εyd

)
= M

bd2 fcd

− ξ

[
1 − ξ

2
− εco

3εcu

(
1

2
− ξ + εco

4εcu
ξ

)] (5.46)

and replace ω1 in Eq. (5.45). The resulting equation is highly nonlinear in ξ
and can be solved only iteratively; ω1 is then determined from Eq. (5.46).

2. The procedure in 1 above is applied first with all My-N pairs in the set of My-Mz-
N combinations, using as b the side length parallel to the vector of My and as d
and d1 dimensions at right angles to it. The most critical pair will give the total
area of reinforcement, Asy, along each side which is parallel to the vector of My.
This is repeated with all Mz-N pairs and the roles reversed, to find the total area
of reinforcement, Asz, along each one of the two other sides (those parallel to the
Mz-vector). No matter which one among the four options in Section 4.7.2 has
been adopted, the My-N pair from which Asy derives will most likely not belong
in the same My-Mz-N combination as the pair Mz-N that gives Asz. So, these
reinforcement requirements are superimposed on the section and translated into
a bar layout satisfying the detailing rules for column vertical reinforcement, with
the corner bars counting to both sides.

3. If available, an iterative algorithm is used in the end to verify that the section with
the selected layout of reinforcement does not violate the conventional ultimate
strain of concrete, εcu = 0.0035 under any one of the My-Mz-N combinations. If
it does, one bar may be added to each side, till the section fulfils the verification
criteria.

The procedure above can be applied to sections consisting of two or more rect-
angular parts orthogonal to each other (L-, T-, U-shaped, etc.). In Step 1 above such
a section is taken as rectangular with the cross-sectional area of the actual one and
the same effective depth at right angles to the vector of uniaxial bending moment
considered. The reinforcement areas, Asy and Asz, coming out of this exercise are
distributed along the corresponding extreme tension and compression fibres of the
section, meeting the detailing rules for column vertical reinforcement. If Step 3
above is carried out, it is for the actual cross-sectional shape and the final bar layout.

To avoid the onerous verification of sections in biaxial bending with axial force,
Eurocode 8 allows replacing it for columns of DC M or L buildings with sepa-
rate uniaxial verifications, but with moments increased by 43%, i.e. under pairs
(My/0.7)–N and (Mz/0.7)–N. In its effort to cover also the case of about equal
moment components, this simplified verification is often overly conservative, espe-
cially if the seismic action effects derive from Eq. (4.25) according to Sections
4.7.2.1 or 4.7.2.2. So, if the computational capability of a truly biaxial verification
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is available anyway for use in DC H structures, there is no need to resort to the
uniaxial approximation.

5.7.3.2 Practical Dimensioning of Columns to Satisfy Eq. (1.4)

Wherever Eq. (1.4) needs to be fulfilled, it may well be checked after the verti-
cal reinforcement crossing both column sections right above and below the joint
has been dimensioned for the ULS in biaxial bending on the basis of the analysis
results for all combinations of the design seismic action with the concurrent grav-
ity loads (e.g. according to Section 5.7.3.1) and detailed to meet the relevant rules
for the DC of the building (see Table 5.2). Note, however, that Eq. (1.4) normally
governs over the ULS verification for these analysis results. So, it makes sense to
defer dimensioning of the column vertical reinforcement until checking Eq. (1.4).
At that stage about half of the value of γ Rd

∑
MRd,b may be assigned to the column

section right above and the rest to the section right below the joint. The vertical
reinforcement serving both these sections may be dimensioned for these two uni-
axial bending moments, acting together with the corresponding minimum value of
the column axial force for the combination(s) of the design seismic action with the
concurrent gravity loads (determined, e.g., according to Section 5.7.3.5). Recall that
the moment resistance of a concrete section normally increases with increasing com-
pressive axial force. So, it makes sense to assign a little less than half of γ Rd

∑
MRd,b

to the column section right above the joint. The most cost-effective apportioning is
the one that gives the same amount of vertical reinforcement in these two sections.
An about 45–55% split is normally appropriate. The approach in Step 1 of Section
5.7.3.1 may be used to directly dimension the column for these uniaxial moment
demands. If the column belongs in a two-way frame and Eq. (1.4) needs to be met
in both horizontal directions, the two-way dimensioning may be carried out as in
Step 2 of Section 5.7.3.1.

Replacing a ULS verification for biaxial bending and axial force with a simpli-
fied, normally safe-sided, uniaxial one, as described at the end of Section 5.7.3.1 and
allowed by Eurocode 8 for DC M columns, gives

∑
MRd,c > 1.43 max(

∑
ME+ΔMg),

where
∑

MRd,c is the total column moment resistance around the joint under the
minimum compressive (or maximum tensile) column axial force over all combina-
tions of the seismic action with the concurrent gravity loads, and

∑
ME+ΔMg is the

maximum sum of elastic moments from the analysis, which, owing to moment equi-
librium at the joint, is the same as in the beams (see Eqs. (5.41) in Section 5.7.2.2).
If redistribution of beam elastic moments according to Section 5.7.2.2 has produced
the slimmest possible design for the beams, Eqs. (5.41) show that DC M columns
subjected to the simplified uniaxial ULS verification of Eurocode 8 fulfil Eq. (1.4)
with a 10% margin. So, checking Eq. (1.4) is redundant. On the other hand, in prac-
tice the outcome of the dimensioning of beams never meets exactly Eqs. (5.41).
Rounding up of the reinforcement and the minimum steel requirements (especially
at the bottom) produce beam designs with at least 10% margin over the right-hand-
side of Eqs. (5.41). Therefore, fulfilment of Eq. (1.4) provides, on average, at least
the same safety as the simplified uniaxial ULS verification allowed by Eurocode 8.
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So, given that this simplified verification is admittedly safe-sided compared to a
truly biaxial one for the results of the analysis, such a ULS verification is redundant
if Eq. (1.4) is satisfied with γ Rd = 1.3. The second implication is that, unless the
beams have large overstrengths over the elastic action effects in the right-hand-side
of Eqs. (5.41), Eq. (1.4) does not over-penalise the column vertical reinforcement
compared to a ULS verification for the analysis results. So, in frames with little
excess beam strength over the requirements of the analysis, exemptions from the
application of Eq. (1.4) do not offer a real benefit for the economy of the struc-
ture (except, of course, at top-storey columns). Moroever, contrary to conventional
wisdom, such exemptions do not simplify the design process either. Straightforward
dimensioning of the column to satisfy Eq. (1.4) following the instructions in the first
part of the present section is less tedious than ULS verification of the columns on
the basis of the analysis results for the combinations of the seismic action with the
concurrent gravity loads, even when this is done with the simplified uniaxial verifi-
cation permitted by Eurocode 8 for DC M columns. If nothing else, it has to be done
once in two horizontal directions (i.e., along the two orthogonal cross-sectional axes
of the column) along which Eq. (1.4) is checked. By contrast, owing to the combi-
nation of the seismic action components according to Section 4.7.2 and the need to
account for the effects of accidental eccentricity, ULS verification of columns for
the analysis results should be done for normally 4, but possibly 16 (in the case of
Section 4.7.2.2) combinations of moments with axial force.

Note that the vertical reinforcement at the base section of the bottom storey of a
column (at the connection to the foundation) is dimensioned for the ULS in bending
with axial force under the action effects from the analysis for the combination(s) of
the seismic action and the concurrent gravity loads, without capacity design consid-
erations. It is good practice to place there at least the same vertical reinforcement
as at the top section of the bottom storey. Indeed, this is required by Eurocode 8 for
DC H buildings, where seismic action effects computed from the analysis with fairly
large q-factor values may have relatively low values. This practice ensures that, after
the plastic hinge develops at the base of the column, the moment at the top section
will not increase to (much) larger values than at the bottom. Such an increase would
unduly reduce the value of the shear span at the plastic hinge, Ls = M/V, relative to
its value at yielding at the base, decreasing therefore the plastic rotation capacity of
the very crucial plastic hinge at the column base.

5.7.3.3 Moment Resistances in the Beam-Column Capacity Design Check,
Eq. (1.4)

The design values of beam moment resistances for use in Eq. (1.4) are calculated
from Eqs. (5.23) in Section 5.7.2.1. Section 5.7.3.2 has been pointed out that, at
interior beam-column joints, which are more critical for Eq. (1.4) as two beams
contribute to

∑
MRd,b, redistribution of beam elastic moments in full accordance

with Section 5.7.2.2 gives the minimum possible values of
∑

MRd,b
+ and

∑
MRd,b

–.
These values are given in Eqs. (5.41) and are independent of the amount of beam
reinforcement.
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The rest of this section addresses the column moment resistances, MRd,c, for use
in Eq. (1.4). Normally Eq. (1.4) is checked within the vertical plane of each frame,
as defined by the beams. If the column cross-sectional axis with respect to which
the moment resistance is computed is at an angle ψ to this plane, MRd,c should enter
Eq. (1.4) multiplied by sin ψ .

Building columns are commonly square or rectangular and MRd,c is computed
with respect to centroidal axes parallel to the sides. Section 3.2.2.5 can be applied
for the calculation of MRd,c with the pertinent value of ξ from Section 3.2.2.4. In
this calculation the conventional values εco = 0.002 (for fck up to 50 MPa) and
εcu = 0.0035 from Eurocode 2 are used for concrete, the σ-ε diagram of steel is
taken elastic-perfectly plastic with unlimited strain capacity and the design strengths
of steel and concrete, fyd, fcd, respectively, are used for fy, fc. The width b is the length
of the side parallel to the vector of MRd,c of interest, while the depth h and dimen-
sions d and d1 are at right angles to it. The tension and compression reinforcement
along the sides with length b is commonly symmetric (As1 = As2). For the purposes
of Sections 3.2.2.4 and 3.2.2.5, any intermediate bars between the tension and com-
pression reinforcement are taken as uniformly distributed along the length (h–2d1)
of the depth h,10 with cross-sectional area Asv.

If the cross-section consists of more than one rectangular parts in two orthogo-
nal directions (as in L-, T- or U-sections), the beams framing into the column are
parallel or normal to the sides of these parts. So, it is convenient to compute the
moment resistance, MRd,c with respect to centroidal axes parallel to the two orthog-
onal directions of the sides, no matter whether they are indeed principal directions.
If an iterative algorithm of the type mentioned in Section 5.7.3.1 (e.g., at Step 3)
is available for the ULS verification of sections with any shape and reinforcement
layout under any My-Mz-N combination, it can be used for the calculation of MRd,c,
by setting the strain all-along the extreme fibres of the compression flange equal
to εcu = 0.0035 and searching for a neutral axis depth that equilibrates the axial
load N. As pointed out in the last paragraph of Section 3.2.2.4 under Definitions and
Assumptions, if such an algorithm is not available, MRd,c may be estimated consid-
ering the section as rectangular, with width b that of the compression flange. This is
acceptable, if the width of the compression zone is constant between the neutral axis
and the extreme compression fibres (i.e., the compression zone lies within a single
one of the rectangular parts of the section).

The value of the column axial force, N, to be used in the calculation of MRd,c

should be the most safe-sided for the fulfillment of Eq. (1.4), notably the minimum
compressive or maximum tensile force in the range of values derived from the anal-
ysis for the combination(s) of the design seismic action and the concurrent gravity
loads, which is physically consistent with the sense of action (sign) of MRd,c. Section
5.7.3.5 addresses this issue in more detail.

10As1 or As2 are taken to include just one-half of each corner bar. The other half counts as part of
Asv.
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5.7.3.4 Capacity Design of Columns in Shear

The moment resistances of beams and columns that enter in the calculation of capac-
ity design shears of columns through Eq. (1.12) in Section 1.3.6.3 have been dis-
cussed in Sections 5.7.2.3 and 5.7.3.3. The only question is about the value of the
column axial load to be used in the calculation of the column moment resistance,
MRd,c. That value should be safe-sided, but also consistent with the verification in
shear.

For the usual range of dimensionless axial load in the seismic design of columns,
their shear resistance increases with increasing axial compression (both the shear
resistance controlled by transverse reinforcement, VRd,s, and the one controlled by
diagonal compression in the web of the member, VRd,max, see Sections 3.2.4.3 and
3.2.4.5 and Table 5.2). In addition, the capacity-design shear force from Eq. (1.12)
increases with increasing moment resistance, MRd,c, which increases as the axial
load increases till the balance load (see point 2 of Section 5.7.2.3). So, both of
the following two cases should be considered as potentially critical for the shear
verification:

1. The minimum compressive or maximum tensile force from the analysis, among
all combinations of the design seismic action with the concurrent gravity loads.
This value is also of interest for the strong column-weak beam capacity design
of Eq. (1.4) in Section 5.7.3.2.

2. That value of axial load, within its range of variation for the combinations of the
design seismic action with the concurrent gravity loads, at which MRd,c becomes
maximum. This value is also of interest for the capacity design shear of beams in
Section 5.7.2.3 and is the minimum of the two values listed under points 1 and 2
in that section.

5.7.3.5 Column Axial Force Values for Capacity Design Calculations

A key question in the calculation of the column moment resistance, MRd,c, for
capacity-design purposes is what value to choose for the column axial force, N,
within the range derived from the analysis for the combination(s) of the design seis-
mic action and the concurrent gravity loads. The choice should be meaningful but
also safe-sided for the specific capacity design calculation:

1. For the capacity design shear of beams, we are interested in the maximum com-
pressive column axial force (see Section 5.7.2.3).

2. For the strong column-weak beam capacity design of Eq. (1.4), we should use
the minimum compressive or maximum tensile force in the column (see Section
5.7.3.3).

3. For the capacity design shear of the column itself, both the maximum compres-
sive and the maximum tensile (or minimum compressive) force in the column
are of interest (see Section 5.7.3.4).
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4. For the capacity design of the foundation system and the bearing capacity verifi-
cation of the soil, both the maximum compressive and the maximum tensile (or
minimum compressive) force in the column are of interest (see Section 2.3.4 and
the design of the foundation in Section 5.8.1).

The maximum or minimum compressive axial force for the combination of the
design seismic action with the concurrent gravity loads derive from the maximum
compressive and maximum tensile axial force, respectively, from the analysis for
the seismic action.

In principle, the value used for N should be consistent with the sense of action
(sign) of MRd,c.11 Note that:

(i) The column or beam moment resistances enter as sums,
∑

MRd,c,
∑

MRd,b:

• on opposite sides of the joint, in all three types of capacity design calcula-
tions;

• at the top and base of a storey, in calculations of type 3 above;
• of a hogging moment at one end of the beam and a sagging one at the

opposite end, in type 1 calculations;

(ii) The sums of column moment resistances,
∑

MRd,c, are normally (about) the
same for the two opposite senses of uniaxial bending, owing to symmetry of
the section and its reinforcement;

(iii) By contrast, unless the beam reinforcement is symmetric (top and bottom) in
each one of the two sections involved or the same in both, the beam moment
resistance sums,

∑
MRd,b, are normally different for the two opposite senses

of bending. Then, the sense (sign) of bending moments (and, therefore, of the
seismic response) makes a difference.

The value of the maximum compressive or tensile seismic axial force in the col-
umn depends on how the effects of the seismic action components are combined
according to Section 4.7.2 and which analysis method is used for them. This is elab-
orated further below for the four different cases in Section 4.7.2, taking as main
component of [My Mz N] the bending moment for which a plastic hinge forms, let’s
say My. The other moment component is not relevant. With the moment resistance,
MRd,c, conventionally taken as positive, My is considered positive if it has the same
sense of action as MRd,c. The axial force N is considered positive if compressive.

11For example, when the response is dominated by the 1st translational mode in a given horizontal
direction, flexural plastic hinges at the base of columns normally have tension on the “windward”
side of the column and compression on the “leeward” one. The opposite normally happens in
plastic hinges at column tops. On the other hand, the 1st mode dominated response induces tensile
axial forces at top and bottom of the exterior columns of the “windward” side and compressive
ones in those of the “leeward” side.
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1. EX, EY are combined through Eq. (4.25). If EX, EY are computed separately by
lateral force analysis, direct application of Section 4.7.2.1 leads to a maximum
compressive force in the column equal to the algebraically maximum of the two
values:

– sign(My,XNX)NX + sign(My,YNY)λNY,
– sign(My,YNY)NY + sign(My,XNX)λNX

and to a maximum tensile (or minimum compressive) one equal to the alge-
braically minimum of them. These are the values to be used, if the sense (sign) of
bending moments and of the seismic response makes a difference for the value of∑

MRd,b according to (iii) above. If it doesn’t, the maximum compressive force
in the column is the maximum of:
– |NX| + λ|NY|,
– |NY| + λ|NX|
The maximum tensile one is its opposite. These same values come out from
the direct application of Section 4.7.7.2, when EX, EY are computed separately
by modal response spectrum analysis, regardless of whether the sense (sign) of
bending moments and of the seismic response makes a difference or not for the
value of

∑
MRd,b according to (iii) above.

It is physically more meaningful and less conservative to use as N the axial
force due to the seismic action component giving the largest column moment in
the direction of MRd,c, with the same sign as the axial force in the mode with the
largest contribution to this moment when that contribution has the same sense
(sign) as MRd,c. The axial force due to the orthogonal horizontal component of
the seismic action is added with the same sign as the extreme axial force we are
after (tensile or compressive).

2. EX, EY are combined via Eq. (4.24): Direct application of Sections 4.7.2.3 and
4.7.2.4 (3rd term of Eqs. (4.37) or (4.40), respectively) gives a maximum com-
pressive or tensile seismic force: N = ±√

(NX
2+NY

2). These values apply if the
sense (sign) of bending moments and of the seismic response doesn’t make a
difference for the value of

∑
MRd,b according to (iii) above. If it does, recalling

that the main component in [My Mz N] is My and that the only other component
of interest is N, we compute a single axial force value:

– If EX, EY are computed separately through modal response spec-
trum analysis, the 3rd term of Eq. (4.35) is modified as N =
[cov(MyN)/My,max][MRd,c/My,max]. Another physically meaningful alternative
is to take the magnitude of N as

√
(NX

2+NY
2) and use the sign of the axial

force in the mode with the largest contribution to the moment in the direction
of MRd,c when that contribution has the same sense (sign) as MRd,c.

– If EX, EY are computed separately by lateral force analysis, the 3rd term of
Eq. (4.38) is modified as N = [(My,XNX+My,YNY)/My,max][MRd,c/My,max] with
My,max = √

(My,X
2+My,Y

2).
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In every case the column axial forces due to the accidental eccentricities of both
horizontal components are added with the same sign as the extreme axial force we
are after (tensile for minimum N, compressive for maximum N).

So far this section has sought the extreme values of the column axial force within
the range derived from the analysis for all combinations of the design seismic action
with the concurrent gravity loads. Without restricting the seismic action to be the
design one, one can estimate extreme values of column axial loads in a full-fledged
beam-sway plastic mechanism, where plastic hinges develop at both ends of the
beams framing in the column in the overlying floors:

max N ≈
∑

overlying floors

(
RG+ψ2 Q + ΔVE

)
; min N ≈

∑
overlying floors

(
RG+ψ2 Q − ΔVE

)
(5.47a)

ΔVE =
∑

adj. spans

max

[(
M+

Rd,bi + M−
Rd,bj

Lcl

)
r

−
(

M+
Rd,bi + M−

Rd,bj

Lcl

)
l

;

(
M−

Rd,bi + M+
Rd,bj

Lcl

)
l

−
(

M−
Rd,bi + M+

Rd,bj

Lcl

)
r

] (5.47b)

where symbols are as in the preliminary design parallel of Eqs. (5.47) in Section
2.2.1.5, namely Eqs. (2.13) and (2.14), except RG+ψ2Q, which is the total reaction
due to the concurrent gravity loads, G+ψ2Q, delivered at a floor to the column by
all beams framing in it from all directions.

5.7.3.6 Design of Columns Against Adverse Local Effects
of Non-Structural Infills

According to Section 2.1.13.4, non-structural infills have two types of potential
adverse local effects on adjoining columns:

1. A stiff and strong infill may shear-off weak columns, especially for unbalanced
(i.e., one-sided) contact (see Fig. 2.11 in Section 2.1.13.4).

2. A “captive” column, laterally restrained by the infill(s) over part of its full height,
is subjected to higher chord rotation demands and, more important, to larger
shears. It may fail in flexure-shear or by pure shear, notably by diagonal com-
pression (see Fig. 2.12 for examples).

Eurocode 8 has the following rules to protect concrete buildings from these two
types of adverse local effects. They apply to buildings designed for DC H or M (not
for L), no matter the structural system (wall or frame).

To prevent failure of type 1, the length of the column against which the diagonal
strut bears should be verified in shear for the smallest of the following design shear
forces:
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(a) the horizontal component of the strut force of the infill, taken equal to the hor-
izontal shear strength of the panel estimated from the shear resistance of bed
joints (shear strength of bed joints times the wall thickness, tw, times the clear
length of the infill panel, Lcl); or

(b) the shear force computed from Eq. (1.12), taking the clear length of the column,
Hcl, as equal to the contact length, lc, and the parenthesis in the numerator equal
to twice the design value of the column flexural capacity, 2MRd,c (see Fig. 5.7
for the rationale).

In case (b), the contact length should be taken equal to the full vertical width of
the diagonal strut of the infill, winf/cosθ , where θ is the angle between the horizontal
and the panel diagonal: θ = arctan(Hcl/Lcl).12 This contact length is consistent with
the calculation in case (a), which conservatively assumes that the full strut force is
applied to the column. It is also closer to reality at the top of the column, as there
the joint between the top of the infill and the soffit of the beam may already be open
due to creep of the masonry or concrete infill.

Section 2.1.13.4 has listed several architectural or conceptual design solutions
to the captive column problem. If none of them is feasible or effective, we can
only use the dimensioning and detailing options provided by Eurocode 8 for captive
columns. According to them, the design shear force of the “captive” column should
be calculated according to Eq. (1.12), with:

Fig. 5.7 Shear loading of column by the strut force of the infill

12Strictly speaking, in the present case where the strut is conservatively taken to bear fully on the
columns, θ is the angle between the horizontal and the strut centreline, θ = arctan[(Hcl–lc)/Lcl]. In
Eqs. (4.46), though, θ is indeed the angle between the horizontal and the panel diagonal.



5.7 Implementation of Detailed Design of a Building Structure 501

1. the clear length of the column, Hcl, taken equal to its free length not in contact
with the infill (i.e., the clear height of the opening), and

2. the term min[. . .] taken equal to 1.0 at the column section at the far end of the
column within the length of contact with the infill.

Behind this calculation is the presumption that the lateral restraint of the captive
column by the infill is sufficient to induce a column plastic hinge at the level of
the sill of the opening, rather than at the bottom of the column within the contact
length with the infill or in weaker (than the column) beams framing into that end.
Moreover, because:

– the clear height of the captive column may be short, and
– the exact location and extent of the potential plastic hinge around the level of the

opening’s sill is not clear and may well extend into the length of the column in
contact with the infill,

Eurocode 8 imposes the following detailing on captive columns:

1. placing transverse reinforcement as required for resistance against the design
shear force not just over the free length of the column, Hcl, but also along the
part of the column in contact with the infill and within a length equal to the
column depth in the plane of the infill, hc, and

2. applying the special detailing and confinement requirements for column critical
regions over the full height of the column in the storey.

The transverse reinforcement resulting from 2 above increases the nominal shear
resistance of the captive column over its full height beyond the design shear force for
which it has been verified and enhances its deformation capacity for any potential
location of the plastic hinges. This may partly compensate for the lack of a special
rule in Eurocode 8 for the calculation of the nominal shear resistance of columns
with low shear span ratio (squat columns), regardless of their reduced flexural resis-
tance owing to flexure-shear interaction (see Section 3.2.5.2) and their lower shear
resistance for concrete failure along the diagonal(s) of the column in elevation (see
Section 3.2.5.4).

If the free length of the column, Hcl, (i.e., the clear height of the opening) is
short, the design shear force may come out of Eq. (1.12) so large that it may not be
feasibe to verify the column for it, especially if shear resistance is governed by shear
compression (see Eq. (3.127) in Section 3.2.5.4) and cannot be increased further
through transverse reinforcement. Although designating the column as “secondary”
may seem as a convenient way out of the deadlock, it is more sensible to solve
the problem by reducing (instead of increasing) the size of the column. This may
work, as:
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1. if the shear span ratio, Hcl/(2hc), of the column increases to values above 2 (or,
preferably, above 2.5) its behaviour in cyclic shear will not exhibit the special
vulnerability and low dissipation capacity characterising short columns; and

2. the decrease in the cross-sectional dimensions will reduce the design shear force
from Eq. (1.12) by reducing the moment resistance of the column, MRdc,i, (i= , 2)
more than its nominal shear resistance.

Another option is to place reinforcing bars along both diagonals of the clear
length of the captive column within the plane of the infill. Such bars, supplement-
ing or replacing the conventional transverse reinforcement of the column, are very
effective for energy dissipation and deformation capacity (see Section 3.2.5.5). They
may be dimensioned to resist at the same time the design shear force from Eq. (1.12),
as well as the design bending moments at the end sections of the short column, in
accordance with the relevant rules for coupling beams of coupled walls. Accord-
ing to Eurocode 8, placing such reinforcement and dimensioning it to resist the full
value of the design shear force is mandatory, if the free length of the column, Hcl, is
less than 1.5hc (corresponding to a value of the shear span ratio, Hcl/(2hc), less than
0.75).

5.7.4 Detailed Design of Ductile Walls

5.7.4.1 Dimensioning of Wall Vertical Reinforcement

As we have seen in Flow Chart 5.1 and Sections 5.7.2 and 5.7.3, seismic design of
frame members for ductility entails significant interdependencies between phases of
detailed design of different members. By contrast, the detailed design of a ductile
wall does not depend on that of any other element. The only exception is when the
designer uses the facility offered by Eurocode 8 to redistribute up to 30% of the
seismic moment and shear of a wall with tensile seismic axial force to others with
compressive.13 Such redistribution should take place separately for each sense of
action of the horizontal seismic components. It is meaningful only when the analysis
method and the combination of the effects of the two horizontal components of the
seismic action maintain the correspondence of signs between seismic action effects
in the same or different elements. So, redistribution is not meaningful if the maxi-
mum effects of seismic action components computed by modal response spectrum
analysis are combined via the linear approximation, Eq. (4.25), according to Section
4.7.2.2. The redistribution facility can be used to advantage to equalise the vertical
reinforcement required when the wall is under seismic axial tension or compression
and prevent large flexural overstrengths at the base from penalising the shear force
demand in DC H walls (see Eqs. (1.14) and (1.15) in Section 1.3.6.4). Note, how-
ever, that this facility is worth using only if large axial forces are induced in the
wall by the seismic response along its strong direction. This is not very common,
as walls are normally placed between opposite sides in plan in their weak direction

13Axial tension is taxing for the ULS in bending with axial force, while compression is favourable.
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(see, Fig. 2.2a in Section 2.1.6). By design, seismic axial forces are high in the piers
of coupled walls. Redistribution between two symmetric piers is very easy: the pier
elastic seismic moment and shear is reduced by up to 30% when its seismic axial
force is tensile and increased by the same amount when it is compressive. The exact
amount of redistribution should be chosen so that the pier vertical reinforcement just
suffices under seismic axial tension, without producing flexural overstrength when
in compression. Unless this is achieved, it is very hard to verify a coupled wall of
DC H against the magnified shears of Eqs. (1.14) and (1.15).

Detailed design of ductile walls starts from dimensioning the vertical bars at the
base section and proceeds to the top following the M-envelope in Fig. 1.7, Section
1.3.5. The vertical reinforcement of rectangular walls (even with barbells or narrow
but symmetric flanges) is concentrated near the two far edges of the section and gov-
erned by the (essentially) uniaxial moment with axial force induced by the seismic
response in the strong direction of the wall. Normally the minimum web vertical
reinforcement is placed,14 giving mechanical reinforcement ratio ωv = minρvfyv/fc.
This value is used in the version of Eq. (3.51) applying in this case15:

ωv

1 − δ1

(
δ1
εcu + εy2d

εcu − εy2d
− 1

)
+ δ1

εcu − εco

3
εcu − εy2d

≤ νd

≤ ωv

1 − δ1

(
εcu − εy1d

εcu + εy1d
− δ1

)
+
εcu − εco

3
εcu + εy1d

(5.42a)

If Eq. (5.42a) is satisfied, then the version of Eqs. (3.52) and (3.60) applicable
here are used to find the symmetric edge reinforcement, ω2 = ω1 (cf. Step 1(i) in
Section 5.7.3.1):

ξ = (1 − δ1) νd + (1 + δ1)ωv

(1 − δ1)

(
1 − εco

3εcu

)
+ 2ωv

(5.43a)

(1 − δ1)ω1 = M

bd2 fcd
− ξ

[
1 − ξ

2
− εco

3εcu

(
1

2
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4εcu
ξ

)]

− ων

1 − δ1

[
(ξ − δ1)(1 − ξ ) − 1

3

(
ξεyvd

εcu

)2
] (5.44a)

Often, however, the wall axial load, νd, is less than the limit of the left-hand-side
in Eq. (5.42a), implying that the compression reinforcement, ω2, is elastic. Then the
value of ξ is the positive root of the version of Eq. (3.54) applying here:

14In the present context it is safe-sided and expedient to assume the minimum vertical web rein-
forcement, even when more is finally placed.
15As in Step 1 of Section 5.7.3.1, the design values fyd, fcd, εco = 0.002, εcu = 0.0035 are used in
all these calculations.
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[
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(5.45a)

The version of the expression for moment resistance, Eq. (3.59), applicable here
may be used to express ω1 in terms of ξ and the moment:

ω1
(1 − δ1)

2

(
1 + ξ − δ1

ξ

εcu

εyd

)
= M

bd2 fcd
− ξ

[
1 − ξ

2
− εco

3εcu

(
1

2
− ξ + εco

4εcu
ξ

)]
−

ων

4(1 − δ1)

[
ξ

(
1 + εyvd

εcu

)
− δ1

] [
1 + εcu

εyvd

(
ξ − δ1

ξ

)][
1 − δ1

3
− 2

3
ξ

(
1 + εyvd

εcu

)]
(5.46a)

and replace ω1 in Eq. (5.45a). The resulting equation is highly nonlinear in ξ and is
solved iteratively; ω1 is then determined from Eq. (5.46a).

The edge reinforcement from Eqs. (5.44a) or (5.46a) is implemented into a num-
ber of bars near the edge of the section, normally spread over a certain distance,
lc, from it (e.g., along a boundary element, see Fig. 5.2 in Section 5.3.4). The dis-
tance of this reinforcement from the section edge, normalised to d as δ1, refers to
the centroid of these bars. Note that Asv and ωv are considered uniformly distributed
between the centroids of ω2 and ω1; a fraction (lc/d–δ1)/(1–δ1) of Asv falls within the
distance lc over which the edge reinforcement is spread and should be added to the
area from Eqs. (5.44a) or (5.46a) before translating it into edge reinforcement area.

In the piers of coupled walls there is a clear correspondence between the sign of
the seismic axial force and the sense of the acting bending moment, even when it
does not come out of the analysis (e.g., when the linear approximation, Eq. (4.25),
is used to combine maximum effects of seismic action components computed by
modal response spectrum analysis according to Section 4.7.2.2). They are such that
they both put the exterior edge of each pier either in tension or in compression. The
designer may decide then to place more reinforcement at that edge of the pier, let’s
say with mechanical ratio ω2, than at the opposite one (towards the coupling beam),
let’s say with mechanical ratio ω1 < ω2. Normally the vertical reinforcement of the
web is known, let’s say ωv. In principle the values of ω1 and ω2 can be determined
using for each pier one of the expressions in Section 3.2.2.4 for the (unknown) neu-
tral axis depth, ξ , and another one from Section 3.2.2.5 for the moment resistance
(set equal to the design moment of the pier), both in terms of the unknown ω1 and
ω2 but with the roles of ω1 and ω2 reversed in the two piers (in one pier the ten-
sion reinforcement is ω2 and in the other ω1). However, owing to the multitude of
expressions in Sections 3.2.2.4 and 3.2.2.5, there is no clear-cut iterative solution,
let alone a closed-form one. A practical possible procedure to determine ω1 and ω2

is the following.
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We start from the pier where the seismic axial force is compressive. There ω2 is
indeed the compression reinforcement ratio and ω1 that of tension reinforcement.
To prevent the extreme compression fibres from crushing before the tension rein-
forcement yields (balance point), ξ is set equal to εcu/(εcu+εy1). Then for that pier
νd is equal to the limit value νc,y1 defined at the right-hand-side of Eq. (3.51):

ω2 − ω1 = νd − ων

1 − δ1

(
εcu − εy1

εcu + εy1
− δ1

)
−
εcu − εco

3
εcu + εy1

(5.48a)

The second expression is obtained by inverting Eq. (3.60):
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and using there ξ = εcu/(εcu+εy1). The pier where the seismic axial force is tensile
is considered next. Depending on its net axial force (most likely tensile), the expres-
sions for ξ in Section 3.2.2.4 are used with ω1 and ω2 known but with reversed roles.
Those in Section 3.2.2.5 give the resulting moment resistance, to be compared with
the design moment entrusted to this pier. If there is a shortfall, the moment redis-
tributed to the other pier is increased and the calculation repeated. Conversely for a
moment surplus.

Strictly speaking, a wall, being a vertical element, is under biaxial bending with
axial force, My-Mz-N. So, after the vertical reinforcement is estimated, e.g., as in the
above paragraph, and placed in the section according to the pertinent detailing rules,
the section should be verified for the ULS in bending with axial force for all My-Mz-
N combinations from the analysis for the design seismic action and the concurrent
gravity loads (see Section 4.7.2 for these combinations and Section 5.7.3.1 for the
iterative algorithms available for the ULS verification of sections with any shape
and layout of reinforcement for any My-Mz-N combination). The moment in the
strong direction of the wall, let’s say My, is obtained from the linear M-envelope
in Fig. 1.7 of Section 1.3.5. The value of Mz is that from the analysis. Its value
is maximum at storey tops and bottoms. So, the ULS verification of the wall for
My-Mz-N may take place at the base section of each storey. Wall flanges longer than
4-times their thickness qualify themselves as walls in the orthogonal direction. Then
the Mz values are obtained from the linear M-envelope of Fig. 1.7 in that direction
and not directly from the analysis. This raises the issue of non-rectangular walls
discussed in the paragraph immediately following.

Wall sections not consisting of a single elongated rectangle but of several ones
at right angles to each other (T-, L-, U-sections, etc.) should be verified in flexure
as a whole for the My-Mz-N triplet of the entire composite section, assuming that it
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remains plane. If the composite section is modelled in the analysis as an assemblage
of (quasi-rigidly connected) rectangular parts (see Section 4.9.4), this separation
should not be retained during its dimensioning and verification in flexure. The non-
linearities in a section analysis at the ULS may lead to a distribution of strains and
stresses in the actual composite section which is vastly different from that in the
artificially articulated section under the My-Mz-N triplets of its individual parts. So,
these triplets should be composed into a single one for the entire wall section. Note
that the linear M-envelopes of Fig. 1.7 are used then both for My and Mz. Their val-
ues from the analysis at any level other than the base and the top of the wall are only
of academic interest, whatever that may mean for the intricacies of elastic modelling
of non-rectangular walls (see Section 4.9.4).

A safe-side estimate of the vertical reinforcement near the extreme tension and
compression fibres of a non-rectangular wall section may be obtained via the 3-
step procedure of Section 5.7.3.1 for the dimensioning of column vertical reinforce-
ment under My-Mz-N, notably with the extension proposed there for non-rectangular
columns. The full vertical reinforcement placed over the section should also meet
the detailing rules for boundary elements, web minimum reinforcement, etc. Note
that the size of any boundary elements needed around the non-rectangular section
may be estimated from the strain profile(s) obtained in the course of Step 3 of the
procedure, namely through the iterative algorithm for the ULS verification of sec-
tions with any shape and layout of reinforcement for any combination My-Mz-N.

5.7.4.2 Dimensioning of DC H Walls in Shear

It is hard to verify in shear the “critical region” of DC H walls. Its cyclic shear resis-
tance for diagonal compression, VRd,max, is reduced to just 40% of the Eurocode 2
value for monotonic loading (see Section 5.5.3 and Fig. 3.42 in Section 3.2.4.5).
The reduced resistance should exceed the shear forces from the analysis multiplied
by the ε-factor of Eqs. (1.14) and (1.15) in Section 1.3.6.4, which normally is much
larger than 1.0. If the verification fails, an increase of the web thickness, bwo, is
normally not very effective. It will increase proportionally the value of VRd,max,
but it will also increase, albeit less than proportionally, the seismic shear force
from the elastic analysis.16 Keeping the flexural overstrength ratio at the wall base,
MRd,o/MEd,o, to a minimum (equal to 1.0, if at all possible) may be much more
effective. To this end, the wall thickness should not be so large that the vertical
reinforcement is controlled by minimum requirements. The most important over-
strength, however, comes from the variation of the wall axial force when the design
seismic action changes sign. The vertical reinforcement is governed by the axial
tension situation and provides large flexural overstrength, MRd,o/MEd,o, under equal
and opposite acting moments, MEd,o, but in axial compression. Recourse should be

16The elastic stiffness is proportional to bwo in rectangular walls and less than proportional to it in
non-rectangular ones. The wall’s elastic seismic action effects, in turn, are less than proportional
to its elastic stiffness, especially if the wall has a major contribution to the global lateral stiffness.
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made to the redistribution facility described in the first paragraph of Section 5.7.4.1,
in order to equalise the vertical reinforcement requirements for the wall under axial
tension or compression and achieve always: MRd,o ≈ MEd,o.

The value of MRd,o for the purposes of Eqs. (1.14) and (1.15) should be computed
as outlined for columns in Section 5.7.3.3. If the wall is rectangular Section 3.2.2.5
applies, using the pertinent value of ξ from Section 3.2.2.4. If it is non-rectangular,
an iterative algorithm of the type mentioned in Section 5.7.3.1 (at Step 3) may be
used. Alternatively, the section may be taken as rectangular with width b that of the
compression flange, provided that in the end the compression zone lies fully within
a single rectangular part of the section.

In coupled walls the redistribution of MEd,o from the pier in tension to that in
compression may not be sufficient to keep MRd,o close to MEd,o. If it is difficult to
verify the piers in shear, the values of MRd,o and MEd,o for the ratio MRd,o/MEd,o may
be computed considering the two piers as a single section. Then the couple, NEl,
where l is the axial distance between the pies and NE the seismic axial force in them
for the seismic action combination of interest, should be added both to the sum of
MRd,o’s of the piers and to that of their MEd,o’s. The shear forces of the piers from
the analysis, as modified by the redistribution, are then amplified by a common ε
-factor according to Eqs. (1.14) and (1.15).

5.8 Application Examples

5.8.1 3-Storey Frame Building on Spread Footings

A 3-storey RC frame building has rectangular plan with dimensions Lx = 10 m in
horizontal direction X and Ly =25 m in horizontal direction Y. It consists of:

– six frames in direction X, each having two bays with bay length L = 5 m (see
Fig. 5.8) and

– three five-bay frames in direction Y, with constant bay length L = 5 m.

The storey height is H = 3 m. The columns are square, with side:

– hc,int =0.4 m for interior columns,
– hc,ext =0.35 m for the exterior ones, and
– hc,corner =0.3 m for the four corner ones.

All beams have width bw = 0.3 m and flange (i.e. slab) thickness 0.15 m; their depth
is:

– hb=0.5 m for interior beams, and
– hb=0.45 m for exterior ones.
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Fig. 5.8 Interior 3-storey frame in direction X with heightwise linear lateral forces

Global aspects covered in the design of the frame building are limited to what
is required for the determination of seismic action effects (behaviour factor, fun-
damental periods, base shear, 2nd-order effects, etc.). Global verifications include
checking of drifts under the damage limitation seismic action and detailed design
(including capacity design) of:

– the 1st interior 2-bay frame in direction X (at distance y = 7.5 m from the mass
centre), and

– the interior columns and beam spans in all 5-bay frames in direction Y,

with emphasis on the ground storey and the foundation.

Design specifications

– Storey quasi-permanent gravity load concurrent with the earthquake: 9 kN/m2,
corresponding to uniform transverse load on interior beams B1: g+ψ2q=20
kN/m and on exterior ones: g+ψ2q =15 kN/m.

– Permanent load g =18 kN/m on interior beams, g =14 kN/m on exterior ones.
– For factored gravity loads (persistent and transient design situation), γ gG+γ qQ:

uniform transverse load qd=35 kN/m on interior beams, qd=24 kN/m on exterior
ones.

– Reference Peak Ground Acceleration on type A ground (rock) agR=0.23 g.
– EC8 Type 1 recommended spectrum on ground type E (see Table 4.2 for the

parameters),
– Importance Class III; importance factor γ I = 1.2.
– Ductility Class (DC) Medium (M).
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– Concrete C30/37; Steel S500; concrete cover to reinforcement: c = 25 mm.
– Soil: clay with design value of undrained shear strength cud =100 kPa and unit

weight γ soil =19 kN/m3.
– The top of the footing is at ground surface (no surcharge due to overburden of

footing by soil).

Simplifying assumptions for the analysis

– Columns are considered fixed at the top of the footing.
– The points of inflection of columns under lateral loading are assumed at storey

mid-height; then seismic bending moments at column ends may be taken equal
to the shear force of the column, times one-half of its clear height, Hcl=H–hb:

– MEc1=±0.5VEc,1Hcl in column C1 (at the ground storey),
– MEc2=±0.5VEc,2Hcl in column C2 (storey 2), etc.

– Interior columns may be considered to have twice the moment of inertia of exte-
rior ones. Similarly for exterior columns v the corner ones. Then (cf. 2nd para-
graph of Section 2.2.1.3):

– Interior columns may be considered to take twice the seismic shear compared
to exterior ones, which in turn take twice the seismic shear compared to corner
columns;

– All beam points of inflection under lateral loading may be taken at mid-span;
– Seismic axial forces in columns which are interior in the direction of the seis-

mic action are zero. The seismic overturning moment is taken by axial forces
only in the columns which are exterior in the direction of the seismic action.

– Interstorey drifts due to lateral loading, from midheight of storey i to mid-
height of storey i +1, may be calculated from Eq. (2.8a) in Section 2.2.1.3,
giving storey drifts:

– at the ground storey (i =1):

δ1 = 1

24
H 3

cl

[
VEc,1

(E I )c,1

]
+ Δδ1/2

– at storey i>1: δi = δi−1 + (Δδi + Δδi−1)/2
– of the top storey (i = n):

δn = Δδn−1/2 + δn−1

+ 1

24
VEc,n

[
H 3

cl

(E I )c,n

(
1 + 1.5

hb,n

Hcl

)
+ L3

cl

(E I )b,n

(
H

L

)2 (
1 + 1.5

hc,n

Lcl

)]

– At the sections of beam B1 in an interior 2-bay frame in direction X at the support
on the central column, C1:
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– the top reinforcement is dimensioned for the maximum of the following
moments:

(1) Mγ gG+γ qQ =qdLcl
2/8, with:

– Lcl = beam clear span = L–0.5(hc,ext+hc,int);

(2) Mg+ψ2q+(|MEc1,yX|+|MEc2,yX|)/2, with:

– Mg+ψ2q=(g +ψ2q )Lcl
2/8 and

– MEc1,yX, MEc2,yX: seismic bending moments in 1st and 2nd storey cen-
tral columns, C1 and C2, respectively, due to the horizontal seismic
action component in direction X, about the local axis y of the column
which is normal to direction X and to the vertical plane of the interior
frame;

– the bottom reinforcement is dimensioned for moment: (|MEc1,yX|+|MEc2,yX|)
/2-Mg+ψ2q ≥ 0.

– The section of beam B1 of an interior 2-bay frame in direction X at the support
by the exterior column C3 is dimensioned for moment: ±(|MEc3,yX|+|MEc4,yX|),
with MEc3,yX, MEc4,yX defined like MEc1,yX, MEc2,yX but for the exterior columns
C3 and C4, respectively.

– At the sections of any interior beam of a 5-bay frame in direction Y at the sup-
ports to the interior columns of these frames:

– the top reinforcement is dimensioned for the maximum of the following
moments:

(3) Mγ gG+γ qQ =(qd/9–g /36)Lcl
2, with:

– Lcl=L –hc (hc=hc,ext for exterior 5-bay frames and hc=hc,int for interior
ones);

(4) Mg+ψ2q+(|MEc1,zY|+|MEc2,zY|)/2, with:

– Mg+ψ2q=(g +ψ2q )Lcl
2/12 and

– MEc1,zY, MEc2,zY: seismic bending moments in 1st and 2nd storey
columns (C1 and C2, respectively, for interior 5-bay frame, or C3 and
C4, respectively, for the exterior one) due to the horizontal seismic
action component in direction Y, about local axis z of the column nor-
mal to direction Y and to the vertical plane of the interior 5-bay frame;

– the bottom reinforcement is dimensioned for moment: (|MEc1,zY|+|MEc2,zY|)/
2-Mg+ψ2q ≥ 0.

– Interior columns support 125% of the gravity loads within their tributary area,
while exterior ones support 75% of the gravity loads in theirs.

– Column bending moments due to gravity loads are neglected.
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(a) Material parameters

fcd = 30/1.5 = 20 MPa; fctm = 2.9 MPa, Ec = 33000 MPa;

fyd = 500/1.15 MPa; εyd = 500/(1.15 × 200000) = 0.217%;

Distance of centre of longitudinal bars from nearest concrete surface: d1=c
+dbh+dbL / 2 ∼ 0.025+0.008+0.018 / 2 ∼ 0.04 m.

(b) Geometric parameters

Effective flange width (according to Eurocode 2) and moment of inertia of beams:
Interior T-beams: beff=2 × 0.2 × 0.85L + bw=0.34 × 5+0.3=2 m,

– Cross-sectional area: A =1.7 × 0.15+0.5 × 0.3=0.405 m2

– Distance of centroid from top: yt=(1.7 × 0.15 × 0.075+0.5 × 0.3 × 0.25)/
0.405=0.1398 m,

– Moment of inertia: Ib=(1.7 × 0.153+0.3 × 0.53)/3–0.405 × 0.13982=0.0065 m4

Exterior L-beams: beff=0.2 × 0.85L + bw=0.17 × 5+0.3=1.15 m,

– Cross-sectional area: A =0.85 × 0.15+0.45 × 0.3=0.2625 m2

– Distance of centroid from top: yt=(0.85 × 0.152/2+0.3 × 0.452/2)/0.2625=
0.15215 m,

– Moment of inertia: Ib=(0.85 × 0.153+0.3 × 0.453)/3–0. 2625 × 0.152152=
0.004 m4

Moment of inertia of interior columns: Ic,int=0.44/12=0.00214 m4

Moment of inertia of exterior columns: Ic,ext=0.354/12=0.00125 m4

Moment of inertia of corner columns: Ic,corner=0.34/12=0.000675 m4

(c) Check of storey torsional radii versus radius of gyration of floor mass

Storey torsional radii from Eq. (2.3) and the moments of inertia of the column
sections:

∑(
x2 Iy + y2 Ix

) = 2 × {52(4 × 0.00125 + 2 × 0.000675)+
12.52(2 × 0.000675 + 0.00125) + (7.52 + 2.52)(2 × 0.00125 + 0.00214)} = 1.71 m6,∑(

Iy
) =

∑
(Ix ) = 10 × 0.00125 + 4 × 0.000675 + 4 × 0.00214 = 0.02376 m4,

rx = ry =
√

1.71

0.02376
= 8.48 m

As the mass is uniformly distributed over the rectangular floor area, the

radius of gyration of the floor mass in plan, ls, is: ls =
√

(L2
x + L2

y)/12 =√
(252 + 102)/12 = 7.77 m
So, the frame system has sufficient torsional rigidity to ensure that the fundamen-

tal translational periods in the two horizontal directions are longer than the twisting
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period. This condition is only marginally met, just thanks to the fact that the moment
of inertia of exterior columns is slightly more than 50% (namely, 58%) of that of
interior ones, and that of corner columns is slightly higher than 50% (namely, 54%)
of the moment of inertia of interior columns. If the ratio of these moments of inertia
were exactly 50%, then the distribution of stiffness in plan would had been as uni-
form as that of mass and the storey torsional radii would had been equal to the
radius of gyration of the floor mass in plan, ls. Note also that the moment of iner-
tia of the exterior beams is also slightly higher than 50% (namely, 59%) of that of
interior ones. Should the effect of the beams on storey lateral and torsional stiffness
had been taken into account, the conclusion regarding the relative magnitude of the
storey torsional radii and the radius of gyration of the floor mass in plan would not
had changed.

(d) Member rigidities

As Ic,int∼2Ic,ext, for simplicity of the calculations the interior columns may be con-
sidered to have twice the moment of inertia of exterior ones, so that they can be
considered to take twice the seismic shear of exterior columns. Similarly for exte-
rior columns v the corner ones, as Ic,ext∼2Ic,corner. Then, all beam points of inflection
under lateral loading may be taken to be at mid-span.

– If the interior columns are taken with exactly twice the moment of inertia of
exterior ones and the exterior columns with exactly twice the moment of inertia
of corner ones, interior columns have moment of inertia:

Ic = (10 × 0.00125+4 × 0.000675+4 × 0.00214)/(10 × 0.5+4 × 0.25+4 × 1)

= 0.002376 m4.

– In the interior two-bay frames in direction X, the moment of inertia of the beams
may be taken equal to Ib=(4 × 0.0065+2 × 0.004)/5=0.0068 m4.

– In the 5-bay frames in direction Y, the two exterior frames are taken as the basis.
For them the moment of inertia of beams may be taken equal to Ib=(0.0065+2
× 0.004)/4= 0.00363 m4 and that of columns equal to that of exterior ones:
Ic=0.002376/2=0.001188 m4.

Effective rigidity:
(Interior) frames in direction X:

– Central column: (EI )c=0.5 × 33000000 × 0.002376=39200 kNm2;
– Beams: (EI )b=0.5 × 33000000 × 0.0068=112200 kNm2.

(Exterior) frames in direction Y:

– Interior columns: (EI )c=0.5 × 33000000 × 0.001188=19600 kNm2.
– Beams: (EI )b=0.5 × 33000000 × 0.00363=59900 kNm2.
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(e) Seismic action effects for a design spectral acceleration of 1 g

Thanks to the building’s regularity and apparently relatively short natural period
(T1 < 4TC, 2 s), the lateral force analysis procedure may be used. As all storeys
have the same mass, the seismic lateral forces have heightwise linear distribution
(see Fig. 5.8). The seismic shear in storey 1 (ground storey) is VE1=F1+F2+F3, in
storey 2: VE2 =F2+F3 and in storey 3: VE3 = F3.
Seismic action in horizontal direction X (EX) – on the basis of an interior frame.
Tributary weight of interior frame: W = 5 × 10 × 9=450 kN/per storey.
Storey seismic shears:

– Ground storey: VE1=3 × 450 = 1350 N
– 2nd storey: VE2=2.5 × 450 = 1125 kN
– 3rd storey: VE3=1.5 × 450 = 675 kN

Seismic shear forces in interior column:

– Ground storey: VEc1=0.5 × 1350=675 kN
– 2nd storey: VEc2=0.5 × 1125=562.5 kN
– 3rd storey: VEc3=0.5 × 675=337.5 kN

Interstorey drift, midheight of storey 1 to midheight of storey 2:

Δδ1 = 675 + 562.5

24

[
2.53

39200

(
1 + 1.5

0.5

2.5

)
+ 4.63

112200

(
3

5

)2 (
1 + 1.5

0.4

4.6

)]

= 0.0449 m

Interstorey drift, storey 2 to storey 3: Δδ2=0.0449 × (562.5+337.5)/(675+562.5)=
0.0328 m
Storey drifts:

– Ground storey (i=1): δ1=(2.53/24)(675/39200)+0.0449 / 2 = 0.0336 m
– 2nd storey (i=2): δ2 = δ1+(Δδ1 + Δδ2)/2=0.0336+(0.0449+0.0328) / 2 =

0.0724 m
– Top storey (i=3): δ3 = 0.0724+0.0328/2+0.0449 × 337.5 / (675+562.5) =

0.101 m

Seismic action in horizontal direction Y (EY) – on the basis of an exterior frame.
Tributary weight of exterior frame: W = 2.5 × 25 × 9 = 562.5 kN/per storey.
Seismic shear forces, interior column:

– Ground storey: VEc1 = (3 × 562.5)/5 = 337.5 kN
– 2nd storey: VEc2 = (2.5 × 562.5)/5 = 281.25 kN
– 3rd storey: VEc3 = (1.5 × 562.5)/5 = 168.75 kN

Interstorey drift, midheight of storey 1 to midheight of storey 2:
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Δδ1 = 337.5 + 281.25

24

[
2.553

19600

(
1 + 1.5

0.45

2.55

)
+ 4.653

59900

(
3

5

)2 (
1 + 1.5

0.35

4.65

)]

= 0.0449 m

Interstorey drift, storey 2 to storey 3: Δδ2=0.0449 × (337.5+168.75)/
(337.5+281.25) = 0.0328 m
Storey drifts:

– Ground storey (i=1): δ1 = (2.553/24)(337.5/19600)+0.0449/2 = 0.0343 m
– 2nd storey (i=2): δ2 = δ1+(Δδ1+ Δδ2)/2 = 0.0343+(0.0449+0.0328)/2 =

0.0731 m
– Top storey (i=3): δ3 = 0.0731+0.0328/2+0.0449 × 168.75/(337.5+281.25) =

0.1017 m

(f) Estimation of the fundamental period from the Rayleigh quotient, Eq. (4.7)

Seismic action in horizontal direction X (EX):

– Ground storey: F1 = 0.5 × 450 = 225 kN
– 2nd storey: F2 = (1.0 × 450) = 450 kN
– 3rd storey: F3 = (1.5 × 450) = 675 kN

For m1=m2=m3 = 450/g = 45.8 kN/(m/s2), the values of Fi above and storey drifts
δi in (e) for a design spectral acceleration of 1 g, the fundamental period in direction
X is: TX∼0.525 s.

Seismic action in horizontal direction Y (EY):

– Ground storey: F1 = 0.5 × 562.5 = 281.25 kN
– 2nd storey: F2 = 1.0 × 562.5 = 562.5 kN
– 3rd storey: F3 = 1.5 × 562.5 = 843.75 kN

For m1=m2=m3 = 562.5/g = 57.3 kN/(m/s2), the values of Fi above and storey
drifts δi in (e) for a design spectral acceleration of 1 g, the fundamental period in
direction Y is: TY=0.527 s

(g) Estimation of design spectral acceleration

Design ground acceleration on type A ground: ag=γ IagR = 0.276 g.
Behaviour factor: q =qo = 3 × 1.3 = 3.9.
Seismic action in horizontal direction X (EX). For TX = 0.525 s > TC, Eq. (4.5c)
gives:

Sd (T) = 0.276×1.4×(2.5/3.9)×(0.5/0.525) = 0.236 g > 0.2×0.276 g = 0.055 g.

Seismic action in horizontal direction Y (EY): For TY = 0.527 s> TC, Eq. (4.5c)
gives:

Sd (T) = 0.276 × 1.4 × (2.5/3.9) × (0.5/0.527) = 0.235 g > 0.2 × 0.276 g.
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As T1 < 2TC = 1.0 s, we may reduce the base shear by 15% in the lateral force
analysis:

– Design spectral acceleration in horizontal direction X (EX): 0.85 ×
0.237 g∼0.201 g.

– Design spectral acceleration in horizontal direction Y (EY): 0.85 ×
0.235 g∼0.20 g.

For T ≥ TC: μϕ = 2 qo–1 = 6.8.

(h) Estimation of action effects due to the accidental eccentricity

Storey lateral forces due to the seismic action in horizontal direction X, FX,i, are
applied at an accidental eccentricity to the mass centre, ey,i = 0.05Ly,i. Those due to
the horizontal component in direction Y, FY,i, are applied at an accidental eccentric-
ity ex,i = 0.05Lx,i.

As the structure is fully symmetric in both horizontal directions and ey,i is con-
stant in all storeys, the accidental eccentricity of the seismic action in direction X
has the following effects on an element at a distance y to the centre of mass in
direction Y and x in direction X:

– for bending in a vertical plane parallel to X, it increases the seismic moments and
shears due to the horizontal component in direction X applied at the mass centre

by a factor of
(
1 + ey

ry

|y|
ry

)
;

– for bending in a vertical plane parallel to Y, it induces seismic moments and
shears similar to those induced by the horizontal component in direction Y,
applied at the centre of mass, times a factor of VX

VY

ey

rx

|x |
rx

, where VX and VY are
the storey shears at that level due to the horizontal seismic action components in
directions X and Y, respectively.

Similarly, the accidental eccentricity of the component in direction Y, ex=0.05Lx:

– for bending in a vertical plane parallel to Y, it increases seismic moments and
shears due to the horizontal component in direction Y applied at the mass centre

by a factor of
(
1 + ex

rx

|x |
rx

)
;

– for bending in a vertical plane parallel to X, it induces seismic moments and
shears similar to those induced by the horizontal component in direction X
applied at the centre of mass, times Vy

Vx

ex
ry

|y|
ry

.

Combination of the peak effects of the two horizontal components, EX and
EY, according to Eq. (4.25) gives the following effects of the accidental
eccentricities (for ex/ey = Lx/Ly = 0.4, VX/VY = 1.005, rx = ry = 8.48 m, ex/ry

= ex/rx = 0.05Lx/ry = 0.05 × 10/8.48 = 0.059, ey/ry = ey/rx = 0.05Ly/ry = 0.05 ×
25/8.48 = 0.1475):

– Seismic moments and shears for bending in a vertical plane parallel to X are
those due to the horizontal component in direction X through the centre of mass,
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times
(
1 + ey

ry

|y|
ry

)
=

(
1 + 0.148 |y|

ry

)
. The same horizontal component induces

seismic moments and shears in the orthogonal direction (bending in a vertical
plane parallel to Y) equal to those induced in that direction of bending by the
direction Y component applied at the centre of mass, times VX

VY

ey

rx

|x |
rx

= 0.148 |x |
rx

.
– Seismic moments and shears for bending in a vertical plane parallel to Y are those

due to the direction Y component through the mass centre, times
(
1 + ex

rx

|x |
rx

)
=(

1 + 0.059 |x |
rx

)
. Concurrent seismic moments and shears in the orthogonal direc-

tion (bending in a vertical plane parallel to X) are equal to those induced in that
direction by the horizontal component in direction X applied at the centre of
mass, times VY

VX

ex
ry

|y|
ry

= 0.059 |y|
ry

.

(i) Interstorey drift check against limit (i) in Section 1.1.3 under the damage limita-
tion seismic action

The damage limitation seismic action is equal to the design seismic action times
a reduction factor ν, which for Importance Class III is ν = 0.4. Interstorey drift
ratios are computed at the storey centre of mass, and hence are not affected by the
accidental eccentricity. They are equal to:

– the difference of storey drifts calculated above for a design spectral acceleration
of 1 g divided by the storey height H = 3.0 m, times

– the final design spectral acceleration in g’s: ∼0.2, times
– the reduction factor ν = 0.4, and times
– the behaviour factor q = 3.9.

They are computed and checked here only for the seismic action component in
direction X:

– Ground storey (i=1): Δδ1 = 0.0336 × 0.201 × 0.4 × 3.9 / 3.0 = 0.00351 <
0.005 →OK

– 2nd storey (i=2): Δδ2 = (0.0724–0.0336) × 0.201 × 0.4 × 3.9 / 3.0 =
0.00406 < 0.005 →OK

– Top storey (i=3): Δδ3 = (0.101–0.0724) × 0.201 × 0.4 × 3.9 / 3.0 =
0.003 < 0.005 →OK

(j) Estimation and check of 2nd-order effects through the sensitivity coefficient θ

The sensitivity coefficient θ is computed from Eq. (4.45) only for the component in
direction X:

– Ground storey (i=1): θ1 = (0.00351/0.4) × (3 × 450) / (0.201 × 3 × 450) =
0.0441 < 0.10→OK

– 2nd storey (i=2): θ2 = (0.00406/0.4) × (2 × 450) / (0.201 × 2.5 × 450) =
0.0406 < 0.10→OK

– Top storey (i=3): θ3 = (0.003/0.4) × 450 / (0.201 × 1.5 × 450) = 0.025 <
0.10→OK
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(k) Gravity action effects in interior and exterior columns

Axial forces in the interior and exterior columns due to gravity loads, G+ψ2Q. Con-
sidering the beam of any interior frame in the X direction as a two-span continu-
ous beam supported on columns that do not exert any rotational restraint (simple
supports):

– Column C1: N1,g+ψ2q = 1.25 × 3 × (9 × 5 × 5) = 843.8 kN
– Column C2: N2,g+ψ2q = 1.25 × 2 × (9 × 5 × 5) = 562.5 kN
– Column C3: N3,g+ψ2q = 0.75 × 3 × (9 × 2.5 × 5) = 253.1 kN
– Column C4: N4,g+ψ2q = 0.75 × 2 × (9 × 2.5 × 5) = 168.8 kN

These values are close to those from an elastic analysis of the full structural system
in 3D.

(l) Seismic bending moments in columns of 1st interior 2-bay frame in direction X
(at distance y = 7.5 m from mass centre) and in interior columns of the 5-bay frames
in direction Y

Seismic bending moments in the columns for the final value of design spectral accel-
erations in X or Y:

– The horizontal seismic action component in direction X induces the following
moments to any interior 2-bay frame in direction X, for bending within a vertical
plane parallel to X (about the local y axis of the column, which is parallel to
direction Y and normal to the vertical plane of the interior frame), without the
effect of accidental eccentricity:

MEc1,yX = VEc,1X Hcl/2 = (0.201 × 3 × 450/2) × 2.5/2 = 169.6 kNm

MEc3,yX = MEc1,yX/2 = 169.6/2 = 84.8 kNm

MEc2,yX = MEc1,yX(VEc,2X/VEc,1X) = 169.6 × 2.5/3 = 141.3 kNm

MEc4,yX = MEc2,yX/2 = 141.3/2 = 70.7 kNm.

These values are not far from those obtained through an elastic analysis of the
full structural system in 3D.
Including the effect of the accidental eccentricity of the horizontal component
in direction X (see (h) above), the seismic moments in the columns of the 1st
interior 2-bay frame in direction X are:

MEc1,yX = (1 + 0.148y/ry)VEc,1X Hcl/2 = (1 + 0.148 × 7.5/8.48)

× 169.6/2 = 191.8 kNm

MEc3,yX = MEc1,yX/2 = 191.8/2 = 95.9 kNm

MEc2,yX = MEc1,yX(VEc,2X/VEc,1X ) = 191.8 × 2.5/3 = 159.8 kNm

MEc4,yX = MEc2,yX/2 = 159.8/2 = 79.9 kNm,
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Because of the torsional response due to the accidental eccentricity these
moments act concurrently with a bending moment component in the orthogo-
nal direction of bending (about the local axis z of the column, which is parallel
to direction X and to the vertical plane of the interior frame), equal to:

MEc1,zX = (0.148x/rx )[VEc,1Y Hcl/2] = 0

MEc3,zX = (0.148x/rx )[0.5VEc,1Y Hcl/2] = (0.148 × 5/8.48)

× (0.2 × 3 × 450/4) × 2.55/2 = 7.5 kNm

MEc2,zX = MEc1,zX(VEc,2Y/VEc,1Y) = 0

MEc4,zX = MEc3,zX(VEc,2Y/VEc,1Y) = 7.5 × 2.5/3 = 6.2 kNm.

– The horizontal seismic action component in direction Y induces the following
moments to the columns of the interior and exterior 5-bay frames in direction Y,
for bending in a vertical plane parallel to Y (about the local z axis of the column,
parallel to direction X and to the vertical plane of the interior frame), without the
effect of accidental eccentricity:

MEc1,zY = VEc,1Y Hcl/2 = (0.2 × 3 × 450/2) × 2.5/2 = 168.75 kNm

MEc3,zY = VEc,3Y Hcl/2 = (0.2 × 3 × 450/4) × 2.55/2 = 86.1 kNm

MEc2,zY = MEc1,zY(VEc,2Y/VEc,1Y) = 168.75 × 2.5/3 = 140.6 kNm

MEc4,zY = MEc3,zY(VEc,2Y/VEc,1Y) = 86.1 × 2.5/3 = 74.2 kNm.

These values are close to those from an elastic analysis of the full structural
system in 3D.
Including the effect of the accidental eccentricity of the horizontal component in
direction Y:

MEc1,zY = (1 + 0.059x/rx )VEc,1Y Hcl/2 = 168.75 kNm

MEc3,zY = (1 + 0.059x/rx )VEc, 3Y Hcl/2 = (1 + 0.059 × 5/8.48)

× 86.1 = 89 kNm

MEc2,zY = MEc1, zY(VEc, 2Y/VEc, 1Y) = 168.75 × 2.5/3 = 140.6 kNm

MEc4,zY = MEc3,zY(VEc,2Y/VEc,1Y) = 89 × 2.5/3 = 74.2 kNm

Due to the torsion induced by the accidental eccentricity, these moments act
concurrently with a moment component in the orthogonal direction of bending
(about the column local axis y, parallel to direction Y and normal to the vertical
plane of the interior frame), equal to:
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MEc1,yY = (0.059y/ry)[VEc,1X Hcl/2] = (0.059 × 7.5/8.48)

× (0.201 × 3 × 450/2) × 2.5/2 = 8.8 kNm

MEc3,yY = (0.059y/ry)[VEc,1X Hcl/4] = (0.059 × 7.5/8.48)

× (0.201 × 3 × 450/4) × 2.5/2 = 4.4 kNm

MEc2,yY = MEc1,yY(VEc,2X/VEc,1X) = 8.8 × 2.5/3 = 7.3 kNm

MEc4,yY = MEc3,yY(VEc,2X/VEc,1X) = 4.4 × 2.5/3 = 3.7 kNm.

(m) Seismic axial forces in the columns of interior 2-bay frames in direction X and
in interior columns of the 5-bay frames in direction Y

Seismic axial forces are induced in the columns of the interior 2-bay frames in
direction X only by the horizontal component in direction X (EX) and still only in
exterior columns. They are calculated from the seismic overturning moment at the
level where the column seismic moment is zero (at storey mid-height):

– Overturning moment at the ground storey:

M1 = (2.5H + hb/2)F3 + (1.5H + hb/2)F2 + (0.5H + hb/2)F1 =
(7.75 × 1.5 W + 4.75 W + 1.75 × 0.5 W )

× 0.201 = 17.25 × 450 × 0.201 = 1560 kNm

– Overturning moment at the 2nd storey:

M2 = 4.75F3 + 1.75F2 = (4.75 × 1.5 W + 1.75 W )

× 0.201 = 802 kNm.

The exterior columns take the seismic overturning moment with a lever arm equal
to their distance, 2Lx:

– Column C3 (ground storey): N3,EX = 1560/(2 × 5) = 156 kN
– Column C4 (2nd storey): N4,EX = 802/(2 × 5) = 80.2 kN.

No seismic axial forces are induced in the interior columns of the 5-bay frames in
direction Y by the seismic action component in that direction (EY).

The above values are close to the seismic axial forces from elastic analysis of the
full structure in 3D.

(n) Combination of seismic action effects of the two horizontal components in
columns

Table 5.4 gives the maximum effects of the individual horizontal components, as
computed above for the columns, as well as the likely peak action effects of the two
concurrent components, computed either applying Eq. (4.24), i.e., from Eqs. (4.38)
and (4.39) in Section 4.7.2.4, or Eq. (4.25).
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Table 5.4 Bending moment components and axial forces at the ends of the columns for simulta-
neous horizontal components of the seismic action, from the analysis

Seismic action Bending moment components
component (kNm) and axial force (kN) C1 C3 C2 C4

EX= X+acc. ecc. My,X 191.7 95.9 159.8 79.9
ex Mz,X 0 7.5 0 6.2

NX 0 156 0 80.2

EY= Y+acc. ecc. My,Y 8.8 4.4 7.3 3.7
ey Mz,Y 168.75 89 140.6 74.2

NY 0 0 0 0

Eq. (4.24) max My,SRSS-X-Y 191.9 96 160 80√
(EX

2+EY
2) Mz,SRSS-X-Yconcurrent with

maxMy,SRSS-X-Y

7.7 7.5 6.4 9.6

NSRSS-X-Y concurrent with max My 0 155.8 0 80.1
max Mz,SRSS-X-Y 168.75 89 140.6 74.5
My,SRSS-X-Y concurrent with max

Mz,SRSS-X-Y

8.8 12.5 7.3 10.3

NSRSS-X-Y concurrent with max
Mz,SRSS-X-Y

0 13.1 0 6.7

Eq. (4.25) My,X+0.3Y 194.3 97.2 162 81
EX+0.3EY Mz,X+0.3Y 50.6 26.7 49.7 28.5

NX+0.3Y 0 156 0 80.2

Eq. (4.25) My,Y+0.3X 66.3 33.2 55.2 24.6
EY+0.3EX Mz,Y+0.3X 168.75 89 142.8 76.1

NY+0.3X 0 46.8 0 24.1

When they are non-zero, the seismic axial forces are combined with those due
to the concurrent gravity loads, G+ψ2Q, to give the following extreme values of
axial load.

– For G+ψ2Q+SRSS in the combination that gives the likely maximum value
of My:

Column C3 (ground storey): min N3,G+ψ2Q+SRSS-X-Y = 253.1–155.8=97.3 kN
Column C4 (2nd storey): min N4,G+ψ2Q+SRSS-X-Y = 168.8–80.1=88.7 kN
Column C3 (ground storey): max N3,G+ψ2Q+SRSS-X-Y=253.1+155.8=408.9 kN
Column C4 (2nd storey): max N4,G+ψ2Q+SRSS-X-Y = 168.8+80.1=248.9 kN

– For G+ψ2Q+SRSS in the combination that gives the likely maximum value of
Mz:

Column C3 (ground storey): min N3,G+ψ2Q+SRSS-X-Y=253.1–13.1=240 kN
Column C4 (2nd storey): min N4,G+ψ2Q+SRSS-X-Y =168.8–6.7=162.1 kN
Column C3 (ground storey): max N3,G+ψ2Q+SRSS-X-Y=253.1+13.1=266.2 kN
Column C4 (2nd storey): max N4,G+ψ2Q+SRSS-X-Y=168.8+6.7=175.5 kN

– For G+ψ2Q+EX+0.3EY, which gives the estimated likely maximum value of My:

Column C3 (ground storey): min N3,G+ψ2Q+X+0.3Y =253.1–156=97.1 kN
Column C4 (2nd storey): min N4,G+ψ2Q+X+0.3Y =168.8–80.2=88.6 kN
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Column C3 (ground storey): max N3,G+ψ2Q+X+0.3Y =253.1+156=409.1 kN
Column C4 (2nd storey): max N4,G+ψ2Q+X+0.3Y =168.8+80.2=249 kN.

– For G+ψ2Q+EY+0.3EX, which gives the estimated likely maximum value of Mz:

Column C3 (ground storey): min N3,G+ψ2Q+Y+0.3EX =253.1–46.8=206.3 kN
Column C4 (2nd storey): min N4,G+ψ2Q+Y+0.3EX =168.8–24.1=144.7 kN
Column C3 (ground storey): max N3,G+ψ2Q+Y+0.3EX =253.1+46.8=299.9 kN
Column C4 (2nd storey): max N4,G+ψ2Q+Y+0.3EX =168.8+24.1=192.9 kN.

Witness the slightly lower estimates of likely peak values of the various seis-
mic action effects from the SRSS approach, Eq. (4.24), compared to the linear
approximation in Eq. (4.25) and the significantly lower values of the other com-
ponents concurrently acting with the maximum values. At least in the present
case, the linear approximation, Eq. (4.25) is safe-sided.

In the dimensioning and verifications that follow, the results of the SRSS estima-
tion will be used, as more accurate and more economic.

(o) Design bending moments in the beams for the final value of the design spectral
acceleration

Beams B1 of 1st interior 2-bay frame (at distance y =7.5 m from centre of mass) in
direction X.

– Beam section at the support on C1:

Mγ gG+γ qQ = 35 × 4.6252/8 = 93.6 kNm,

Mg+ψ2q = (20/35) × 93.6 = 53.5 kNm

– Hogging design moment for the top reinforcement:

Md1 = max[Mγ gG+γ qQ ; Mg+ψ2q + (| max MEc1,y| + | max MEc2,y|)/2]

= max[93.6; 53.5 + (191.9 + 160)/2] = 229.5 kNm
– Sagging design moment for the bottom reinforcement:

Md2 = (191.9 + 160)/2 − 53.5 = 122.5 kNm

– Beam section at the support on C3:
– Sagging and hogging design moments, for the top and bottom reinforcement:

Md = 96 + 80 = 176 kNm.

Interior spans of interior 5-bay frame in direction Y (at distance x =0 from centre
of mass).
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– Beam sections at the support by interior columns:

Mγ gG+γ qQ = (qd/9 − g/36)L2
cl = (35/9 − 18/36) × 4.62 = 71.7 kNm,

Mg+ψ2q = 20 × 4.62/12 = 35.3 kNm

– Hogging design moment for the top reinforcement:

Md1 = max[Mγ gG+γ qQ ; Mg+ψ2q + (| max MEc1,z| + | max MEc2,z|)/2]

= max[71.7; 35.3 + (168.75 + 140.6)/2] = 190 kNm

– Sagging design moment for the bottom reinforcement:

Md2 = (168.75 + 140.6)/2 − 35.3 = 119.4 kNm

Interior spans of exterior 5-bay frames in direction Y (at distance x = 5 m from
centre of mass).

– Beam sections at the support on columns:

Mγ gG+γ qQ = (qd/9 − g/36)L2
cl = (24/9 − 14/36) × 4.652 = 49.3 kNm,

Mg+ψ2q = 15 × 4.652/12 = 27 kNm

– Hogging design moment for the top reinforcement:

Md1 = max[Mγ gG+γ qG ; Mg+ψ2q + (| max MEc3,z| + | max MEc4,z|)/2]

= max[49.3; 27 + (89 + 74.5)/2] = 108.8 kNm

– Sagging design moment for the bottom reinforcement:

Md2 = (89 + 74.5)/2 − 27 = 54.8 kNm.

The approximate values above for the beam moments due to gravity loads, g+ψ2q,
are derived with the beams considered as continuous, supported on columns not
exerting any rotational restraint (simple supports). They are not far from the values
obtained via an elastic analysis of the full structure in 3D.

(p) Beam longitudinal reinforcement (as As =Md/zfyd, with z = d –d1):

From Eq. (5.3): ρmin = 0.5fctm/fyk =0.5 × 2.9/500=0.0029
Maximum diameter of bars, dbL:
Beams B1 of 1st interior 2-bay frame in direction X at the support on the exterior
column:

From Eq. (5.10b) with νd = min(minN3,X, minN4,X)/(0.352 × 20000))=0.03935:

dbL/hc,ext ≤ 7.5 × 1.0315 × 2.9/(1 × 500/1.15) = 0.0516, dbL ≤ 18 mm
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Interior beams (B1 of interior 2-bay frames in direction X or interior spans of inte-
rior 5-bay frame in direction Y) at the support on the central column:

From Eq. (5.10a) with νd=min(N1,g+ψ2q, N2,g+ψ2q)/(0.42 × 20000)=0.176.

If ρ ′ = 0.5ρmax : dbL/hc,int ≤ 7.5 × 1.141 × 2.9/(500/1.15)/1.25

= 0.0457, dbL ≤ 18 mm

Interior spans of exterior 5-bay frames in direction Y, at the support on the exterior
column:

From Eq. (5.10a) with νd=min(N3,Y, N4,Y)/(0.352 × 20000)=0.06.

If ρ ′ = 0.5ρmax : dbL/hc,ext ≤ 7.5 × 1.048 × 2.9/(500/1.15)/1.25

= 0.0524, dbL ≤ 18 mm

Dimensioning of beam B1 of interior 2-bay frames in direction X:

d = 0.46 m, z = 0.46 − 0.04 = 0.42 m, As,min = 0.0029 × 300 × 460

= 400 mm2(2Φ16 − 402 mm2)

Longitudinal reinforcement at the support on C1:

– Top reinforcement: As1 = Md/zfyd = 229.5 × 103/(0.42 × 500/1.15)=
1257 mm2: 5Φ16+1Φ18 (1260 mm2), ρ =1257/(460 × 300)=0.0091

– Bottom reinforcement: As2 =Md/zfyd=122.5 × 1257/229.5=671 mm2:
4Φ16 (804 mm2> 1260/2=630 mm2), ρ ’=804/(460 × 300)=0.0058,

From Eq. (5.4b): ρmax=ρ’+0.0018fcd/(μϕεydfyd)=0.0058+0.0018 ×
20/(6.8 × 0.00217 × 500/1.15)= 0.0114, ρmax >ρ =0.0091

MRb
− = 1260 × 0.42 × (500/1.15)/103 = 230 kNm,MRb

+ = 802 × 0.42×
(500/1.15)/103 = 146.5 kNm

Longitudinal reinforcement at the support on C3:

– Top and bottom reinforcement: As1=As2=176 × 1257/229.5=964 mm2:
5Φ16 (1005 mm2)> As,min=400 mm2

MRb
+ = MRb

− = 1005 × 0.42 × 500/1.15/103 = 183.5 kNm

Dimensioning of interior beams of interior 5-bay frame in direction Y:

d = 0.46 m, z = 0.46 − 0.04 = 0.42 m, As,min = 0.0029 × 300 × 460

= 400 mm2(2Φ16 − 402 mm2).
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– Top reinforcement: As1=190 × 103/(0.42 × 500/1.15)=1040 mm2:
4Φ16+1Φ18 (1058 mm2), ρ =1058/(460 × 300)=0.0077

– Bottom reinforcement: As2=119.4 × 1040/190=654 mm2: 2Φ16+1Φ18
(656 mm2 >1058/2 =529 mm2), ρ ’=656/(460 × 300)=0.0048,

ρmax = 0.0048 + 0.0018 × 20/(6.8 × 0.00217 × 500/1.15)

= 0.0104 > ρ = 0.0077.

MRb
− = 1058 × 0.42 × (500/1.15)/103 = 193.3 kNm, MRb

+

= 656 × 0.42 × (500/1.15)/103 = 119.8 kNm.

Dimensioning of interior beams of exterior 5-bay frames in direction Y:

d = 0.41 m, z = 0.41 − 0.04 = 0.37 m, As,min = 0.0029 × 300 × 370

= 322 mm2(2Φ16 − 402 mm2).

– Top reinforcement: As1=108.8 × 103/(0.37 × 500/1.15)=676 mm2: 4Φ16
(804 mm2), ρ = 804/(410 × 300)=0.0065

– Bottom reinforcement: As2=54.8 × 676/108.8=340 mm2: 2Φ16
(402 mm2 = 804/2 = 402 mm2), ρ ’=402/(410 × 300)=0.0033,

ρmax = 0.0033 + 0.0018 × 20/(6.8 × 0.00217 × 500/1.15)

= 0.0089 > ρ = 0.0065.

MRb
− = 804 × 0.37 × (500/1.15)/103 = 129.5 kNm,

M+
Rb = 402 × 0.42 × (500/1.15)/103 = 64.8 kNm.

(q) Dimensioning of columns and capacity design check in flexure

The likely peak values of the column bending moments from the analysis are listed
in Table 5.5 along with the likely concurrent axial force and bending moment in
the orthogonal direction of bending. The table lists also the required moment resis-
tance of the columns to fulfill Eq. (1.4), with the value of ΣMRc>1.3 × ΣMRb split
between the column sections above and below the joint (e.g., top section of C1 and
base section of C2). If the axial load is somewhat smaller at the column section
above the joint than below, it is assumed that the section below the joint has about
10% more required moment resistance than the section above for the same amount
of required vertical reinforcement at these two sections.

– At the joint at the top of C1 and the base of C2:

– For bending within a vertical plane parallel to X (about the local axis y of the
column, which is parallel to direction Y and normal to the vertical plane of
the interior frame):

ΣMRc,y > 1.3 × ΣMRb = 1.3 × (230 + 146.5) = 489.5 kNm
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Table 5.5 Bending moments and axial forces at column ends for column dimensioning – including
capacity design, Eq. (1.4)

Bending moments and axial force Top of Base of Top of Base of
for column dimensioning C1 C2 C3 C4

Bending moments
(kNm) and axial force
(kN) from the analysis
for G+ψ2Q+(SRSS of
EX, EY)

max My 191.9 160 96 80
Mz concurrent with maxMy 7.7 6.4 7.5 9.6
minN concurrent with maxMy 843.8 562.5 97.3 88.7
max Mz 168.75 140.6 89 74.5
My concurrent with max Mz 8.8 7.3 12.5 10.3
min N concurrent with max Mz 843.8 562.5 240 162.1

Moment resistance for
capacity design.
Upper and lower
column share
ΣMRc>1.3 × ΣMRb

depending on their
axial force N:

– Equally, if N’s
∼same;

– Otherwise, lower
column takes
∼10% more than
upper one.

MRc,y≥ 257 232.5 119.3 119.3

Mz concurrent with MRc,y 0 0 0 0
N concurrent with MRc,y: min NEX 843.8 562.5 97.3 88.7
MRc,z≥ 213.7 193.3 132.6 120
My concurrent with MRc,z 0 0 0 0
N concurrent with MRc,z: min NEY 843.8 562.5 240 162.8

– For bending within a vertical plane parallel to Y (about the local axis z of
the column, which is parallel to direction X and to the vertical plane of the
interior frame):

ΣMRc,z > 1.3 × ΣMRb = 1.3 × (193.3 + 119.8) = 407 kNm.

– At the joint at the top of C3 and the base of C4:

– For bending within a vertical plane parallel to X (about the local axis y of the
column, which is parallel to direction Y and normal to the vertical plane of
the interior frame):

ΣMRc,y > 1.3 × ΣMRb = 1.3 × 183.5 = 238.6 kNm.

– For bending within a vertical plane parallel to Y (about the local axis z of
the column, which is parallel to direction X and to the vertical plane of the
interior frame):

ΣMRc,z > 1.3 × ΣMRb = 1.3 × (129.5 + 64.8) = 252.6 kNm

The capacity design rule turns out to be more demanding for the moment resis-
tance of the column than the seismic moments from the analysis, despite the fact
that the latter are biaxial. The larger of the two biaxial bending moments from the
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analysis exceeds the smaller of the two so much, that the latter is almost insignificant
for the dimensioning of the column. Moreover, at least in this case, the Eurocode
8 rule that allows neglecting biaxial bending if dimensioning is done uniaxially for
a bending moment equal to the larger of the two biaxial ones divided by 0.7, gives
about the same requirements for moment resistance of the column as the capacity
design rule. Note also that the column axial forces considered in the capacity design
rule verification are the most safe-sided ones for it, notably the minimum N for the
direction of the seismic action that causes beam plastic hinging within the pertinent
plane of bending.

On the basis of the above and the fact that columns are square and face similar
moment demands in the two transverse directions y and z (hence, they can have
the same amount of reinforcement in the two pairs of opposite sides), it suffices
to dimension them only for the combinations of bending moments and axial force
shown in italics in Table 5.5 (arising from the capacity design rule within a plane of
bending parallel to direction X).

For columns C1 and C2 (d1/h =40/400=0.1): Axial forces and moments nor-
malised to bhfcd and bh 2fcd:

– Column C1: νd1=843.8/(0.42 × 20000)=0.264, μd1=257/(0.43 × 20000)=
0.201, giving total mechanical ratio of vertical reinforcement, uniformly dis-
tributed along the perimeter of the section: ωtot ∼0.46.

– Column C2: νd2=562.5/(0.42 × 20000)=0.176, μd2=232.5/(0.43 × 20000)=
0.182, giving ωtot ∼0.40.
We use ωtot∼0.43, giving As,tot=0.43 × 4002 × 20/(500/1.15)=3165 mm2. We
place 16Φ16 (3216 mm2), i.e. 5Φ16 per side, giving: ρ=3216/(400 × 400)=
0.0201>ρmin=0.01. The same reinforcement is placed at the bottom of C1 (at
the connection to the foundation).
For columns C3 and C4 (d1/h =40/360=0.11): Axial forces and moments nor-

malised to bhfcd and bh 2fcd

– νd=0.5 × (97.3+88.7)/(0.352 × 20000)=0.038, μd=119.3/(0.353 × 20000)=
0.139, giving total mechanical ratio of vertical reinforcement, uniformly dis-
tributed along the perimeter of the section: ωtot ∼0.34,
As,tot=0.34 × 3502 × 20/(500/1.15)=1916 mm2. We choose 8Φ18, i.e., 3Φ18
along each side (2036 mm2), giving ρ =2036/(350 × 350)=0.0166> ρmin=0.01.
The same reinforcement is placed at the base of C3 (at the connection to the
foundation).
The resulting moment resistance of the columns for the maximum and the min-

imum value of their axial force are calculated next on the basis of Sections 3.2.2.4
and 3.2.2.5:
– Columns C1, C2:
ω1=ω2=0.25 × 3216/(400 × 360) × (500/1.15)/20=0.1214, ωv=2ω1=0.2428,
δ1=40/360=1/9, satisfying Eq. (3.50a): δ1< 0.235.
The axial load of both columns is always equal to that due to gravity loads alone:

– for C1: ν =0.8438/(0.4 × 0.36 × 20)=0.293,
– for C2: ν =0.5625/(0.4 × 0.36 × 20)=0.195.
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Eq. (3.52) is met: 0.094≤νd≤0.533 at both columns; so from Eqs. (3.52) and
(3.60):

– Column C1: ξ =0.440, MRc1,y=MRc1,z=0.2645 × 0.4 × 0.362 × 20000=274
kNm;

– Column C2: ξ =0.368, MRc2,y=MRc2,z=0.2225 × 0.4 × 0.362 × 20000=231
kNm.

• For bending within a vertical plane parallel to X (about the local axis y of the
column, which is parallel to direction Y and normal to the vertical plane of
the interior frame):

ΣMRc,y = 274 + 231 = 505 kNm >

1.3 × ΣMRb= 1.3 × (230 + 146.5) = 489.5 kNm.

• For bending within a vertical plane parallel to Y (about the local axis z of
the column, which is parallel to direction X and to the vertical plane of the
interior frame):

ΣMRc,z = 274 + 231 = 505kNm >

1.3 × ΣMRb = 1.3 × (193.3 + 119.8) = 407 kNm.

– Columns C3, C4:
ω1=ω2=0.25 × 2036/(350 × 308) × (500/1.15)/20=0.1026, ωv=2ω1=0.2053,
δ1=42/308=0.136, and Eq. (3.52) above on νd is: 0.191≤ νd ≤0.523.

The axial load of both columns depends on the direction of bending.

• For bending within a vertical plane parallel to X (about the local axis y of the
column, which is parallel to direction Y and normal to the vertical plane of the
interior frame):

– min N3 ∼minN4 ∼(97.3+88.7)/2=93 kN, νd=0.093/(0.35 × 0.308 × 20)=
0.0431.
νd is less than the limit value νc,y2 defined at the left-hand-side of Eq.
(3.51): νd≤0.191. Then from Eq. (3.54): ξ =0.2611 and from Eq. (3.59):
minMRc3,y= minMRc4,y = 0.1816 × 0.35 × 0.3082 × 20000 = 120.6 kNm;

ΣMRc,y = 241.2 kNm > 1.3 × ΣMRb = 238.6 kNm

– max N3 = 408.9 kN, νd=0.4089/(0.35 × 0.308 × 20)=0.19.
Eq. (3.52) gives: 0.191≤νd≤0.523 and is marginally not met. Then from Eq.
(3.54): ξ =0.358 and from Eq. (3.59): maxMRc3,y=0.22 × 0.35 × 0.3082 ×
20000=146 kNm;

– max N4 =249 kN, νd =0.249/(0.35 × 0.308 × 20)=0.115.
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νd is less than the limit value νc,y2 defined at the left-hand-side of Eq. (3.51):
νd≤0.191. Then from Eq. (3.54): ξ =0.28 and from Eq. (3.59): maxMRc4,y=
0.190 × 0.35 × 0.3082 × 20000 =126.5 kNm.

• For bending within a vertical plane parallel to Y (about the local axis z of the col-
umn, parallel to direction X and to the vertical plane of the interior frame), the
axial force from the analysis varies little. As the cross-section is square and its
reinforcement is equally shared by the two pairs of opposite sides, the moment
resistance is the same for bending within vertical planes parallel or normal to
direction X: MRc,y=MRc,z. Therefore, the calculation of MRc,z for the limited vari-
ation of the column axial force for bending within a vertical plane parallel to Y is
based on linear interpolation between the values of MRc,y computed above for the
range of variation of the column axial force for bending within a vertical plane
parallel to X (namely: MRc,y=120.6 kNm for N =92.9 kN, MRc,y=126.5 kNm for
N = 249 kN and MRc,y=146 kNm for N=408.9 kN).

– for minN3 = 240 kN, minMRc3,z = 126.2 kNm and for minN4 = 162.8 kN,
minMRc4,z = 123.3 kNm. ΣMRc,z = 123.3+126.2 = 249.5 kNm≈1.3 × ΣMRb

= 252.6 kNm.
– for maxN3=266.2 kN, maxMRc3,z=128.6 kNm.
– for maxN4=174.8 kN, maxMRc4,z=123.7 kNm.

(r) Design of transverse reinforcement of interior beams (with capacity design in
shear)

As ΣMRc>1.3 × ΣMRb at any beam-column joint of the beams of interest, the
capacity design shear of all three types of interior beams is found considering plastic
hinges at both beam ends.

According to Eurocode 2, calculation of shear reinforcement may start at a dis-
tance d from the face of the support. Besides, within segments of the beam of length
z cot δ=0.9d cot δ, the shear reinforcement may be constant and equal to that cal-
culated from the minimum design shear force, VEd, in the segment. According to
Eurocode 8, in “critical regions” of DC M beams, i.e., up to a distance h from
the face of the support on a column, the maximum stirrup spacing is max sw =
min{8dbL; h /4; 24dbw; 225 mm} with dbL: longitudinal bar diameter and dbw: stir-
rup diameter (see Table 5.1). This is less than the maximum stirrup spacing of 0.75d
applying outside “critical regions” according to Eurocode 2. So, the stirrups in a
“critical region” are calculated from the design shear force at a distance h from that
support.
Beam B1 of interior 2-bay frames in direction X:

– Capacity design seismic shear for the part of the beam closer to the support on
column C1:

VCD,1 = (230 + 183.5)/4.625 = 89.4 kN

– Capacity design seismic shear for the part of the beam closer to the support on
column C3:
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VCD,3 = (146.5 + 183.5)/4.625 = 71.4 kN

– Shear verification at the end section at the support on column C1 (x =0):
For the factored gravity loads (persistent and transient design situation)
γ gG+γ qQ:

VEd(0) = 35 × 4.625/2 = 80.94 kN

For the seismic action and concurrent gravity loads, G+ψ2Q+E:

VEd(0) = VCD,1 + 20 × 4.625/2 = 135.65 kN

The shear resistance at the face of the support for shear compression in the
web is according to Eurocode 2 (see Table 5.1):

VRd,max = 0.3(1 − fck(MPa)/250)bwz fcd sin 2δwith 1 ≤ cot δ ≤ 2.5.

VRd,max =0.3 × (1−30/250)×0.3×0.9×0.46 × 20000 sin 2δ = 655.8 sin 2δ

≥ VEd(0) = 135.65 kN →
sin 2δ > 0.207 → δ > 6◦. OK if cot δ = 2.5, i.e. δ = 21.8◦

over the length of the beam closer to column C1.

– Shear verification at the end section at the support on column C3 (x =4.625 m):

VCD,3 = (146.5 + 183.5)/4.625 = 71.4 kN < VCD,1 = 89.4 kN → OK if cot δ

= 2.5, i.e.

δ = 21.8◦over the length of the beam closer to column C3.

– Shear reinforcement in the “critical regions” of the beam next to the column
faces:
Design shear force at a distance h =0.5 m from the support on column C1:

VEd(0.5 m) = VCD,1 + 20 × (4.625/2 − 0.5) = 125.65 kN

For VRd,s=bwzρwfywd cot δ=0.3 × 0.9 × 0.46 × (500000/1.15) × 2.5ρw=
135000ρw>125.65 kN → ρw> 0.000931, i.e. slightly over the minimum stir-
rup ratio required by Eurocode 2: min ρw=0.08fck(MPa)/fyk(MPa)= 0.000876.
In the present case: dbL =16 mm, dbw = 8 mm and max sw=128 mm. So, 8 mm-
diameter stirrups at 125 mm centres are chosen for the “critical region” next to
column C1, giving ρw=2 × 50.25/(125 × 300)= 0.00268>0.000931. Accord-
ing to Eurocode 8, the 1st stirrup is not further than 50 mm from the face of the
column; so the five 8 mm-dia. stirrups @ 125 mm centres extend up to 550 mm
from the face of column C1.
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As VCD,1 >VCD,3, similar stirrup reinforcement (8 mm stirrups @ 125 mm cen-
tres) suffices in the “critical region” next to column C3 as well.

– Shear reinforcement between the “critical regions” at the two ends of the beam:
The length of the beam outside the “critical regions” is: 4.625–2 × 0.55=3.525
m. There, the maximum stirrup spacing according to Eurocode 2 is 0.75d =0.75
× 460=345 mm. Ten 8 mm-dia. stirrups @ 320 mm centres cover that length,
giving ρw=2 × 50.25/(320 × 300)=0.00105> minρw =0.000876 and providing
shear resistance: VRd,s= 135000ρw=137 kN that exceeds the maximum design
shear VEd(0.5 m)=125.65 kN at the end of the “critical regions”. As a matter
of fact, the stirrups there may be dimensioned for the design shear at a distance
z cot δ=0.9d cot δ=0.9 × 0.46 × 2.5=1.035 m from the end of the “critical
regions”:

VEd(1.585 m) = VCD,1 + 20 × (4.625/2 − 1.585) = 104 kN.

Interior beams of interior 5-bay frame in direction Y:

– Capacity design seismic shear:
Because both ends of the beam have the same longitudinal reinforcement, there
is no difference in the shear design of the two halves of the beam length. So:

VCD = (193.3 + 119.8)/4.6 = 68.1 kN.

– At the end section at face of column C1 (x =0):
For the factored gravity loads (persistent and transient design situation),
γ gG+γ qQ:

VEd(0) = 35 × 4.6/2 = 80.5 kN

For the seismic action and concurrent gravity loads, G+ψ2Q+E:

VEd(0) = VCD + 20 × 4.6/2 = 114.1 kN.

As the beam has the same cross-section as beam B1 of the interior 2-bay frames
in direction X and the seismic design shear is smaller, the shear verification for
shear compression in the web according to Eurocode 2 is met also for this beam
with cot δ=2.5.

– Shear reinforcement in the “critical regions” of the beam and between them:
As the beam cross-sectional dimensions are the same as in beam B1 of the interior
2-bay frames in direction X while the seismic design shear is smaller, the same
transverse reinforcement is placed as in beam B1:

– up to 540 mm from the face of each column: five 8 mm-dia. stirrups @
125 mm centres, with the 1st one at 40 mm from the face of the column;

– over the 3.52 m-long rest of the beam: ten 8 mm-dia. stirrups @ 320 mm
centres.



5.8 Application Examples 531

Interior beams of exterior 5-bay frames in direction Y:

– Capacity design seismic shear:
Because both ends of the beam have the same longitudinal reinforcement, there
is no difference in the shear design of the two halves of the beam length. So:

VCD = (129.5 + 64.8)/4.65 = 41.8 kN.

– Shear verification at the end section at face of columns C3 (x=0):
For the factored gravity loads (persistent and transient design situation),
γ gG+γ qQ:

VEd(0) = 24 × 4.65/2 = 55.8 kN.

For the seismic action and concurrent gravity loads, G+ψ2Q+E:

VEd(0) = VCD + 15 × 4.65/2 = 76.7 kN.

VRd,max = 0.3 × (1 − 30/250) × 0.3 × 0.9 × 0.41 × 20000 sin 2δ

= 584.5 sin 2δ > VEd(0) = 76.7 kN → sin 2δ > 0.1312 → δ ≥ 3.8◦.
OK if cot δ = 2.5, i.e. δ = 21.8◦ over the entire beam.

– Shear reinforcement in the “critical regions” of the beam and between them: The
stirrups in the “critical region”, i.e., up to a distance h=0.45 m from the face of
the support on column C3, are calculated on the basis of the design shear force
at distance h=0.45 m to that support:

VEd(0.45 m) = VCD + 15 × (4.65/2 − 0.45) = 69.9 kN

For VRd,s =bwzρwfywd cot δ=0.3 × 0.9 × 0.41 × (500000/1.15) × 2.5ρw =
120325ρw >69.9 kN → ρw> 0.000581, less than the minimum stirrup ratio in
Eurocode 2: minρw= 0.000876.
Also in this beam max sw=128 mm; so, 8 mm-dia. stirrups at 125 mm cen-
tres in the “critical region” next to the columns, give ρw=2 × 50.25/(125 ×
300)=0.00268> minρw=0.000876.
The maximum stirrup spacing according to Eurocode 2: 0.75d=0.75 × 410=
307.5 mm applies outside the “critical regions”. Eleven 8 mm-dia. stirrups
@ 300 mm centres cover a length of 12 × 0.3=3.6 m between the “critical
regions”, giving ρw=2 × 50.25/(300 × 300)=0.00112> minρw=0.000876 and
providing shear resistance: VRd,s= 120325ρw=134.4 kN exceeding the maxi-
mum design shear VEd(0.45 m)=69.9 k N between the “critical regions”. So,
the shear reinforcement in the interior beams of the two exterior 5-bay frames in
direction Y is:
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– up to 525 mm from the face of each column: five 8 mm-dia. stirrups @
125 mm centres, with the 1st one at 25 mm from the face of the column;

– over the 3.6 m-long rest of the beam: Eleven 8 mm-dia. stirrups @ 300 mm
centres.

(s) Design of transverse reinforcement of the columns (with capacity design
in shear)

As the columns are square, the maximum capacity design shear in the two horizontal
directions is used for the dimensioning of their transverse reinforcement.

Because the columns were designed so that ΣMRc>1.3 × ΣMRb at any beam-
column joint of the ground floor, the capacity design shear of the columns is com-
puted considering plastic hinging in the beams at the top and in the column at the
connection to the foundation. In this calculation the value of the column moment at
the face of a beam-column joint (here at the top of the column) is essentially inde-
pendent of the columns’ axial force, as it is proportional to MRc,i/ΣMRc. However,
in the same calculation the column moment resistance at the base depends on the
column axial force, increasing with increasing axial force, as does the column shear
resistance. Therefore, wherever the value of the column axial force changes with the
sense of action of the lateral loading, the column capacity design shear is calculated
and checked against the corresponding shear resistance both for the maximum and
for the minimum values of the column axial force.

According to Eurocode 8 and Table 5.2, in “critical regions” of DC M columns,
i.e., up to a distance max{hc; bc; 0.45 m, Hcl/5} from the end sections of the column
(hc, bc: cross-sectional dimensions, Hcl: clear height of the column), the maximum
stirrup spacing is max sw=min{8dbL; bo; 175 mm} (dbL : vertical bar diameter,
bo: minimum dimension of confined core). Outside the “critical regions”, the maxi-
mum stirrup spacing in Eurocode 2 applies: max sw=min{20dbL; hc; bc; 400 mm},
or 0.6 min{20dbL; hc; bc; 400 mm}, if vertical bars are lap-spliced there (as is com-
monly the case).

According to Eurocode 8, along the perimeter of DC M columns vertical bars
laterally restrained by a stirrup corner or cross-tie should not be further apart than
200 mm. The implication for the present columns is that the vertical bar at the centre
of each side should be laterally restrained. This can be achieved either:

– with two interior cross-ties, each extending from one side of the section to the
opposite and engaging the two vertical bars at the centre of the two sides, or

– with a single internal diamond-shaped tie engaging all four central bars of the
four sides.

The 2nd option is adopted here. The diamond-shaped internal tie, with cross-
sectional area Asw, contributes to the shear reinforcement in each direction with
cross-sectional area Asw

√
2.

According to Eurocode 8 the “critical region” at the base (i.e., at the connec-
tion to the foundation) of DC M columns meeting the weak beam/strong column
capacity design rule should have volumetric mechanical ratio of confinement rein-
forcement ωwd ≥ 0.08, as well as such that Eq. (5.8) is met with ωvd=0: aωwd≥
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30μϕνdεydbc/bo–0.035. For rectangular hoops with nb or nh vertical bars laterally
restrained by a stirrup corner or cross-tie along the side of the core with length
bo or ho, respectively, the “confinement effectiveness” factor is a=(1–0.5sw/bo)
(1–0.5sw/ho)[1–{bo/((nb–1)ho)+ho/((nh–1)bo)}/3].

Column C1:

– Confinement reinforcement in the “critical region” at the base of the column:
For confinement reinforcement consisting of a perimeter hoop and a diamond-
shaped internal tie around the central bars of the sides:

ωwd=Asw[2(bo + ho) +
√

2(b2
o + h2

o)]/(bohosw) fyd/ fcd

=2Asw[2 +
√

2]/(bosw) fyd/ fcd, if bo = ho.

a=(1 − 0.5sw/bo)(1 − 0.5sw/ho)[1 − {bo/((nb − 1)ho) + ho/((nh − 1)bo)}/3]

=(1 − 0.5sw/bo)2/1.5, if nb = nh = 3 and bo = ho.

For νd = 843.8/(0.42 × 20000) = 0.264 :

a ωwd ≥ 30μφνd εydbc/bo − 0.035 = 30 × 6.8 × 0.264 × 0.00217 × 0.4/

(0.4 − 2 × 0.029) − 0.035 = 0.102 → sw ≤ 103 mm for 8 mm-dia. hoops.

ωwd ≤ 0.08 → sw ≤ 272 mm.

In the “critical region” at the base of column C1: 8 mm-dia. hoops @100 mm
centres.

– Capacity design shears:
The seismic axial forces in columns C1, C2 are zero, no matter the direc-
tion and sense of action of lateral loading. Besides, the section is square with
reinforcement equally shared by the two pairs of opposite sides. Therefore,
the moment resistance of the columns is the same for bending within vertical
planes parallel or normal to direction X: MRc,y=MRc,z. So, as the clear height
of the column is the same in both horizontal directions, the largest capacity
design shear is found in the vertical plane where the beams framing into the
top of column C1 have the largest value of ΣMRb: in the plane parallel to direc-
tion X: ΣMRb= 230+146.5=376.5 kNm, exceeding that parallel to direction Y:
ΣMRb=193.3+119.8= 313.1 kNm. So, only the capacity design shear parallel to
direction X is calculated.

– At the joint at the top of column C1: MRc1=274 kNm, ΣMRc=274+231=505
kNm.

– At the base of column C1: MRc1=274 kNm.
VCD,1 =1.1 × (274+274 × 376.5/505)/2.5=210.4 kN.
The maximum shear in the column from the analysis may be calculated from
its maximum end moments estimated in (m) above:
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max My,SRSS−X−Y = 191.9 kNm → max VEc1,SRSS−X−Y = 2 × 191.9/2.5

= 153.5 kN ≤ VCD,1 = 210.4 kN

(My,X+0.3Y = 194.3 kNm → max VEc1,X+0.3Y = 2 × 194.3/2.5

= 155.4 kN ≤ VCD,1 = 210.4 kN).

– Verification of shear resistance of the column, for shear compression in the web:
Shear resistance for shear compression, according to Eurocode 2:

VRd,max = 0.3(1 − fck(MPa)/250)bwz fcd sin 2 δ (1 ≤ cot δ ≤ 2.5).

VRd,max = 0.3 × (1 − 30/250) × 1.25 × 0.4 × 0.9 × 0.36 × 20000 sin 2 δ

= 684.3 sin 2 δ

VRd,max = 684.3 sin 2 δ ≥ VCD,1 = 210.4.3 kN → sin 2 δ ≥ 0.308. OK if cot δ

= 2.5, i.e. δ = 21.8◦

– Shear reinforcement of the column:
VRd,s =bwzρwfywd cot δ + NEd(h–x)/Hcl, where the neutral axis depth, x=ξd, may
be (conservatively) estimated from the value ξ=0.44 associated with the moment
resistance of the column, MRc1,y, under NEd = 843.8 kN (see (q) above).

VRd, s = 0.4 × 0.9 × 0.36 × (500000/1.15) × 2.5ρw + 843.8

× (0.4 − 0.44 × 0.36)/2.5 = 140870ρw + 81.5 ≥ VCD,1

= 210.4 kN → ρw > 0.000915.

The maximum stirrup spacing is:

– max sw=min{8dbL; bo; 175 mm}=128 mm in the 0.45 m-long “critical
regions” of the two ends,

– max sw=0.6 min{20dbL; hc; bc; 400 mm}=192 mm, in the 1.6 m-long central
part of the column height, between the “critical regions”.

Taking into account the requirement above for confinement reinforcement with
sw< 100 mm at the “critical region” of the base, a 8 mm-dia. perimeter tie and a
8 mm-dia. diamond-shaped internal tie engaging the four central bars of the four
sides are provided, as follows:

– up to 440 mm from the bottom section of the column: five stirrups @ 100 mm,
with the 1st one 40 mm from the bottom section; they provide: ρw= (2 + √

2) ×
50.25/(100 × 400)=0.00429 >0.000915;

– over the top 440 mm of the column: four stirrups @ 125 mm centres, with the
1st one 65 mm from the top section; they provide: ρw(2+

√
2) × 50.25/(125 ×

400)=0.00343 >0.000915;
– over the 1.62 m-long central part of the column height: eight stirrups @ 180 mm

centres; they provide: ρw = (2 + √
2) × 50.25/(180 × 400)= 0.00238>

0.000915.
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Column C3:

– Confinement reinforcement in the “critical region” at the base of the column:

For max N3 = 408.9 kN : νd = 408.9/(0.352 × 20000) = 0.167.

a ωwd ≥ 30μφ νd εydbc/bo − 0.035 = 30 × 6.8 × 0.167 × 0.00217

× 0.35/(0.35 − 2 × 0.029) − 0.035 = 0.0538

→ sw ≤ 110 mm for 8 mm-dia. hoops. ωwd ≤ 0.08 → sw ≤ 250 mm.

In the “critical region” at the base of column C3: 8 mm-dia. hoops @110 mm
centres.

– Capacity design shears:
The seismic axial forces in columns C3, C4 vary much more if bending is

within a vertical plane parallel to X instead of within an orthogonal plane. So,
this is the direction of prime interest for the calculation of the capacity design
shear. Besides, for bending within a vertical plane parallel to X the clear height
of the column is slightly shorter than for bending within an orthogonal plane (2.5
m vs 2.55 m), suggesting that the capacity design shear would be more critical.
However, the moment input to the top of the column from the beams is higher for
bending within a vertical plane parallel to X:

– in the plane parallel to direction X: ΣMRb=183.5 kNm,
– in the plane parallel to direction Y: ΣMRb=129.5+64.8=194.3 kNm.

For completeness the capacity design shears are computed in both transverse
directions of column C3:

– For bending within a vertical plane parallel to X (about the local axis y of the
column, which is parallel to direction Y and normal to the plane of the interior
2-bay frame):

• for min N:

– at the top of C3: min MRc3,y=120.6 kNm, Σ min MRc,y= 120.6+120.6=
241.2 kNm,

– at the base of C3: min MRc3,y=120.6 kNm,
– min VCD3,z =1.1 × (120.6+120.6 × 183.5/241.2)/2.5=93.3 kN.

• for max N:

– at the top of C3: max MRc3,y = 146 kNm, Σ max MMRc,y = 146+126.5
= 272.5 kNm,

– at the base of C3: max MRc3,y = 146 kNm,
– max VCD,3z = 1.1 × (146+146 × 183.5/272.5)/2.5 = 107.4 kN.

The maximum shear force in the column from the analysis is independent of
the sense of action of lateral loading. So, it does not relate to the maximum or
minimum of the column axial force (it applies for either one). It may be found
from the column maximum end moments from (m) above:
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max My,SRSS−X−Y = 96 kNm → max VEc3,SRSS−X−Y = 2 × 96/2.5

= 76.8 kN ≥ min VCD,3z = 93.3 kN,

(My,X+0.3Y = 97.2 kNm → max VEc3,X+0.3Y = 2 × 97.2/2.5

= 77.8 kN ≤ VCD,3z = 93.3 kN).

– For bending within a vertical plane parallel to Y (about the local axis z of the
column, which is parallel to direction X and to the plane of the interior 2-bay
frame):

• for min N:

– at the top of C3: min MRc3,z=126.2 kNm, Σ min MRc,y=249.5 kNm,
– at the base of C3: min MRc3,z=126.2 kNm,
– min VCD3,y =1.1 × (126.2+126.2 × 194.3/249.5)/2.55=96.8 kN.

• for max N:

– at the top of C3: max MRc3,z =128.6 kNm, Σ max MRc,z = 252.3 kNm,
– at the base of C3: max MRc3,z =128.6 kNm,
– max VCD,3y = 1.1 × (128.6+128.6 × 194.3/252.3)/2.55=98.2 kN.

Maximum column shear force from the analysis:
• max Mz,SRSS-X-Y = Mz,X+0.3Y = 89 kNm→

max VEc3,SRSS−X−Y= max VEc3,X+0.3Y = 2 × 89/2.55 = 69.8 kN

≤ VCD,3z

– Verification of the shear resistance of the column, for shear compression in the
web:

VRd,max = 0.3×(1−30/250)×0.35×0.9×0.31×20000 sin 2 δ = 515.4 sin 2 δ

– For bending within a vertical plane parallel to X (about the local axis y of the
column, which is parallel to direction Y and normal to the plane of the interior
2-bay frame):

For max N3 = 408.9 kN : VCD,3z = 107.4 kN :

– For bending within a vertical plane parallel to Y (about the local axis z of the
column, which is parallel to direction X and to the plane of the interior 2-bay
frame):
For max N3=266.2 kN: VCD,3y =98.2 kN:

VRd,max=515.4 sin 2 δ ≥ VCD3,z = 107.4 kN → sin 2 δ ≥ 0.21. OK if

cot δ = 2.5, i.e. δ = 21.8◦.

– Shear reinforcement of the column:
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– For bending within a vertical plane parallel to X (about the local axis y of the
column, which is parallel to direction Y and normal to the plane of the interior
2-bay frame):

• for min N3=97.3 kN and VCD3,z =93.3 kN:

The neutral axis depth, x=ξd, may be found from the value ξ =0.2611 asso-
ciated with the moment resistance of the column, minMRc3,y for minN3 =97.3
kN (see (q) above).

VRd,s = 0.35 × 0.9 × 0.31 × (500000/1.15) × 2.5ρw + 97.3

× (0.35 − 0.2611 × 0.31)/2.5 = 106140ρw + 10.4 ≥ VCD3,z

= 93.3 kN → ρw ≥ 0.000787.

• for max N3=408.9 kN and VCD,3z =107.4 kN:

The neutral axis depth, x=ξd, may be estimated from the value ξ=0.358 asso-
ciated with the moment resistance of the column, max MRc3,y for max N3

=408.9 kN (see (q) above).

VRd,s = 0.35 × 0.9 × 0.31 × (500000/1.15) × 2.5ρw + 408.9

× (0.35 − 0.358 × 0.31)/2.5 = 106140ρw + 39.1 ≥ VCD3,z

= 107.4 kN → ρw > 0.00064.

– For bending within a vertical plane parallel to Y (about the local axis z of the
column, which is parallel to direction X and to the plane of the interior 2-bay
frame):
Because the axial force does not vary appreciably and the outcome is not
very sensitive to the value of N, the average of minN3 and maxN3 is used in
the dimensioning: N3=253.1 kN, along with the corresponding average shear
force: VCD,3y= (96.8+98.2)/2=97.5 kN
As the axial force, N3=253.1 kN, is the average of min N3, max N3 for bend-
ing in a vertical plane parallel to X, the neutral axis depth, x=ξd, may be
found accordingly as ξ=(0.2611+0.358)/2=0.31.

VRd, s = 0.35 × 0.9 × 0.31 × (500000/1.15) × 2.5ρw + 253.1

× (0.35 − 0.31 × 0.31)/2.55 = 106140ρw + 25.2 ≥ VCD3,z

= 97.5 kN → ρw ≥ 0.00068.

The three cases above gave very similar results, with the one corresponding
to the minimum axial force being slightly more critical.
The maximum stirrup spacing is:

– max sw=min{8dbL; bo; 175 mm}=144 mm in the 0.45 m-long “critical
regions” of the two ends,
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– max sw=0.6 min{20dbL; hc; bc; 400 mm}=210 mm, in the 1.6 m-long central
part of the column height between the “critical regions”.

Taking into account the requirement above for confinement reinforcement
with sw< 110 mm at the “critical region” of the base, a 8 mm-dia. perime-
ter tie and a 8 mm-dia. diamond-shaped internal tie engaging the four central
bars of the four sides are provided, as follows:

– up to 450 mm from the bottom section of the column: five stirrups @ 110 mm,
with the 1st one 10 mm from the bottom section; they provide: ρw= (2+√

2)
× 50.25/(110 × 350)=0.00446 >0.00081;

– over the top 450 mm of the column: four stirrups @ 140 mm centres, with the
1st one 30 mm from the top section; they provide: ρw = (2+

√
2) × 50.25/(140

× 350) = 0.0035 > 0.000785;
– over the 1.6 m-long central part of the column: seven stirrups @ 200 mm

centres; they provide: ρw= (2+
√

2) × 50.25/(200 × 350)=0.00245>0.00081.

(t) Design of footings, F1, F3

Table 5.6 lists the seismic action effects at the base of columns C1, C3 from the
analysis of the superstructure. From them, the seismic action effects at the base
of the footing can be obtained. The moment is the sum of that at the base of the
column plus the shear force times the height of the footing, while the shear and
axial force are retained the same. The capacity magnification factor to be applied
on them is computed from Eq. (2.15a): aCD= 1.2 min(MRc,y/MEc,y; MRc,z/MEc,z).
Although the outcome of the linear approximation of the likely maximum action
effects of the two concurrent components of the seismic action, Eq. (4.25), is also
included in Table 5.6, only the results of the SRSS estimation, Eq. (4.24), are used
in the dimensioning and verifications of the footings, as more accurate and more
economic. They are slightly lower for the likely maximum values of the various
seismic action effects, but significantly lower for the other components concurrently
acting with these maximum values.

The values of the column moment resistance at its base, MRc,y, MRc,z, are also
listed in Table 5.6, separately for the cases when the seismic axial force concurrent
with the maximum likely values of My or Mz, from the analysis is added to that due
to gravity loads as tensile or as compressive.

The most critical condition for a footing is normally when the seismic axial force
in the column is tensile and the total axial force is minimum.

Each footing is dimensioned/verified for the action effects associated with the
maximum moments about the local axis y and z at the base of the column, max
My,SRSS-X-Y and max Mz,SRSS-X-Y, respectively.

Footing F1
The depth of the footing is chosen: h = 0.7 m

– Dimensioning of the footing in plan for the action effects associated with the
maximum bending moment about the local axis y of the column (: parallel to
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Table 5.6 Bending moments and axial forces at the base of columns from the analysis and col-
umn moment resistances there, with the seismic axial force concurrent with the likely maximum
moment values taken tensile or compressive

Combination of
seismic action
components

Bending moments (kNm),
corresponding shears and axial
forces (kN) at column base C1 C3

√
(E2

X + E2
Y ) max My,SRSS-X-Y 191.9 96

Vz,SRSS-X-Y concurrent with maxMy 153.5 76.8
Mz,SRSS-X-Y concurrent with maxMy 7.7 7.5
Vy,SRSS-X-Y concurrent with maxMy 6.2 5.9
NSRSS-X-Y concurrent with maxMy 0 155.8
MRc,y for NG+ψ2Q–NSRSS-X-Y concur-
rent with maxMy

274 120.6

MRc,y for NG+ψ2Q+NSRSS-X-Y concur-
rent with maxMy

274 146

max Mz,SRSS-X-Y 168.75 89
Vy,SRSS-X-Y concurrent with max Mz 135 69.8
My,SRSS-X-Y concurrent with max Mz 8.8 12.5
Vz,SRSS-X-Y concurrent with max Mz 7.0 10.0
NSRSS-X-Y concurrent with max Mz 0 13.1
MRc,z for NG+ψ2Q-NSRSS-X-Y concur-
rent with max My

274 126.2

MRc,z for NG+ψ2Q+NSRSS-X-Y concur-
rent with max My

274 128.6

EX+0.3EY My,X+0.3Y 194.3 97.2
Mz,X+0.3Y 50.6 26.7
NX+0.3Y 0 156

EY+0.3EX My,Y+0.3X 66.3 33.2
Mz,Y+0.3X 168.75 89
NY+0.3X 0 46.8

direction Y, normal to the plane of the interior 2-bay frame), arising from bending
of the column in a vertical plane parallel to X.

aCD=1.2 × min(MRc1,y/MEc1,y; concurrent MRc1,z/MEc1,z)

=1.2 × min(274/191.9; 274/7.7) = 1.713.

Design horizontal reactions (shears) at the base of the footing:

Vz = aCDVEz = 1.713×153.5 = 263 kN, Vy = aCDVEy = 1.713×6.2 = 10.6 kN

Design moments at the base of the footing:

My = aCD MEy = 1.713 × (191.9 + 0.7 × 153.5) = 512.8 kNm,

Mz = aCD MEz = 1.713 × (7.7 + 0.7 × 6.2) = 20.6 kNm

The axial force is due to gravity loads alone: N = N1 = 843.8 kN
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Consider a square footing with plan dimension b. The total vertical load at its
base is:

Ntot = N + γconcretehb2 = 843.8 + 25 × 0.7b2 = 843.8 + 17.5b2

A lower bound to the size of the footing is that needed for an effective footing area
greater than zero, i.e. for an eccentricity ey = My/Ntot = 512.8/(843.8 + 12.5b2)
inside the footing area in plan:
ey = 512.8/(843.8 + 17.5b2) ≤ b/2. This gives (through iterations) b > 1.2 m.
The design value of the bearing capacity of the ground is computed on the basis
of the design value of the undrained shear strength, cud = 100 kPa, and for an
effective footing area:

A′
f = (b − 2ey)(b − 2ez) (5.49)

A′
f = [b − 2My/(N + 17.5b2)][b − 2Mz/(N + 17.5b2)] =

[b − 2 × 512.8/(843.8 + 17.5b2)][b − 2 × 20.6/(843.8 + 17.5b2)]

The uniform normal stress on the contact area between the effective footing and
the ground is:

σ = N + 17.5b2

A′
f

= 843.8 + 17.5b2

b2
(
1 − 1025.6

b(843.8+17.5b2)

) (
1 − 41.2

b(843.8+17.5b2)

) .

It should be less than the design value of the bearing capacity according to
Eurocode 7 (CEN 2003):

qud = q + (π + 2)cud[1 + 0.2(b − 2ey)/(b − 2ez)]ic (5.50)

with q = hγ soil = 0.7 × 19 = 13.3 kN/m2 and

ic = 1

2

⎛
⎝1 +

tan−1
(

Vy

Vz

)
π/2

√
1 − Vy

A′
f cu

+
⎛
⎝1 −

tan−1
(

Vy

Vz

)
π/2

⎞
⎠√

1 − Vz

A′
f cu

⎞
⎠

(5.51)
Therefore:

qud = 13.3 + 100(π + 2)

2

(
1 + 0.2.

1 − 1025.6
b(843.8+17.5b2)

1 − 41.2
b(843.8+17.5b2)

)
.
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⎛
⎜⎝1 + tan−1

(
263
10.6

)
π/2

√√√√1 − 263

100b2
(
1 − 1025.6

b(843.8+17.5b2)

) (
1 − 41.2

b(843.8+17.5b2)

) +

(
1 − tan−1

(
263
10.6

)
π/2

)√√√√1 − 10.6

100b2
(
1 − 1025.6

b(843.8+17.5b2)

) (
1 − 41.2

b(843.8+17.5b2)

)
⎞
⎟⎠

The requirement σ ≤ qud gives through iterations: b = 2.3 m. A footing of this
size nearly exhausts the shear resistance of the contact area between the effective
footing and the ground under the acting shear force Vz alone (corresponding to a
negative value for the quantity under the 1st square root in the ic factor and the
bearing capacity expression). For b = 2.3 m the acting uniform normal stress at
the interface is σ = 344.5 kPa and the design value of bearing capacity is qud =
354 kPa.

– Dimensioning of the footing in plan for the action effects associated with the
maximum moment about the local axis z of the column (: parallel to direction X
and to the plane of the interior 2-bay frame), arising from bending of the column
in a vertical plane parallel to Y.

aCD=1.2 min(MRcl,z/MEcl,z; concurrent MRcl,y/MEcl,y)

=1.2 min(274/168.75; 274/8.8) = 1.948.

Design shears at the base of the footing:

Vy = aCDVEy = 1.948 × 135 = 263 kN, Vz = aCDVEz = 1.948 × 7 = 13.65 N

Design moments at the base of the footing:

Mz = aCD MEz = 1.948 × (168.75 + 0.7 × 135) = 512.8 kNm,

My = aCD MEy = 1.948 × (8.8 + 0.7 × 7) = 26.7 kNm.

It is notable that the design value of the maximum moment component at the
base of the footing and of the associated shear force are exactly the same as in
the previous loading case (i.e., for the action effects associated with the maximum
bending moment about the local y axis of the column). In both cases the footing
is designed for development at the base of the column of a moment equal to 1.2
times its design moment resistance, first in one of the two directions of bending
and then in the other. So, as the column has the same moment resistance and the
same shear span (moment-shear-ratio) in both directions, the design value of the
maximum bending moment component at the base of the footing is also the same.
Note, though, that the design values of the smaller bending moment concurrently
acting in the orthogonal direction at the base of the footing and of the associated
shear force are slightly larger in the present, second, loading case than in the first
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one, although at the level of seismic action effects from the analysis this loading
case is less critical than the first. This may presage a more critical condition for
the dimensions of the footing than in the previous loading case.

The axial force is again due to gravity loads alone, N = 843.8 kN, and (for
a square footing with side b) the total vertical load at the base of the footing is
again: Ntot = 843.8+17.5b2

The effective footing area from Eq. (5.49) is:

A′
f=[b − 2My/(N + 17.5b2)][b − 2Mz/(N + 17.5b2)]

=[b − 2 × 26.7/(843.8 + 17.5b2)][b − 2 × 512.8/(843.8 + 17.5b2)]

The uniform normal stress on the contact area between the effective footing and
the ground is:

σ = N + 17.5b2

A′
f

= 843.8 + 17.5b2

b2
(
1 − 1025.6

b(843.8+17.5b2)

) (
1 − 53.4

b(843.8+17.5b2)

) ,
It should be less than the design value of bearing capacity from Eqs. (5.50) and
(5.51):

qud = 13.3 + 100(π + 2)

2

⎛
⎝1 + 0.2 ·

1 − 1025.6
b(843.8+17.5b2)

1 − 53.4
b(843.8+17.5b2)

⎞
⎠ ·

⎛
⎜⎝1 + tan−1( 263

13.65 )
π/2

√√√√1 − 263

100b2
(
1 − 1025.6

b(843.8+17.5b2)

) (
1 − 53.4

b(843.8+17.5b2)

)+

(
1 − tan−1( 263

13.65 )
π/2

)√√√√1 − 13.65

100b2
(
1 − 1025.6

b(843.8+17.5b2)

) (
1 − 53.4

b(843.8+17.5b2)

)
⎞
⎟⎠

For the previously selected footing size, b = 2.3 m, the acting uniform normal
stress at the interface is σ = 346.5 kPa and the design value of the bearing
capacity is qud = 352.3 Pa. The verification of this second loading case is indeed
slightly more critical, but not to the point of requiring a larger footing.

– Verification of the depth of the footing in shear and punching shear.
The depth of the footing should be chosen so that the footing does not require
shear reinforcement. The acting shear force should be calculated at vertical sec-
tions through the footing at distance d from the face of the column and compared
to the design shear resistance of concrete members without shear reinforcement
according to Eurocode 2, VRd,c, from Eq. (3.67) in Section 3.2.3.2, but with the
design values of concrete strength.

Acting shear forces are calculated at two vertical sections through the footing
normal to direction X and to the plane of the interior 2-bay frame (i.e., parallel
to the local axis y of the column), at a distance d from two opposite faces of
the column:
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1. One on the same side with respect to the centre of the footing as the eccen-
tricity ey = My/Ntot, with distance from the centre of the footing denoted by
sy and taken positive;

2. A 2nd one on the opposite side with respect to the column, with distance
from the centre of the footing denoted by s’y and taken positive if it is on
the same side with respect to the centre of the footing as the eccentricity
ey = My/Ntot (normally it is not, and s’y is negative).

The acting shear forces at these sections are calculated assuming that the vertical
soil stresses exerted over the contact area at the underside of the footing vary
linearly along the two horizontal directions, y and z. This is consistent with:

– the presumed rigidity of the footing, compared to the underlying soil, and
– the sizing of the plan area of the footing so that the design value of the soil

bearing capacity (calculated using design values of the soil strength parame-
ters, that involve material partial factors) is not attained, implying that vertical
stresses over the contact area of the footing and the soil are in the linear-elastic
range of soil behaviour.

If by denotes the plan dimension of the footing parallel to the eccentricity
ey = My/Ntot, then, for contact stresses linear in y and z the acting shear force
at the 1st control section (at a distance from the centre of the footing sy) is:

VEd,y = Ntot

(
1 + 3|ey |

by

(
1 + 2s y

by

))(
0.5 − sy

by

)
− (Ntot − N )

(
0.5 − sy

by

)

if
6|ey |

by
≤ 1

(5.52a)

VEd,y = Ntot

9

(
2.5 − 6|ey |

by
+ sy

by

) (
0.5 − sy

by

)
(
0.5 − ey

by

)2 − (Ntot − N )

(
0.5 − sy

by

)

if
6|ey |

by
> 1

(5.52b)

The shear force acting at the 2nd control section (at a distance from the centre of
the footing s’y) is:

V ′
Ed,y = Ntot

(
1 − 3|ey |

by

(
1 − 2s ′

y

by

))(
0.5 + s ′

y

by

)
− (Ntot − N )

(
0.5 + s ′

y

by

)

if
6|ey|

by
≤ 1

(5.53a)
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V ′
Ed,y = Ntot

9

⎛
⎝max

(
0; 1 − 3|ey |

by
+ s ′

y

by

)
0.5 − ey

by

⎞
⎠

2

− (Ntot − N )

(
0.5 + s ′

y

by

)

if
6|ey |

by
> 1

(5.53b)
The maximum of the two acting shear forces from the expressions above should
be less than the shear resistance without shear reinforcement, VRd,c, calculated
with bw equal to the plan dimension of the footing normal to the eccentricity ey,
denoted here by bz.
The expressions above are applied when the maximum bending moment My takes
place at the base of the footing and the corresponding eccentricity ey = My/Ntot. It
is exact to neglect in this calculation the contribution of the moment Mz concur-
rently acting in the transverse direction, z, if 6ey/by≤1. If 6ey/by>1, it is a very
good approximation. For the occurrence of the maximum bending moment Mz at
the base of the footing and the corresponding eccentricity ez = Mz/Ntot, a similar
calculation with index y replaced by z and vice-versa gives the shear forces act-
ing at two vertical sections through the footing normal to direction Y and parallel
to the plane of the interior 2-bay frame (i.e., parallel to the local axis z of the
column).

For a footing concentric with a column having cross-sectional dimensions
cy and cz parallel to local axes y and z, the control sections for the act-
ing bending moments are at distances to the centre of the footing: sy =
d+cy/2, s’y = –sy, sz = d+cz/2, s’z = –sz. For the present square col-
umn and footing: sy = sz = d+c/2 = 0.65+0.4/2 = 0.85m, s’y = s’z = –
0.85m, by = bz = b = 2.3m, Ntot = N+γ concretehb2 = 843.8+17.5 × 2.32

= 936.4 kN, Ntot–N = 92.6 kN, ey (for the maximum moment My at the
base of the footing) = 512.8/936.4 = 0.548 m and ez (for the maximum
moment Mz at the base of the footing) = 512.8/936.4 = 0.548 m. Note that
ey = ez and ey>by/6 = 0.383m, ez>bz/6 = 0.383m. So, from Eqs. (5.52b)
and (5.53b):

VEd,y=VEd,z = 936.4

9

(
2.5 − 6·0.548

2.3 + 0.85
2.3

) (
0.5 − 0.85

2.3

)
(
0.5 − 0.548

2.3

)2 − 92.6

(
0.5 − 0.85

2.3

)

=240.6 kN

V ′
Ed,y=V ′

Ed,z = 936.4

9

(
max

(
0; 1 − 3·0.548

2.3 − 0.85
2.3

))2

(
0.5 − 0.548

2.3

)2 − 92.6

(
0.5 − 0.85

2.3

)

= − 12.1 kN

For the calculation of the shear resistance of the footing without shear rein-
forcement, VRd,c, the tensile reinforcement ratio, ρ1, should be known. The mini-
mum reinforcement ratio required by Eurocode 2 for slabs is considered to apply
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to footings: 0.26fctm/fyk = 0.0013, normalised to bd. This gives As≥(0.26 ×
2.9/500) × 650 × 1000 = 980.2 mm2/m→ 14 mm-dia. bars @ 150 mm cen-
tres (1026 mm2/m), i.e. ρ1 = 1026/(650 × 1000) = 0.00158. So, from Eq. (3.67)
in Section 3.2.3.2:

VRd,c= max

⎡
⎣180 (100 · 0.00158)1/3, 35

√
1 +

√
0.2

0.65
201/6

⎤
⎦

(
1 +

√
0.2

0.65

)
201/3 · 2.3 · 0.65 = 614kN

Indeed VRd,c > max[VEd,y; |V’Ed,y|; VEd,z; |V’Ed,z|]; so no shear reinforcement is
needed, despite the slender footing.

The critical section for punching shear is at a distance from the perimeter of
the column between d = 0.65 m and 2d = 1.3 m, i.e. 0.85–1.5 m from its centre.
So, it is close to, or falls outside, the perimeter of the footing plan. Given the
fairly large eccentricity of the shear force, verification in punching shear will not
be more critical than in shear.

– Dimensioning of the footing reinforcement.
Due to the slenderness of the footing, the footing reinforcement is dimensioned
on the basis of flexural considerations, rather than with a Strut-and-Tie model.

The bending moment for dimensioning the footing reinforcement which is par-
allel to direction X and side bz of the footing is the one acting at vertical sections
through the footing at the two column faces which are normal to direction X and
to the plane of the interior 2-bay frame (i.e., parallel to the local axis y of the
column). They coincide with the vertical planes through two opposite column
faces:

1. One on the same side with respect to the centre of the footing as the eccen-
tricity ey=My/Ntot, with distance from the centre of the footing denoted by
sy and taken positive;

2. A 2nd one on the opposite side with respect to the column, with distance
from the centre of the footing denoted by s’y and taken positive if it is on the
same side with respect to the centre of the footing as the eccentricity ey =
My/Ntot (normally it is not, and s’y is negative).

Similarly to the acting shear forces in the shear verifications and for the same
reasons, the bending moments acting at these sections are computed assuming
that the vertical soil stresses exerted over the contact area at the underside of the
footing vary linearly along the two horizontal directions, y and z. Then, if by

is the plan dimension of the footing parallel to the eccentricity ey=My/Ntot, the
bending moment acting at the 1st control section (at a distance sy from the centre
of the footing) is:
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MEd,y= Ntot by

2

(
1 + 4|ey|

by

(
1 + sy

by

))(
0.5 − sy

by

)2

− (Ntot − N ) by

2

(
0.5 − sy

by

)2

if
6|ey |

by
≤ 1

(5.54a)

MEd,y= Ntot by

27

(
4 − 9|ey |
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by

) (
0.5 − sy
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(
0.5 − ey

by

)2

− (Ntot − N ) by

2

(
0.5 − sy

by

)2

if
6|ey |

by
> 1

(5.54b)

The bending moment acting at the 2nd control section (at a distance s’y from the
footing’s centre) is:

M ′
Ed,y=

Ntot by

2

(
1 − 4|ey |

by

(
1 − s ′

y

by

))(
0.5 + s ′

y

by

)2

− (Ntot − N ) by

2

(
0.5 + s ′

y

by

)2

if
6|ey |

by
≤ 1

(5.55a)

M ′
Ed,y=

Ntot by

27

(
max

(
0; 1 − 3|ey |

by
+ s ′

y

by

))3

(
0.5 − ey

by

)2 − (Ntot − N ) by

2

(
0.5 + s ′

y

by

)2

if
6|ey |

by
> 1

(5.55b)

The expressions above should be applied for the eccentricity ey=My/Ntot

resulting from the maximum bending moment My in the column, in order to
dimension the footing reinforcement parallel to side by and global direction X. It
is exact to neglect in this calculation the effect of the moment Mz concurrently
acting in the transverse direction z, if 6ey/by≤1. It is a very good approximation
if 6ey/by>1.

The footing reinforcement parallel to side bz and global direction Y is found
from the bending moments acting at two vertical sections through the footing
normal to direction Y and parallel to the plane of the interior 2-bay frame (i.e.,
parallel to the local axis z of the column), via a similar calculation with index y
replaced by z and vice-versa.

If the footing is concentric with a column having cross-sectional dimensions cy

and cz parallel to local axes y and z, the control sections for the calculation of the
acting bending moments are at distances from the centre of the footing: sy=cy/2,
s’y=–sy, sz=cz/2, s’z=–sz. For the present square column and footing, we have
sy=sz=c/2=0.4/2=0.2 m, s’y=s’z= –0.2 m, by=bz=b=2.3 m, Ntot=936.4 kN,
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Ntot–N= 92.6 kN, ey (for the maximum moment My at the base of the footing)
=512.8/936.4=0.548 m and ez (for the maximum moment Mz at the base of
the footing) =512.8/936.4=0.548 m. Note that ey=ez and ey>by/6=0.383 m,
ez>bz/6=0.383 m. So, from Eqs. (5.54b) and (5.55b):

MEd,y=MEd,z = 936.4 · 2.3

27

(
4 − 9·0.383

2.3 + 0.2
2.3

) (
0.5 − 0.2

2.3

)2

(
0.5 − 0.383

2.3

)2

− 92.6 · 2.3

2

(
0.5 − 0.2

2.3

)2

= 298.6 kNm

M ′
Ed,y = M ′

Ed,z = 936.4 · 2.3

27

(
max

(
0; 1 − 3·0.383

2.3 − 0.2
2.3

))3

(
0.5 − 0.383

2.3

)2

− 92.6 · 2.3

2

(
0.5 − 0.2

2.3

)2

= 32.5 kNm

Asy=Asy=MEd,y/zfyd=298.6 × 103/(0.9 × 0.65 × 500/1.15)=1174 mm2, i.e.
1174/2.3=510 mm2/m. The minimum reinforcement of 14 mm-dia. bars @
150 mm centres (1026 mm2/m) suffices.

Footing of column C3:
The depth of this footing is also chosen: h = 0.7 m

– Dimensioning of the footing in plan for the action effects associated with the
maximum bending moment about the local axis y of the column (: parallel to
direction Y, normal to the plane of the interior 2-bay frame), arising from bending
of the column in a vertical plane parallel to X.
The most critical condition for the footing is when the seismic axial force in
the column is tensile and the total vertical load is minimum, NG+ψ2Q–NSRSS-X-Y,
giving MRc3,y=120.6 kNm.

aCD=1.2 min(MRc3,y/MEc3,y; concurrent MRc3,z/MEc3,z)

=1.2 min(120.6/96; 120.6/7.5) = 1.51.

Design shears at the base of the footing:

Vz = aCDVEz = 1.51 × 76.8 = 116 kN,Vy = aCDVEy = 1.51 × 5.9 = 8.9 kN

Design moments at the base of the footing:

My=aCD MEy = 1.51 × (96 + 0.7 × 76.8) = 226 kNm, Mz = aCD MEz

=1.51 × (7.5 + 0.7 × 5.9) = 17.6 kNm



548 5 Detailing and Dimensioning of New Buildings in Eurocode 8

Vertical seismic load on the footing (the increase due to the overturning moment
is included in the seismic moment at the base of the footing): NE = 155.8 kN
Vertical load due to gravity loads from the superstructure: N = N3 = 253.1 kN
Minimum design vertical load at the top of the footing: min N = 253.1–1.51 ×
155.8 = 17.1 kN
For a square footing with side b, the total axial force at the base of the footing is:

Ntot = N + γconcretehb2 = 17.1 + 25 × 0.7b2 = 17.1 + 17.5b2

The footing size necessary in order for the eccentricity ey=My/Ntot=
226/(17.1+17.5b2) to fall inside the plan area of the footing, so that the effec-
tive (reduced) footing area is greater than zero, is obtained from the condition:
ey=226/(17.1+17.5b2)≤b/2, which gives (through iterations) b>2.85 m.
The effective footing area from Eq. (5.49) is:

A′
f = [b − 2My/(N + 17.5b2)][b − 2Mz/(N + 17.5b2)] =
[b − 2 × 226/(17.1 + 17.5b2)][b − 2 × 17.6/(17.1 + 17.5b2)]

The uniform normal stress on the contact area between the effective footing and
the ground is:

σ = N + 17.5b2

A′
f

= 17.1 + 17.5b2

b2
(
1 − 452

b(17.1+17.5b2)

) (
1 − 35.2

b(17.1+17.5b2)

) .
It should be less than the design value of bearing capacity from Eqs. (5.50) and
(5.51):

qud = 13.3 + 100(π + 2)
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b(17.1+17.5b2)

) (
1 − 35.2

b(17.1+17.5b2)

)+

(
1 − tan−1

(
116
8.9

)
π/2

)√√√√1 − 8.9

100b2
(
1 − 452

b(17.1+17.5b2)

) (
1 − 35.2

b(17.1+17.5b2)

)
⎞
⎟⎠

The requirement σ ≤ qud gives, through iterations: b=3.1 m. This size of foot-
ing nearly exhausts the shear resistance of the contact area between the effective
footing and the ground under the acting shear force Vz alone (corresponding to a
negative value for the quantity under the 1st square root in the ic factor and the
bearing capacity expression). For b=3.1 m the acting uniform normal stress at
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the interface is just σ =96.4 kPa, while the design value of the bearing capacity
is qud =456 kPa. Despite the apparently wide margin against the bearing capac-
ity, a lower value, e.g. b=3 m, is not feasible, due to failure under the acting shear
force Vz alone.

For completeness we also consider the case when the seismic axial force
in the column is compressive and the total vertical load is maximum,
NG+ψ2Q+NSRSS-X-Y, giving MRcy= max MRc3=146 kNm and

aCD = 1.2 min(MRc3,y/MEc3,y; concurrent MRc3,z MEc3,z)

= 1.2 min(146/96; 146/7.5) = 1.825.

Design shears at the base of the footing:

Vz = aCDVEz = 1.825×76.8 = 140.15 kN,Vy = aCDVEy = 1.825×6 = 10.95 kN

Design moments at the base of the footing:

My=aCD MEy = 1.825 × (96 + 0.7 × 76.8) = 273.3 kNm,

Mz = aCD MEz = 1.825 × (7.5 + 0.7 × 6) = 21.35 kNm

Vertical seismic load on the footing (the increase due to the overturning moment
is included in the seismic moment at the base of the footing): NE=155.8 kN
Vertical load due to gravity loads from the superstructure: N = N3 = 253.1 kN
Maximum design vertical load at the top of the footing: maxN=253.1+1.825 ×
155.8 = 537.5 kN
Total vertical load at the base of the footing: Ntot=N+γ concretehb2=537.5+17.5b2

Effective footing area from Eq. (5.49):

A′
f = [b − 2My/(N + 17.5b2)][b − 2Mz/(N + 17.5b2)] =
[b − 2 × 273.3/(537.5 + 17.5b2)][b − 2 × 21.35/(537.5 + 17.5b2)]

Uniform normal stress on the contact area between the effective footing and the
ground:

σ = N + 17.5b2

A′
f

= 537.5 + 17.5b2

b2
(
1 − 546.6

b(537.5+17.5b2)

) (
1 − 42.7

b(537.5+17.5b2)

) .

Design value of bearing capacity from Eqs. (5.50) and (5.51):
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qud = 13.3 + 100(π + 2)

2

⎛
⎝1 + 0.2 ·

1 − 546.6
b(537.5+17.5b2)

1 − 42.7
b(537.5+17.5b2)

⎞
⎠ ·

⎛
⎜⎝1 + tan−1

(
140.15
10.95

)
π/2

√√√√1 − 140.15

100b2
(
1 − 546.6

b(537.5+17.5b2)

) (
1 − 42.7

b(537.5+17.5b2)

)+

(
1 − tan−1

(
140.15
10.95

)
π/2

)√√√√1 − 10.95

100b2
(
1 − 546.6

b(537.5+17.5b2)

) (
1 − 42.7

b(537.5+17.5b2)

)
⎞
⎟⎠

For the previously selected footing size, b=3.1 m, the acting uniform normal
stress at the interface is σ =99.8 kPa and the design value of the bearing capacity
is qud =608 kPa. Indeed, most critical for the footing is when the seismic axial
force in the column is tensile and the total axial force is minimum.

– Dimensioning of the footing in plan for the action effects associated with the
maximum bending moment about the local axis z of the column (: parallel to
direction X and to the plane of the interior 2-bay frame), arising from bending of
the column in a vertical plane parallel to Y.
Only the case when the seismic axial force in the column is tensile and the total
axial force is minimum, NG+ψ2Q–NSRSS-X-Y, is considered as potentially critical
for the bearing capacity, giving MRc,z=126.2 kNm.

aCD=1.2 min(MRc3,z/MEc3,z; concurrent MRc3,y/MEc3,y)

=1.2 min(126.2/89; 126.2/12.5) = 1.7.

Design shears at the base of the footing:

Vy = aCDVEy = 1.7 × 69.8 = 119 kN, Vz = aCDVEz = 1.7 × 10 = 17 N

Design moments at the base of the footing:

Mz = aCD MEz = 1.7 × (89 + 0.7 × 69.8) = 234 kNm,

My = aCD MEy = 1.7 × (12.5 + 0.7 × 10) = 33 kNm.

Minimum design vertical load at the top of the footing: minN = 253.1 – 1.7 ×
13.1 = 231 kN

The design value of the maximum bending moment at the base of the footing
is less than in the previous loading case (i.e., for the action effects associated with
the maximum bending moment about the local y axis of the column), while the
design shear force is slightly larger in this loading case. However, the minimum
design axial load at the top of the footing is much higher than in the previous
loading case, presaging a much larger effective footing area and a less critical
condition for the dimensions of the footing. So, the verification of the footing in



5.8 Application Examples 551

plan for the action effects associated with the maximum bending moment about
the local y axis of the column is not pursued any further.

– Verification of the depth of the footing in shear and punching shear.
In the present case of square column and footing: sy=sz=d+c/2=0.65+0.35/2=
0.825 m, s’y=s’z= –0.825 m, by=bz=b=3.1 m, Ntot–N=17.5b2=168.2 kN.

The action effects associated with the maximum bending moment about the
column’s local axis y (normal to the plane of the interior 2-bay frame, parallel to
direction Y), arising from bending of the column in a vertical plane parallel to X,
give the extreme variation of vertical load at the footing’s base.

For the combination of minimum design axial load Ntot=17.1+168.2=185.3
kN and the corresponding maximum moment My=226 kNm at the base of
the footing: ey=226/185.3=1.22 m>by/6=0.517 m. So, from Eqs. (5.52b) and
(5.53b):

VEd,y=185.3

9

(
2.5 − 6·1.22

3.12 + 0.825
3.1

) (
0.5 − 0.825

3.1

)
(
0.5 − 1.22

3.1

)2 − 168.2

(
0.5 − 0.825

3.1

)

=132.7 kN

V ′
Ed,y = 185.3

9

(
max

(
0; 1 − 3·1.22

3.1 − 0.825
3.1

))2

(
0.5 − 1.22

3.1

)2 − 168.2

(
0.5 − 0.825

3.1

)

= −39.3 kN

For the combination of maximum design vertical load Ntot=537.5+168.2=
705.7 kN and the corresponding maximum moment My=273.3 kNm at the base
of the footing: ey= 273.3/705.7=0.387 m < by/6=0.517 m. Therefore, from Eqs.
(5.52a) and (5.53a):

VEd,y = 705.7

(
1 + 3 · 0.387

3.1

(
1 + 2 · 0.825

3.1

))(
0.5 − 0.825

3.1

)

− 168.2

(
0.5 − 0.825

3.1

)
= 220.2kN

V ′
Ed,y = 705.7

(
1 − 3 · 0.387

3.1

(
1 − 2 · 0.825

3.1

))(
0.5 − 0.825

3.1

)

− 168.2

(
0.5 − 0.825

3.1

)
= 97kN

Note that the combination of the maximum design vertical load and of the
corresponding maximum bending moment My at the base of the footing is more
critical for shear than the minimum design vertical load with the corresponding
maximum bending moment My, which was found to govern the bearing capacity
verification and the size of the footing in plan.

On the basis of this last conclusion, the verification of the footing in shear for
the action effects associated with the maximum bending moment about the local
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axis z of the column (: parallel to direction X and to the plane of the interior 2-bay
frame), that arise from bending of the column in a vertical plane parallel to Y,
considers only the case when the seismic axial force in the column is compressive
and the total vertical load is maximum, NG+ψ2Q+NSRSS-X-Y, giving MRc,z=128.6
kNm.

aCD = 1.2 min (MRc3,z/MEc3,z; concurrent MRc3,y/MEc3,y)

= 1.2 min (128.6/89; 128.6/12.5) = 1.73.

Design moment at the base of the footing: Mz = aCDMEz=1.73 × (89+0.7 ×
69.8)=238 kNm.

Maximum design vertical load at the top of the footing: max N = 253.1+1.73
× 13.1=276 kN.

Ntot = 276 + 168.2 = 444.2 kN, ey = 238/444.2 = 0.536 m > by/6

= 0.517 m. So, from Eqs. (5.52b) and (5.53b) :

VEd,y = 444.2

9

(
2.5 − 6·0.536

3.1 + 0.825
3.1

) (
0.5 − 0.825

3.1

)
(
0.5 − 0.536

3.1

)2 − 168.2

(
0.5 − 0.825

3.1

)

= 147.2 kN

V ′
Ed,y = 444.2

9

(
max

(
0; 1 − 3·0.536

3.1 − 0.825
3.1

))2

(
0.5 − 0.536

3.1

)2 − 168.2

(
0.5 − 0.825

3.1

)

= −18 kN

So, more critical for the verification of the footing in shear is the loading and
direction of bending of the column which produces the most extreme variation of
vertical load on the footing.

Using as tensile reinforcement 14 mm-dia. bars @ 150 mm centres
(1026 mm2/m), giving ρ1=0.00158 and meeting the minimum Eurocode 2 rein-
forcement ratio for slabs (As≥ (0.26 × 2.9/500) × 650 × 1000= 980.2 mm2/m),
the shear resistance of the footing without shear reinforcement is:

VR,c = max

⎡
⎣180(100 · 0.00158)1/3, 35

√
1 +

√
0.2

0.65
201/6

⎤
⎦

(
1 +

√
0.2

0.65

)
201/3 · 3.1 · 0.65 = 827 kN

Indeed VRc > max[VEd,y; |V’Ed,y|; VEd,z; |V’Ed,z|] and no shear reinforcement is
needed, despite the slenderness of the footing, which is at the limit of considering
it as rigid relative to the ground.

The critical section for punching shear is at a distance from the perimeter of the
column between d=0.65 m and 2d=1.3 m, i.e. 0.825–1.475 m from its centre. So,
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it is close to the perimeter of the footing plan. Given the very large eccentricity
of the seismic shear force in the footing, verification in punching shear is not
expected to be more critical than in shear.

– Dimensioning of footing reinforcement.

In this case: sy=sz=c/2=0.35/2=0.175 m, s’y=s’z=–0.175 m, by=bz=b=3.1 m,
Ntot-N=168.2 kN.

Only the combination of the maximum design vertical load with the cor-
responding maximum moment My at the footing’s base is considered, found
above to be more critical for the footing in shear. For that combination we have
Ntot=705.7 kN and corresponding maximum moment My=273.3 kNm at the
footing’s base, giving: ey=273.3/705.7=0.387 m< by/6=0.517 m. So, from Eqs.
(5.54a) and (5.55a):

MEd,y = 705.7 · 3.1

2

(
1 + 4 · 0.387

3.1

(
1 + 0.175

3.1

))(
0.5 − 0.175

3.1

)2

− 168.2 · 3.1

2

(
0.5 − 0.175

3.1

)2

= 277.4 kNm

M ′
Ed,y = 705.7 · 3.1

2

(
1 − 4 · 0.387

3.1

(
1 − 0.175

3.1

))(
0.5 − 0.175

3.1

)2

− 168.2 · 3.1

2

(
0.5 − 0.175

3.1

)2

= 53.2 kNm

Asy=Asy=MEd,y/zfyd=277.4 × 103/(0.9 × 0.65 × 500/1.15)=1089 mm2, i.e.
1089/3.1=351 mm2/m. The minimum reinforcement of 14 mm-dia. bars @
150 mm centres (1026 mm2/m) is sufficient.

5.8.2 7-Storey Wall Building with Box Foundation and Flat Slab
Frames Taken as Secondary Elements

A building has square plan with dimensions Lx=Ly=25 m, 7 storeys above ground,
2.8 m-high each, and a basement with a total height of 5 m from the top of its roof
slab to the base of the foundation. It has 5 m-long, 0.3 m-thick concrete walls, W1
and W2, at the centre of each side of the perimeter and 28 square columns at a 5
m-grid in each horizontal direction (Fig. 5.9). The column side is:

– hc,int=0.6 m for the 16 interior columns,
– hc,edge=0.5 m for the eight edge columns, and
– hc,corner=0.4 m for the four corner ones,

The floors consist of a flat slab without drop panels around the columns.
There is a box-type foundation, comprising:
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Fig. 5.9 Plan of 7-storey building

– a 200 mm-thick basement wall with a strip footing all along the perimeter, trans-
ferring the seismic action effects to the ground acting as a deep foundation beam;

– a 150 mm-thick concrete slab at the level of the top of the basement wall, serving
as basement roof;

– spread footings, connected to each other and to the strip footing of the perimeter
wall through a two-way system of tie-beams at the level of the bottom of the
perimeter foundation beams.

Design specifications

– Permanent loads due to floor finishings, etc.: 0.92 kN/m2.
– Permanent loads on roof due to finishings and equipment: 4.45 kN/m2.
– Permanent loads due to partition walls: 1.5 kN/m2.
– Live load (residential use): q=2 kN/m2.
– Coefficient ψ2 for quasi-permanent part of live loads in storeys other than the

roof: ψ2=0.3; on the roof: ψ2=0.
– Reduction factor on live loads for independently occupied storeys ϕ=0.8.
– Reference Peak Ground Acceleration on type A ground (rock) agR=0.25 g.
– EC8 Type 1 recommended spectrum on ground type C (see Table 4.2 for the

parameters).
– Importance Class II (importance factor γ I = 1.0).
– Ductility Class (DC) Medium (M).
– Concrete C35/45; Steel S500.
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– Exposure class related to environmental conditions in accordance with EN 206-1:
XC3 (Concrete inside buildings with moderate or high air humidity; external
concrete sheltered from rain; concrete surface not exposed to chlorides).

– Foundation above the water table on medium-dense sand, with weight density
γ soil=20 kN/m3, angle of shearing resistance φ′

k=36◦ (characteristic value), no
cohesion, friction angle at the interface of the base and the soil (characteristic
value), δ=φ′

k. Depth of overburden at the base of the foundation (average value
for the two sides of the footings): 2.5 m.

Simplifying assumptions for the analysis

– Vertical members collect gravity load from tributary areas defined by the mid-
distance to the adjacent vertical elements.

– Flat slab frames, consisting of the flat slab and their supporting columns or walls
(in the weak direction of bending), may be considered as secondary seismic ele-
ments if their total contribution to the lateral stiffness of the building is less than
15% of the total lateral stiffness of primary elements.

– To determine the lateral stiffness of flat slab frames the following assumptions
may be made:

– The two walls which are parallel to the considered horizontal seismic action
component are subjected to the full inertia loads of all floors due to that seis-
mic action component and to a concentrated force at the top in a sense oppo-
site to that of floor lateral loads. The flat slab frames are overall subjected to
a concentrated force at the top in the same sense as the floor inertia loads, but
to no floor lateral loads (hence their seismic shear is constant in all storeys).

– A strip of the flat slab with width equal to 25% of the bay length on each side
of the centreline between columns is considered as the horizontal member
(effective beam) of the flat slab frame.17

– For lateral loading the points of inflection of the columns of the flat slab
frames are at storey mid-height. Those of the horizontal members (effective
beams) are at mid-span.

– Because interior columns have about twice the moment of inertia of the edge
ones and edge columns about twice the moment of inertia of corner ones, inte-
rior columns may be considered to take twice the seismic shear relative to edge
ones, which in turn take twice the seismic shear compared to corner columns.

– The storey drifts of the flat slab frames under to lateral loading may be cal-
culated as in the Example of Section 5.9.1, including the use of Eq. (2.8a) in
Section 2.2.1.3 for interstorey drifts.

17This slab effective width is on the high side. Therefore it is conservative for checking the
Eurocode 8 condition for secondary seismic elements, as the contribution of the flat slab frame
to lateral stiffness is overestimated.
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– According to Eurocode 8 the combination of the two horizontal components
of the seismic action may be neglected in regular in plan buildings with
walls in the two main horizontal directions as the only primary seismic ele-
ments (see 2nd paragraph of Section 4.7.1). So, the seismic action may be
assumed to act separately along the two main orthogonal horizontal axes,
X and Y.

(a) Material parameters

fcd=35/1.5 MPa; Ec=34000 MPa;
fyd=500/1.15 MPa; εyd=500/(1.15 × 200000)=0.217%;
Minimum cover of reinforcement for exposure class XC3 according to
Eurocode2: c=20 mm (c=15 mm for slabs).

(b) Geometric parameters

Moment of inertia of effective beam with width 0.5 × 5.0=2.5 m: Ib=2.5 ×
0.153/12=0.0007 m4

Moment of inertia of interior columns: Ic,int=0.64/12=0.0108 m4

Moment of inertia of edge columns: Ic,edge=0.54/12=0.0052 m4=0.48Ic,int

Moment of inertia of corner columns: Ic,corner=0.44/12=0.00215 m4=0.41Ic,edge

Moment of inertia of wall – strong
direction (major axis):

Iw=0.3 × 53/12=3.125 m4

Moment of inertia of wall – weak
direction (minor axis):

Iw,weak=5 × 0.33/12=0.01125 m4

Note that a single wall in its weak direction has about the same moment of inertia
as the two exterior columns it replaces on the perimeter.

If one interior column, or a wall in its weak direction, are considered equiva-
lent to two edge columns and one edge column as equivalent to two corner ones,
all columns in the system and two walls in their weak direction are equivalent to
16+8/2+4/4+2=23 interior columns with an average moment of inertia:

Ic = (16 × 0.0108 + 8 × 0.0052 + 4 × 0.00215 + 2 × 3.125 + 2 × 0.01125)/23

= 0.01067 m4

(c) Check of storey torsional radii versus radius of gyration of floor mass

The calculation of the storey torsional radii for the regularity classification of the
building should be based on the moments of inertia of all the elements, primary
seismic (walls) and secondary seismic (columns of flat slab frames):



5.8 Application Examples 557

Σ
(
x2 Iy + y2 Ix

) = 4 × {12.52(3.125 + 2 × 0.0052 + 2 × 0.00215)

+ (7.52 + 2.52)(4 × 0.0108 + 2 × 0.0052)} = 1953.13 m6,

Σ
(
Iy
) = Σ(Ix ) = 16 × 0.0108 + 8 × 0.0052 + 4 × 0.00215 + 2 × 3.125

+ 2 × 0.01125 = 6.4955 m4,

rx = ry =
√

1953.13

6.4955
= 17.34 m.

As the mass is uniformly distributed over the rectangular floor area, the radius of

gyration of the floor mass in plan, ls, is: ls =
√

(L 2
x + L 2

y )/12 =
√

2 · 252/12 =
10.21 m ≤ rx = ry = 17.34 m.
If only the primary seismic elements are considered, then: rx=ry=Lx/

√
2=17.68 m.

So, the frame system has sufficient torsional rigidity to ensure fundamental trans-
lational periods in the two horizontal directions longer than the twisting period and
to justify classification of the structural system as planwise regular, no matter the
classification of the flat slab frames as secondary elements.

(d) Estimation of the contribution of flat slab frames to the lateral stiffness of the
building

The contribution of all flat slab frames to the lateral stiffness of the building, as
a fraction of the total lateral stiffness, may be estimated as the ratio of the frac-
tion of the base shear borne by all flat slab frames together, to the total base shear,
Vb, when the flat slab frames and the shear walls have the same lateral displacement,
either at the roof, or at the level where the resultant lateral force is applied, i.e., at
two-thirds of the building height above the top of the basement, Htot.

The top deflection of a vertical cantilever (the two walls, with total moment of
inertia Iw= 2 × 3.125=6.25 m4) is:

– due to lateral loading with a continuous inverted triangular heightwise distribu-
tion (about the same as a set of concentrated forces at floor levels) having force
resultant Vb (: base shear):

δw,V b,top = 11

60

Vb H 3
tot

(E I )w

– due to a concentrated force F at the top:

δw,F,top = 1

3

F H 3
tot

(E I )w

The top deflection of a frame system consisting of m=23 equivalent interior
columns each with moment of inertia Ic=0.01067 m4, connected via beams with
moment of inertia Ib= 0.0007 m4 and subjected to a concentrated force F at the top
that produces a constant storey shear, Vi=Vi+1=F, is:
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δ f,F,top = 1

12

F

m
H 2

[
Htot

(E I )c
+ Htot − H/2

(E I )b

L

H

]

The condition: δw,Vb,top–δw,F,top= δf,F,top gives:

F = Vb
11/20

1 + 1

4

(E I )w
m

H 2

H 2
tot

[
1

(E I )c
+ 1 − H/(2Htot )

(E I )b

L

H

] = 0.129Vb

Therefore, all flat slab frames and the walls in their weak direction may be con-
sidered as secondary seismic elements, without their total contribution to lateral
stiffness exceeding 15% of that of the primary seismic elements (i.e. 15/115=13.1%
of the total lateral stiffness, which is more than the 12.9% share of the frame force
F in the base shear). Note that an elastic analysis of the full structural system in 3D,
with the in-plane flexibility of the diaphragm taken into account and the flat slab
considered as an effective beam with a width of 2.5 m at the interior of the plan or
1.25 m at the perimeter, confirms this result: the total contribution of flat slab frames
and of the walls in their weak direction to lateral stiffness is 13.9% of that of the
walls in their strong direction. It gives also the following total shear force of all flat
slab frames and of the walls in their weak direction as fraction of the base shear:

at the top storey: 0.216Vb,
at the 6th storey: 0.170Vb,
at the 5th storey: 0.169Vb,
at the 4th storey: 0.165Vb,
at the 3rd storey: 0.147Vb,
at the 2nd storey: 0.114Vb,
at the 1st storey: 0.122Vb.

This confirms the assumption made for the estimation of F: that the total shear
force of all flat slab frames and of the walls in the weak direction is (about) constant
in all storeys. In fact, it has a tendency to decrease from top to bottom.

Flat slab frames are outside the scope of Eurocode 8. They, as well as the walls in
the weak direction, are taken as secondary seismic elements. The full seismic action
is resisted by the walls in their strong direction.

(e) Calculation of quasi-permanent gravity loads (per floor and total)

Storeys other than the top one:

- Weight of slab: 25 × 0.15=3.75 kN/m2

- Weight of vertical members: 25 × 2.65 × (16 × 0.62+8 ×
0.52+4 × 0.452+4 × 5 ×
0.3)/252 =1.55 kN/m2

- Floor finishings, etc.: 0.92 kN/m2

- Partition walls: 1.50 kN/m2
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- Quasi-permanent part of live
loads:

0.3 × 0.8 × 2 = 0.48 kN/m2

- Total: 8.20 kN/m2

- Storey weight: 8.20 × 252=5125 kN.

Top storey:

- Weight of roof slab: 25 × 0.15=3.75 kN/m2

- Roof finishings, etc.: 4.45 kN/m2

- Quasi-permanent part of 0 × 1.0 × 2 = 0
live loads:

- Total: 8.20 kN/m2

- Storey weight: 8.20 × 252=5125 kN.

Total weight of the superstructure: W=7 × 5125=35875 kN

(f) Fundamental period.

Thanks to the building’s regularity and apparently relatively short natural period
(T1 < 4TC, 2 s), the lateral force analysis procedure may be used. As all storeys
have the same mass, the heightwise distribution of seismic lateral loads is linear.
Their resultant is applied at two-thirds of the height from the top of the basement.
The stiffness of a SDOF system consisting of the two cantilever walls with a total
moment of inertia Iw=2 × 3.125=6.25 m4 may be taken as equal to the ratio of the
force resultant Vb (base shear), to the deflection at two-thirds of the height from the
base due to lateral loading with a continuous inverted triangular heightwise distri-
bution (instead of a set of concentrated forces at floor levels):

δw,V b,2/3 = 368

3645

Vb H 3
tot

(E I )w
→ K = Vb

δw,V b,2/3
= 3645

368

(E I )w
H 3

tot

→

T1 = 2π

√
M

K
= 2π

√
35875/9.81

3645
368

0.5·34000000·6.25
(7·2.8)3

= 1.015s

Note that the fundamental period of the full structural system in 3D, with the
in-plane flexibility of the diaphragm taken into account and neglecting the flexural
and shear stiffness of the columns and the walls in their weak direction, is 1.035 s.
This is very close to the value estimated above for a SDOF system with all its mass
concentrated at the point of application of the lateral force resultant.

(g) Design spectral acceleration

Design ground acceleration on type A ground: ag=γ IagR=1.0 × 0.25=0.25 g.
Behaviour factor: q = qo=3.
For T1=1.015 s>TC=0.6 s, Eq. (4.5c) gives for the design spectral acceleration:

Sd(T) = 0.25 × 1.15 × (2.5/3) × (0.6/1.015) = 0.1416 g (> 0.2 × 0.25 g).
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As T1 < 2TC = 1.2 s, we can reduce the base shear by 15% in the lateral force
analysis. So, the design spectral acceleration is 0.85 × 0.1416 g=0.1204 g. For a
weight of the superstructure W=35875 kN, the seismic base shear is: Vb=0.1204 ×
35875=4320 kN.

(h) Estimation of the action effects due to the accidental eccentricity

Because the structure is fully symmetric in plan and identical in the two horizon-
tal directions, an accidental eccentricity of a horizontal component of the seismic
action, let’s say in direction X, e=0.05Lx which is constant in all storeys i, has the
following effects on an element at a distance from the centre of mass equal to y in
direction Y and to x in direction X:

– for bending in a vertical plane parallel to X, it increases the seismic moments and
shears due to the horizontal component in direction X applied at the mass centre,
by a factor of

1 + e

ry

|y|
ry

= 1 + 0.1
|y|
Lx

;

– for bending in a vertical plane parallel to Y, it induces seismic moments and
shears similar to those induced by the horizontal component in direction Y
applied at the mass centre times

e

rx

|x |
rx

= 0.1
|x |
Lx
.

The two walls at the centre of the sides of the perimeter have: x = Ly/2, y=0, or
x=0, y=Lx/2. Then, these factors are equal to 1.05 and to 0.05, respectively.

(i) Interstorey drift ratio check, for the damage limitation seismic action

The interstorey drift ratio at the storey centre of mass is controlled by the deflec-
tion of the walls as vertical cantilevers under inverted triangular lateral loading. It
attains its maximum value at the top storey, where the axis of the wall rotates most
with respect to the vertical. It is equal to the elastic interstorey drift ratio under the
design lateral loading (considered for simplicity with a continuous inverted triangu-
lar distribution, instead of concentrated forces at floor levels), times the reduction
factor ν for the damage limitation seismic action (ν =0.5 for Importance Class II)
times the behaviour factor q=3:

Δδ7

H
≈ νq

1

28

Vb H 3
tot

(E I )wH
= 0.5 · 3 · 1

28
· 4320 · (7 · 2.8)3

(0.5 · 34000000 · 6.25) · 2.8
= 0.00586

So the interstorey drift ratio at the top storey exceeds the Eurocode 8 limit of
0.5% for damage limitation of brittle infill walls, but is acceptable for ductile parti-
tions (see Section 1.1.3). An exceedance by about 12% may be considered tolerable,
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in view of the fact that the contribution of the flat slab frames to lateral stiffness
has been neglected, although it is be available under the damage limitation seismic
action and indeed is quite large at the top storey.

An elastic analysis of the full structural system in 3D, with the in-plane flex-
ibility of the diaphragm taken into account but the flexural and shear stiffness of
the columns and the walls in their weak direction neglected, gives the following
interstorey drift ratios under the damage limitation seismic action:

at the top storey: 0.00627,
at the 6th storey: 0.00619,
at the 5th storey: 0.00591,
at the 4th storey: 0.00534,
at the 3rd storey: 0.00440,
at the 2nd storey: 0.00305,
at the 1st storey: 0.00125.

These values refer to the storey centre and are larger than at the location of the
walls, owing to the in-plane flexibility of the diaphragm considered in the analysis.

(j) Estimation and check of 2nd-order (P-Δ) effects through the sensitivity coeffi-
cient θ

The sensitivity coefficient θ (Eq. (4.45)) is equal to the interstorey drift ratio under
the design seismic action, times the total weight overlying the storey, divided by
the storey seismic shear. As in a wall system the reduction of the interstorey drift
ratio from the roof to the base is much faster than the increase of the ratio of
total weight overlying a storey to the storey seismic shear, θ is largest at the top
storey:

θ7 ≈ q
1

28

Vb H 3
tot

(E I )wH
· W/nst

2Vb/(nst + 1)
= qW (nst + 1)H 2

tot

56(E I )w

= 3 · 4320 · 8 · (7 · 2.8)2

56 · (0.5 · 34000000 · 6.25)
= 0.0067 � 0.1 → OK

For comparison, at the ground storey:

θ1 ≈ q
5

792

Vb H 3
tot

(E I )wH
· W

Vb
= 5qW nst H 2

tot

792(E I )w

= 5 · 3 · 4320 · 7 · (7 · 2.8)2

792 · (0.5 · 34000000 · 6.25)
= 0.0021.

(k) Verification of secondary seismic columns for the deformation-induced seismic
action effects

Bending moments and shears in secondary seismic elements are calculated from
their cracked stiffness and the deformations imposed on them by the design seismic



562 5 Detailing and Dimensioning of New Buildings in Eurocode 8

action, as obtained from an analysis where the contribution of secondary seismic
elements to lateral stiffness is neglected and primary seismic elements are mod-
elled with their cracked stiffness. These moments and shears should be less than the
design flexural and shear resistance MRd and VRd, respectively, determined accord-
ing to Eurocode 2.

According to (j) above, the interstorey displacement due to the design seismic
action is maximum at the top storey:

Δδ7 ≈ q
1

28

Vb H 3
tot

(E I )w
= 3 · 1

28
· 4320 · (7 · 2.8)3

0.5 · 34000000 · 6.25
= 0.033 m

At the ground storey, by contrast:

δ1 ≈ q
5

792

Vb H 3
tot

(E I )w
= 3 · 5 · 4320 · (7 · 2.8)3

792 · (0.5 · 34000000 · 6.25)
= 0.0058 m

If VEc,n is the (discounted) seismic shear of an interior column at the top storey
(i = n), the interstorey deflection of that column is:

Δδ7 ≈ VEc,n H 2

12

[
H

(E I )c,
+ L

(E I )b

]

where for the column: EIc=0.5 × 34000000 × 0.01067 kNm2 and for the equivalent
beam of the flat slab: EIb=0.5 × 34000000 × 0.0007 kNm2

If the interstorey deflection of an interior top storey column is equal to the value
of 0.033 m imposed by the wall deformation, VEc,n=116 kN is obtained, for which
the end moments is: MEc,n=116 × 2.65/2=153.6 kNm.

In a real design case, the elastic moments and shears in secondary seismic ele-
ments induced by the deformations imposed on them by the design earthquake act-
ing on the system of primary elements alone, may be estimated from an elastic
analysis of the full structural system in 3D (in this case with all columns and the
flat slab included) under lateral forces that produce in the primary seismic elements
in total the full design seismic base shear, Vb, multiplied by the q-factor. So, elas-
tic moments and shears in the secondary elements from the elastic analysis of the
full structural system in 3D, performed above to verify that the total contribution of
secondary elements to lateral stiffness is less than 15% of that of primary elements,
should be multiplied by q and divided by the fraction of the base shear taken by the
primary seismic elements. In this case that analysis gave a total base shear in all flat
slab frames and the weak direction of the walls 12.2% of the total base shear (see
end of Section (d) above). So, the multiplicative factor is: qVb/(Vb–0.122Vb)=3.42.
This exercise gives an elastic seismic shear in the top storey of a column near the
centre in plan equal to 136 kN and corresponding end moments 236 and 125 kNm
at the top and bottom section of that column, respectively. The maximum bend-
ing moment estimate in an interior column is 369 kNm and happens at the ground
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storey, because that column has a point of inflection near the level of the 1st floor.
To seek a hand-calculation approximation of that result, the 1st floor deflection of
the system of primary seismic elements, estimated above as 0.0058 m, is set equal
to the tip deflection of a ground storey column considered as a cantilever over the
full storey height:

δ1 ≈ VEc,1 H 3

3(E I )c

This gives: VEc,1=144 kN and a moment at the bottom section of 144 × 2.65=381
kNm.

– Check of interior columns in flexure:

• The minimum vertical reinforcement ratio of secondary columns is, accord-
ing to Eurocode 2, 0.2%. For an interior column, eight 14 mm-dia. bars
(1230 mm2), engaged at a corner of either the perimeter hoop or of a diamond-
shaped tie around the mid-side bars, give ρ=0.342%, d1=0.035 m, d=0.6–
0.035=0.565 m, δ1=0.035/0.565=0.062. Then for the tension and the com-
pression reinforcement: ω1=ω2= 0.25 × 1230 × (500/1.15)/(565 × 600 ×
35/1.5)=0.0169 and for the web reinforcement: ωv=2ω1 =0.0338.

• At the top storey the axial load is N=5 × 5 × 8.2=205 kN, giving
νd=N/bdfcd= 205/(0.565 × 0.6 × 35000/1.5)=0.0259, i.e., less than the value
of 0.106 of the left-hand-side of Eq. (3.51). Then Eq. (3.54) applies, giv-
ing ξ=0.084 and the design value of moment resistance from Eq. (3.59) is:
MRdc,n=346 kNm>MEc,n.

• At the ground storey we have N=7 × 205=1435 kN, giving νd=7 × 0.0259=
0.181 which meets Eq. (3.52): 0.106≤νd≤0.506. So from Eq. (3.52) we
get ξ=0.249 and Eq. (3.60) gives a design value of the moment resistance
MRdc,1=795 kNm>MEc,1.

– Check of interior columns in shear:

• Maximum stirrup spacing according to Eurocode 2:

– max sw=min{20dbL; hc; bc; 400 mm}, or
– max sw=0.6 min{20dbL; hc; bc; 400 mm} at lap-splices of vertical bars.

In this case, a 8 mm-dia. perimeter hoop and diamond-shaped ties engag-
ing the mid-side vertical bars, both @ 165 mm centres, fulfil the 2nd and
more stringent maximum spacing, providing ρw= (2+

√
2) × 50.25/(165 ×

600)=0.00173.

• Shear resistance of the column for shear compression according to
Eurocode 2:

VRd,max = 0.3(1 − fck(MPa)/250)bwz fcd sin 2 δ (1 ≤ cot δ ≤ 2.5).
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VRd,max = 0.3 × (1 − 35/250) × 0.6 × 0.9 × 0.565 × (35000/1.5) sin 2 δ

= 1269 kN, for cot δ = 2.5.

• Shear resistance of the column due to the shear reinforcement, according to
Eurocode 2:
VRd,s=bwzρwfywd cot δ+NEd(h–x)/Hcl, where the neutral axis depth, x = ξd,
may be taken equal to that at the moment resistance of the column.

– Top storey: VRd,s=0.6 × 0.9 × 0.565 × 0.00173 × (500000/1.15) ×
2.5+205 × (0.6–0.084 × 0.565)/2.65 = 616.5 kN.

– Ground storey: VRd,s=0.6 × 0.9 × 0.565 × 0.00173 × (500000/1.15) ×
2.5+1435 × (0.6–0.249 × 0.565)/2.65 =822.5 kN.

There is ample safety margin in shear.

(l) Design bending moments of the shear walls

The seismic base shear is shared equally by the two walls which are parallel to the
horizontal seismic action component, producing at the base of each wall:

– a bending moment equal to (2/3) × (7 × 2.8) × 4320/2=28225 kNm,
– increased for the accidental eccentricity to MEd,o=1.05 × 28225=29635 kNm.

The design envelope of seismic bending moments increases linearly from zero
at roof level to the maximum value, MEd,o, at the base. It is then displaced upwards
by the tension shift length, al, which should be consistent with the strut inclination
taken in the ULS verification for shear. The Eurocode 2 approximation is to take al

as 50% of the internal lever arm of the wall, ∼0.8lw, times the strut inclination taken
in the ULS verification for shear, cot δ: al=0.5 × 0.8lw cot δ=2 cot δ (in m). So the
design moment at a height z above the base of the wall is:

Md(z) = MEd,o[1 − max(0; z − 2 cot δ)/Htot].

(m) Dimensioning of vertical reinforcement at the base section of the walls for the
ULS in flexure

At its base each wall W1 has collected from its tributary floor area gravity loads
equal to Nd=7 × 2.5 × 10 × 8.2= 1435 kN. The vertical reinforcement at the base
of the wall may be estimated as follows.

The web reinforcement is chosen first: 14 mm-dia. bars @ 200 mm centres,
are placed near each face of the web, giving 1540 mm2/m and ρ=1540/(300 ×
1000)=0.51%, i.e. above the minimum required of 0.2%. In walls the internal lever
arm of the section is commonly taken equal to z=0.8lw, giving:

– effective depth d=4.5 m;
– distance of compression reinforcement from extreme fibres d1=0.5 m and
δ1=0.5/4.5=0.111;
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– mechanical ratio of web reinforcement: ωv=1540 × 4 × (500/1.15)/(4500 × 300
× 35/1.5)=0.085.

At the base section we have νd=N/bdfcd=1435/(4.5 × 0.3 × 35000/1.5)=0.0456,
i.e., less than the limit value of 0.187 at the left-hand-side of Eq. (5.42a). Solving the
nonlinear system of Eqs. (5.45a) and (5.46a), we estimate ξ≈0.2 and ω1=ω2≈0.18,
which gives:

As1 ≈ 0.18 × 4500 × 300 × (35/1.5)/(500/1.15) ≈ 13000 mm2.

This reinforcement area should be placed in a boundary element near each
edge of the section. Because the web reinforcement of 1540 mm2/m is considered
above to extend up to the centroid of the tension reinforcement, i.e. to a distance
(lw-z)/2=0.1lw=0.5 m from the edge of the section, the corresponding reinforce-
ment area of 1540 × 0.5=770 mm2 should be added to the ∼13000 mm2 of tension
reinforcement area estimated above, giving a total of ∼13770 mm2.

Twenty-eight 25 mm-dia bars (13740 mm2) are placed in each boundary ele-
ment near the section edge. For transverse reinforcement between these bars and
the concrete surface with 12 mm diameter, the centre of the 25 mm-dia bars is:
c+dbh+dbL/2∼0.02+0.012+0.025/2∼0.045 m from the nearest concrete surface.

The length of a boundary element corresponding to the maximum allowable steel
ratio of 0.04 in each boundary element is about 13740/(0.04 × 300)=1145 mm.
This exceeds the minimum required length of max(0.15lw, 1.5bw)=0.75 m. Four
out of the 28 bars are arranged closest to the extreme fibres of the section,
in a row parallel to the short side of the wall and at a distance of 45 mm
from it. The remaining 24 bars are placed at a distance of 45 mm from the
surface of the long sides of the section, at 85 mm centres (see section at the
bottom of Fig. 5.10(a)). This gives a total length of the boundary element:
lc=2 × 0.045+12 × 0.085=1.11 m and reinforcement ratio in each boundary
element equal to: ρ=13740/(1110 × 300)=4.125%, slightly over the maximum
of 4%.

If lc>max(2bw, lw/5)=1.0 m, the thickness of the boundary element, bw, should
be at least 200 mm and at least 10% of the storey height, H=2.8 m, i.e. at least
280 mm. In this case bw=300 mm is sufficient.

Within the length of 5–2 × 1.11=2.78 m between the boundary elements at
the opposite edges of the section, thirteen 14 mm-dia. bars @ 200 mm centres
are provided near each face of the web. For the boundary element reinforcement
arranged within a length lc=1.11 m from the edge of the section, about 0.61 ×
1540=940 mm2 out of the 13740 mm2 of vertical steel in the boundary element
belongs to the web reinforcement of 1540 mm2/m, considered to extend up to
the centroid of the tension reinforcement of the section. The balance of 13740–
940=12800 mm2 is the actual additional reinforcement of the boundary element. Its
centroid is at a distance from the short side of the section equal to: [490.9 × (2 ×
45+26 × 1110/2)–940 × (500+(1110–500)/2)]/12800≈500 mm. This confirms the
values d=4.5 m and d1=0.5 m adopted so far on the basis of the internal lever arm
value of 0.8lw=4.0 m.
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For: δ1=0.5/4.5=0.111; ω1=ω2= 12800 × (500/1.15)/(4500 × 300 × 35/1.5)=
0.1767; ωv=0.085; νd=0.0456; Eqs. (3.54) and (3.59) give a moment resistance at
the base section MRd,o=MRd(0)=29900 kNm≈MRd,o.

(n) Design shear forces of walls W1

The inverted triangular lateral forces that approximate the seismic loading at
storey i:

Fi = 2Vbi/nst(nst + 1),

produce storey shears:

Vi = Vb(nst + i)(nst + 1 − i)/nst(nst + 1)

shared equally by the two walls W1 which are parallel to the horizontal seismic
action component. The design storey shear of each wall from the analysis is fur-
ther multiplied by 1.05 for the accidental eccentricity. The seismic base shear is
Vb=0.1204 × 35875=4320 kN. Taking into account the amplification factor ε=1.5
of Eq. (1.16) on the storey shears of each wall from the analysis, V’Ed, the design
storey shear of each wall W1 at storey i is (in kN):

VEd(i) = 0.5 × 1.05εVb(nst + i)(nst + 1 − i)/nst(nst + 1)

= 3402(nst + i)(nst + 1 − i)/nst(nst + 1).

Note that Eq. (1.15) gives an amplification factor ε for DC H (for MRdo=29900
kNm, MEdo=29635 kNm, T1=1.015 s>TC=0.6 s and for q=4 in DC H) ε=2.46.
Therefore, for DC H and taking into account the higher value of the behaviour factor
(q=4, in lieu of q=3), the design storey shear of each wall W1 at storey i would had
been 23% higher.

(o) Verification of walls W1 for the ULS in shear and dimensioning of their shear
reinforcement

The “critical region” of the wall extends up to a height from the base: hcr≥max(lw,
Htot/6)=5 m, which is less than the upper limit of min(2lw, 2H)=5.6 m from the
base for walls with more than 6 storeys.

The shear resistance of DC M walls for diagonal compression is as specified
in Eurocode 2 for non-seismic actions: VRd,max=0.3(1–fck(MPa)/250)bwzfcd sin 2 δ
(1≤cot δ≤2.5).

For cot δ = 1 : VRd,max = 0.3(1 − 35/250) × 0.3 × 0.8 × 5 × (35000/1.5)

= 7220 kN ≥ VEd(1) = 3402 kN.

Note that with the reduction by 60% of VRd,max in the critical region of DC
H walls, we would have VRd,max=0.4 × 7220=2888 kN for DC H, which is less
than the design shear of 1.23 × 3402=4185 kN for DC H. Because of the large
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shortfall of shear resistance if the wall had been designed for DC H, it is prudent
not to increase the value of cot δ above the lower limit of cot δ=1, notwithstanding
the large margin between VRd,max = 7220 kN and VEd(1) =3402 kN in the design
for DC M. This margin would had allowed reducing the strut inclination so that
sin2δ=3402/7220=0.47, which nominally corresponds to cot δ=4. So, the upper
limit value cot δ=2.5 could have been employed in the critical region of the DC M
wall design.

The horizontal reinforcement ratio ρh=Asw/(bwsh) of slender walls is as in
Eurocode 2, i.e. for a design resisting shear of: VRd,s=bwzρwfywd cot δ, 1≤cot δ≤2.5.
Table 5.7 shows the outcome of its calculation for the limit values of cot δ. Recall
that we have opted for the safe-sided value cot δ=1 in the critical region, i.e. in the
1st and 2nd storey. So, the 1st and 2nd storey results for cot δ=2.5 are shown in
parentheses, as they will not be applied.

Design with cot δ =2.5 gives total savings of 600 kg in horizontal reinforcement.
The implications of the two alternative values of cot δ on the curtailment of vertical
reinforcement are considered below.

(p) Dimensioning and curtailment of wall vertical reinforcement above the base for
the ULS in flexure

The axial force in wall W1 (in kN) has a stepwise reduction at storey floors. In
storey i (i=1 at the base of the building) it is: Nd(i)=1435[1–(i–1)/nst], where nst=7
is the total number of storeys.

With the design moment decreasing with increasing height z from the base of the
wall as: Md(z)= MEd,o[1–max(0; z–2 cot δ)/Htot], the vertical reinforcement provided
at the base should be continued and anchored beyond the section at a distance from
the base z=2 cot δ (in m).

The web reinforcement of 14 mm-dia. bars @ 200 mm centres is continued to the
top of the wall. There, a curtain of twenty-five 14 mm-dia. bars @ 200 mm centres
is provided near each face of the wall, with the 1st and the last bar at 100 mm
from the edge of the section (top of Fig. 5.10(a)). To see if, and up to which level,
this reinforcement is sufficient for the design seismic moments of the top storey, the
moment resistance, MRd, provided by this web reinforcement alone is calculated for:

– ω1=ω2=0;
– d=5 m and δ1=0/5=0 (because the 1st and the last of the 14 mm-dia. bars @

200 mm centres are at 100 mm from the end of the section while their influence
reaches up to bar mid-distance, i.e. for 100 mm on each side of the bar, which is
to the extreme fibres of the wall);

– ωv=1540 × (500/1.15)/(1000 × 300 × 35/1.5)=0.0957 (for web reinforcement
of 1540 mm2/m);

– two values of the axial load ratio:

• one for cot δ=1, guessing that the level, z, we are looking for is within the 2nd
storey from the top: νd=2 × 205/(5 × 0.3 × 35000/1.5)=0.0117, and



568
5

D
etailing

and
D

im
ensioning

of
N

ew
B

uildings
in

E
urocode

8

Table 5.7 Dimensioning of wall horizontal reinforcement for two alternative strut inclinations

Design for cot δ=1 Design ρh for cot δ=1

Storey(i=1 at base) Design at shear VEd(kN) ρh(%) Horizontal reinforcement ρh(%) Horizontal reinforcement

1 3402 0.652 Two 12 mm-dia. @ 115 mm (0.261) Two 12 mm-dia. @ 290 mm
2 3280.5 0.629 Two 12 mm-dia. @ 120 mm (0.252) Two 12 mm-dia. @ 300 mm
3 3037.5 0.582 Two 12 mm-dia. @ 130 mm 0.233 Two 12 mm-dia. @ 325 mm
4 2673 0.512 Two 12 mm-dia. @ 145 mm 0.205 Two 12 mm-dia. @ 365 mm
5 2187 0.419 Two 12 mm-dia. @ 180 mm 0.168 Two 12 mm-dia. @ 450 mm
6 1579.5 0.303 Two 12 mm-dia. @ 250 mm 0.128a Two 10 mm-dia. @ 400 mma

7 850.5 0.163 Two 10 mm-dia. @ 320 mm 0.128a Two 10 mm-dia. @ 400 mma

aGoverned by the minimum requirements: ρh≥ max(0.1%, 0.25ρv), sh≤ 400 mm.
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• another for cot δ=2.5, guessing that the level, z, we are looking for is in the top
storey, where Nd(i = nst) =205 kN: νd=205/(5 × 0.3 × 35000/1.5)=0.0059.

Eq. (3.51) becomes: –0.0957 < νd < 0.5217 and is met by both values of νd above
(i.e., the extreme bars of the web reinforcement at the tension or the compression
side have yielded when the extreme compression fibres reach εcu=0.0035). So
Eq. (3.52) applies for ξ and (3.60) for the moment resistance, MRd, giving:

• For cot δ=1, ξ=0.1075 and MRd=8490 kNm. For MEd,o=29635 kNm,
Md(z)=MEd,o[1–(z–2 cot δ)/Htot] is equal to MRd=8490 kNm at z=16 m, and
the web reinforcement alone suffices above that level.

• For cot δ=2.5, ξ=0.102 and MRd=8135 kNm. Md(z) is equal to MRd=8490
kNm at z=19.2 m, i.e. just 0.4 m below the top of the building.

Below the z-levels determined above, the web reinforcement should be supple-
mented with some of the 25 mm-dia. bars placed at lower levels near the edge of the
section; let’s say, at each edge of the wall with four 25 mm-dia. bars within a vertical
plane parallel to the short side of the section (2nd from the top in Fig. 5.10(a)).

The 14 mm-dia. bars of the web need anchorage length lb = ( fyd/ fbd)(db/4) =
(500/1.15)/(2.25 × 2.2/1.5)db/4 = 33db = 465 mm, starting at the bottom surface
of the roof slab, i.e. 150 mm below the top of that slab. To accommodate this length,
the end of each 14 mm-dia. bar should be bent to a 90◦-hook. The axis of the hori-
zontal length of the bent bar should be at least 27 mm below the top surface of the
roof slab, to provide at least 20 mm of cover. To avoid damaging a bar when bend-
ing it, Eurocode 2 requires a mandrel diameter of at least 4 bar diameters for bars
with not more than 16 mm-dia. (mandrel radius 2 × 14 mm=28 mm). According to
Eurocode 2, this minumum mandrel diameter can be taken to prevent also damage
to the concrete by the high bearing pressures exerted on it by the bent, if

1. the straight length required past the end of the bend for anchorage of the bar is
not more than the 5 bar diameters used in “standard hooks”; and

2. the plane of bending is not close to the surface of the concrete face and, besides,
there is a cross bar inside the bend with diameter at least equal to that of the bent
bar.

If one of these conditions is not met (here the 14 mm-dia. bars do not meet
condition 1) then, according to Eurocode 2, to avoid damage to the concrete, the
value of the mandrel diameter, dm, should be not less than Fbt[(1/ab)+1/(2db. )]/ fcd

where Fbt is the tensile force in the bent bar at the start of the bend and ab is the
distance from the bar centre to the nearest concrete surface parallel to the plane
of the bend, or from the mid-point to the closest parallel bent bar (whichever is
smaller). In the present case, with the web bars @ 200 mm centres and the 1st and
the last one of them at 100 mm from the end of the section we have: ab=min[200/2;
100]=100 mm. Fbt is equal to fydπdb

2/4. times the ratio of the distance of the start
of the bend to the end of the bar (total anchorage length reduced by the straight
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anchorage length before the bend), to the required anchorage length, lb. As the axis
of a bent 14 mm-dia. bar should be at least 27 mm below the top surface of the roof
slab to provide at least 20 mm of cover for its horizontal portion, the bent bar should
start 27 mm+dm/2 below the top surface of the roof slab, providing a straight part of
the bar anchorage before the bend equal to (in mm) 150–27–dm/2. Therefore, with
dimensions in mm:

dm ≥ [1/ab + 0.5/db][33db − (150 − 27 − dm/2)] fydπd2
b/(4lb fcd) =

[1/100 + 0.5/14][342 + dm/2]πdb(500/1.15)/(4 × 33 × 35/1.5),

giving dm≥ 113 mm or 8.1db. So, the 14 mm-dia. web bars should be bent around
a mandrel diameter of 115 mm, starting at a point approximately 85 mm below the
top of the roof slab. This provides a straight anchorage length of 65 mm before the
bend. A horizontal length of 465–65-(π/4) × 115=310 mm should be provided after
the bend, for full anchorage of the 14 mm-dia. bars.

If cot δ=1 is used, curtailment of the four outermost 25 mm-dia. bars (those
within a vertical plane parallel to the short side of the wall section and 45 mm
from it) at z=16 m (i.e. 0.8 m below the floor of the 7th storey) is followed by a
straight anchorage length lb=33db=0.825 m. So, these four bars should continue up
to z=16.8 m, i.e. exactly to the top of the floor of the top storey (Fig. 5.10(b)).

If cot δ=2.5 is used, the outermost four 25 mm-dia. bars are curtailed at z=19.2
m (i.e., 0.4 m below the roof top, Fig. 5.10(c)). To accommodate the anchorage
length of lb=33db=0.825 m above that level, the 25 mm-dia. bars should be bent
into a 90◦-hook horizontally. To avoid damaging a bar when bending it, Eurocode 2
requires a mandrel diameter of at least 7 bar diameters, for bars of more than 16 mm-
dia. (mandrel radius 3.5 × 25 mm=87.5 mm). Regarding the mandrel diameter
needed according to Eurocode 2 to avoid damage to the concrete, as the 25 mm-
dia. bars continued to the roof and anchored there are at (300–2 × 45)/3=70 mm
centres, we have: ab=min[70/2; 45]=35 mm. Regarding the calculation of Fbt as
fydπdb

2/4. times the ratio of the distance of the start of the bend to the tip of the
bar (total anchorage length minus the straight part of it before the bend), to the
required anchorage length, lb, it is noted that the axis of the bent bar should be
at least 32.5 mm below the top surface of the roof slab, for at least 20 mm of
cover to its horizontal length. So the bent bar should start 32.5 mm+dm/2 below
the top surface of the roof slab, providing a straight anchorage length before the
bend of 400–32.5–dm/2 (in mm). Therefore, with dimensions in mm, we need
a mandrel diameter: dm≥[1/ab+0.5/db][33db–(400–32.5–dm/2)]fydπdb

2/(4lbfcd) =
[1/35+0.5/25][457.5+dm/2]πdb(500/1.15)/(4 × 33 × 35/1.5), giving dm ≥ 335 mm
or 13.5db. So, the 25 mm-dia. bars should be bent around a mandrel diameter of
335 mm, starting at a point approximately 32.5+dm/2=200 mm below the top of
the roof slab. This provides a straight anchorage length of 200 mm before the bend.
Therefore, for full anchorage of the 25 mm-dia. bars a horizontal length of 825–
200–(π/4) × 335=160 mm should be provided after the bend (top of Fig. 5.10(c)).

To determine the level, z, down to which the four 25 mm-dia. bars at a distance
d1=45 mm from the edge of the section, plus the web reinforcement of 14 mm-dia.
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bars @ 200 mm centres (with the 1st and the last bar 100 mm from the section’s
edge) suffice, the design value of moment resistance, MRd, is calculated with:

– d=5–0.045=4.955 m and δ1=45/4955=0.009;
– ω1=ω2=4 × 490.9/(4955 × 300) × (500/1.15)/(35/1.5)=0.0246;
– ωv=1540 × 5/(4955 × 300) × (500/1.15)/(35/1.5)=0.0965;
– two values of the axial load ratio:

• one for cot δ=1, guessing that the level, z, we are looking for is within the 3rd
storey from the top: νd=3 × 205/(4.955 × 0.3 × 35000/1.5)=0.0177; then,
ξ=0.1155 and MRd=12975 kNm, which is equal to Md(z)=MEd,o[1–(z–2 cot
δ)/Htot] at z=13.02 m; including lb=33db=0.825 m for anchorage of the bars
coming from below, the four 25 mm-dia. bars next to each edge of the section,
plus the web reinforcement, are not sufficient below z=13.85 m (0.15 m below
the floor of the 2nd storey from the top, Fig. 5.10(b)).

• another for cot δ=2.5, guessing that the level, z, we are looking for is within
the 2nd storey from the top: νd=2 × 205/(4.955 × 0.3 × 35000/1.5)=0.0118;
then, ξ=0.11 and MRd=12630 kNm, which is equal to Md(z)=MEd,o[1–(z–2
cot δ)/Htot] at z=16.25 m; with lb=33db=0.825 m for anchorage of the bars
coming from below, the four 25 mm-dia. bars next to each edge of the section,
plus the web reinforcement, are not sufficient below:
z=17.1 m, i.e. 0.3 m above the floor of the top storey, Fig. 5.10(c).

The twenty four 25 mm-dia. bars arranged at each far end of the base section
parallel to the long sides should be gradually introduced between level z=2 cot δ
(plus straight anchorage) on one hand and z=13.85 m for cot δ=1, or z=17.2 m
for cot δ=2.5 on the other. The difference between these two levels corresponds
to about four storeys. So, these twenty four 25 mm-dia. bars are curtailed in four
groups of three pairs of bars each, starting from the pairs closest to the centre of the
section and proceeding towards the edge, Fig 5.10(a). We determine next the four
levels where each group of three pairs of 25 mm-dia. bars is curtailed.

We start with the search for level, z, down to which it is sufficient to have (a)
four 25 mm-dia. bars at a distance of 45 mm from each end of the section, plus
(b) three pairs of 25 mm-dia. bars at 85 mm centres parallel to the long side, with
the first one at 45+85=130 mm from the end of the wall section, plus (c) the web
reinforcement of 14 mm-dia. bars @ 200 mm centres (with the 1st and the last bar
500 mm from the end of the section, see 3rd section from the top in Fig. 5.10(a)). To
this end, we calculate the corresponding design value of moment resistance, MRd.
The ten 25 mm-dia. bars near each of the end of the section occupy an end length
of the wall section equal to 0.045+3 × 0.085+0.045=0.345 m from the edge of the
section. About 0.2 × 1540=310 mm2 out of the 4910 mm2 of the ten 25 mm-dia
bars of that end belong to the web reinforcement of 1540 mm2/m. The balance of
4910–310=4600 mm2 is the actual additional tension or compression reinforcement
of the section. Its centroid is at: [490.9 × (2 × 45+8 × 345/2)–310 × (140+(345–
140)/2)]/4600≈140 mm from the section edge. So:
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– d1=0.14 m, d=5–0.14=4.86 m and δ1=0.14/4.86=0.029;
– ω1=ω2=4600 × (500/1.15)/(4860 × 300 × 35/1.5)=0.0588;
– ωv=1540 × (4.86–0.14)/(4860 × 300) × (500/1.15)/(35/1.5)=0.0929;
– two values of the axial load ratio are of interest:

• one for cot δ=1, guessing that the level, z, we are looking for is within the
4th storey from the top: νd=4 × 205/(4.86 × 0.3 × 35000/1.5)=0.0241; then,
ξ=0.1225 and MRd=18070 kNm, which is equal to Md(z)=MEd,o[1–(z–2 cot
δ)/Htot] at z=9.65 m; with lb=33db=0.825 m for anchorage of the bars coming
from below, the ten outermost 25 mm-dia. bars near each edge of the section,
plus the web reinforcement, suffice down to z=10.5 m (0.7 m below the floor
of the 5th storey, Fig. 5.10(b)).

• another for cot δ=2.5, guessing that the level, z, we are looking for is within
the 3rd storey from the top: νd=3 × 205/(4.86 × 0.3 × 35000/1.5)=0.0181;
then, ξ=0.1165 and MRd=17675 kNm, which is equal to Md(z)=MEd,o[1–(z–
2 cot δ)/Htot] at z=12.9 m; including lb=33db=0.825 m for anchorage of the
bars coming from below, the ten outermost 25 mm-dia. bars near each edge of
the section, plus the web reinforcement, suffice down to z=13.75 m, i.e. 0.25
m below the floor of the 6th storey, Fig. 5.10(c).

Below the z-level established above, another set of three pairs of 25 mm-dia. bars
is added near each far end of the wall section, at 85 mm centres parallel to the long
sides.

To determine the level, z, down to which it is sufficient to have (see 3rd section
from the top in Fig. 5.10(a)): (a) four 25 mm-dia. bars at 45 mm from each far end
of the section, plus (b) 6 pairs of 25 mm-dia. bars at 85 mm centres parallel to the
long side, with the 1st pair at 45+85=130 mm from the end of the wall section, plus
(c) the web reinforcement of 14 mm-dia. bars @ 200 mm centres (with the 1st and
the last bar 700 mm from the end of the section), the corresponding design moment
resistance, MRd, is computed. The sixteen 25 mm-dia. bars near each end of the sec-
tion occupy a length of 0.045+6 × 0.085+0.045=0.6 m from the edge. Then, about
0.35 × 1540=540 mm2 out of the 7855 mm2 of the sixteen 25 mm-dia bars of that
end belong to the web reinforcement of 1540 mm2/m and the actual area of the addi-
tional tension or compression reinforcement is 7855–540=7315 mm2. Its centroid is
at [490.9 × (2 × 45+14 × 600/2)–540 × (255+(600–255)/2)]/7315≈255 mm from
the edge of the section. So,

– d1=0. 255 m, d=5–0. 255=4.745 m and δ1=0. 255/4.745=0.054;
– ω1=ω2=7315 × (500/1.15)/(4745 × 300 × 35/1.5)=0.0958;
– ωv=1540 × (4.745–0.255) × (500/1.15)/(4745 × 300 × 35/1.5)=0.0905;
– two values of the axial load ratio are considered:

• one for cot δ=1, guessing that the level, z, we are looking for is within the
5th storey from the top: νd=5 × 205/(4.745 × 0.3 × 35000/1.5)=0.0309;
this value of νd is less than that of the left-hand-side of Eq. (3.51); then from
Eqs. (3.54) and (3.59): ξ=0.135 and MRd= 22700 kNm, which is equal to
Md(z)=MEd,o[1–(z–2 cot δ)/Htot] at z=6.6 m; with lb=33db= 0.825 m for
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anchorage of the bars coming from below, the sixteen outermost 25 mm-dia.
bars near each edge of the section, plus the web reinforcement, suffice down
to z=7.4 m, i.e. 1.0 m below the floor of the 4th storey, Fig. 5.10(b).

• another for cot δ=2.5, guessing that the level, z, we are looking for is within
the 4th storey from the top: νd=4 × 205/(4.745 × 0.3 × 35000/1.5)=0.0247;
as above we get ξ=0.135 and MRd=22320 kNm, which is equal to
Md(z)=MEd,o[1–(z–2 cot δ)/Htot] at z=9.85 m; with lb=33db=0.825 m for
anchorage of the bars coming from below, the sixteen outermost 25 mm-dia.
bars near each edge of the section, plus the web reinforcement, suffice down
to z=10.65 m, i.e. 0.55 m below the floor of the 5th storey, Fig. 5.10(c).

Below the z-level established above, another set of three pairs of 25 mm-dia. bars
is added at each end of the wall, at 85 mm centres parallel to its long side.

To determine the level, z, down to which it is sufficient to have (see 2nd section
from the bottom in Fig. 5.10(a)): (a) four 25 mm-dia. bars at a distance of 45 mm
from each end of the section, plus (b) nine pairs of 25 mm-dia. bars at 85 mm centres
parallel to the long side, the 1st pair at 45+85=130 mm from the edge of the wall
section, plus (c) the web reinforcement of 14 mm-dia. bars @ 200 mm centres (with
the 1st and the last bar 900 mm from the edge of the section), the corresponding
design moment resistance, MRd, is computed. If the 22 bars near each end occupy
0.045+9 × 0.085+0.045=0.855 m from the edge, about 0.48 × 1540=740 mm2

out of the 10800 mm2 of the twenty-two 25 mm-dia bars of that end belong to the
web reinforcement of 1540 mm2/m. The balance of 10800–740=10060 mm2 is the
actual additional tension or compression reinforcement in the section. Its centroid
is at [490.9 × (2 × 45+20 × 855/2)–740 × (375+(855–375)/2)]/10060≈375 mm
from the edge. So:

– d1=0.375 m, d=5–0.375=4.625 m and δ1=0.375/4.625=0.08;
– ω1=ω2=10060 × (500/1.15)/(4625 × 300 × 35/1.5)=0.1351;
– ωv=1540 × (4.625–0.375) × (500/1.15)/(4625 × 300 × 35/1.5)=0.0879.
– two values of the axial load ratio are of interest:

• one for cot δ=1, guessing that the level, z, we are looking for is at the 2nd
storey: νd= 6 × 205/(4.625 × 0.3 × 35000/1.5)=0.038; then ξ=0.1645
and MRd=26580 kNm, which is equal to Md(z)=MEd,o[1–(z–2 cot δ)/Htot] at
z=4.03 m; with lb=33db=0.825 m for anchorage of the bars coming from
below, the twenty-two outermost 25 mm-dia. bars near each edge of the sec-
tion, plus the web reinforcement, suffice down to z=4.85 m, i.e. 0.75 m below
the floor of the 2nd storey, Fig. 5.10(b).

• another for cot δ=2.5, guessing that the level, z, we are looking for is within
the 5th storey from the top: νd=5 × 205/(4.625 × 0.3 × 35000/1.5)=0.0317;
then ξ=0.157 and MRd= 25830 kNm, which is equal to Md(z)=MEd,o[1–(z–
2 cot δ)/Htot] at z=7.5 m; with lb=33db= 0.825 m for anchorage of the bars
coming from below, the twenty-two outermost 25 mm-dia. bars near each edge
of the section, plus the web reinforcement, suffice down to z=8.35 m, i.e. 0.05
m below the floor of the 4th storey.
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Fig. 5.10 Vertical wall reinforcement in one (symmetric) half of the wall for the two values of
cot δ: layout of vertical bars in wall section (a); curtailment of vertical bars for (b) cot δ =1; (c)
cot δ =2.5

Below the level established above, the full twenty-eight 25 mm-dia. bars are placed
at each end of the wall section, at 85 mm centres parallel to its long side (bottom
section in Fig. 5.10(a)).

Fig. 5.10 depicts the layout of vertical reinforcement for the two values of cot δ.
Design with cot δ=1 gives savings of 712 kg in the vertical steel compared to

cot δ=2.5. The savings exceed the additional 600 kg of horizontal reinforcement
required. So, the use of cot δ=1 not only provides better protection against brittle
shear failure, but is also more cost-effective.
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(q) Confinement and detailing of boundary elements in the “critical region” of walls
W1

The “critical region” of walls W1 extends up to a height from the base, hcr≥ max(lw,
Htot/6)=5 m.

For DC M walls Eurocode 8 allows using for the confining reinforcement of
boundary elements in the “critical region” the Eurocode 2 rules alone, if for the max-
imum value of the wall axial force from the analysis for the design seismic action
plus concurrent gravity loads νd does not exceed 0.15. The Eurocode 2 require-
ments, limited to the part of the section where ρL>2%, are as follows:

– laterally unrestrained bars in the compression zone should be not further than
150 mm from a restrained one;

– transverse reinforcement should be provided, with diameter dbw≥max(6 mm;
dbL/4) and spacing sw≤min{12dbL; 0.6bwo; 240 mm} up to a distance of 4bw

above and below floor beams and slabs, or sw ≤min(20dbL; bwo; 400 mm) beyond
that distance.

The condition νd≤0.15 is met in the present case. So, just 8 mm-dia. transverse
reinforcement (dbw ≥dbL/4) at 180 mm centres (sw ≤0.6bwo) suffices (the length
of the wall where wider spacing is sufficient is just 2.65–2 × 4bw=0.25 m at
storey mid-height). It should engage 25 mm-dia. vertical bars at a spacing along
the perimeter 3 × 85=265 mm< 2 × 150 mm.

For illustration purposes, the rules for confinement and detailing of boundary
elements in the “critical region” of DC M walls holding in the normal case without
the exception for νd≤0.15 are applied. According to them, the detailing provisions
of the “critical regions” of DC M columns apply (see Tables 5.2 and 5.3 and Section
5.3.4). They are applied with:

– at the ground storey: νd=1435/(5 × 0.3 × 35000/1.5)=0.041;
– web reinforcement over a length of d–d1=4 m: ωv=1540 × 4 × (500/1.15)/(5000

× 300 × 35/1.5)= 0.0765;
– bo=bw–2c–dbw=0.3–2 × 0.02–0.012=0.248 m, for hoop diameter dbw=12 mm

and cover c=20 mm;
– minimum length min lc=0.15lw=0.75 m;
– MRdo=29900 kNm and MEdo=29635 kNm, givingμϕ=2qo(MEdo/MRdo)–1=4.95.

Then: aωwd ≥ 30μφ(νd+ων)εydbw/bo–0.035 = 30 × 4.95 × (0.041+0.0765) ×
0.00217 × 0.3/0.248–0.035 =–0.03< 0, confirming that Eurocode 2 rules may be
applied for the confinement of boundary elements if νd≤0.15.

When the wall base was verified for the ULS in flexure, the total length of
the boundary element was chosen as lc=1.11 m, i.e., larger than the minimum of
0.15lw=0.75 m. This was to respect the maximum vertical reinforcement ratio of
0.04 in boundary elements. A perimeter tie around the boundary element has cen-
treline dimensions boxho≈1055 × 250 mm and is supplemented by five cross-ties
with centreline length of ∼250 mm, each one engaging every 2nd pair of vertical
bars on opposite faces of the wall, placed at 85 mm centres along the long side of
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the boundary element (bottom section in Fig. 5.10(a)). So, there is indeed a vertical
bar engaged by a stirrup corner or cross-tie every ≤200 mm along the perimeter of
the boundary element, except along the short side at the edge, where only the corner
bars are engaged at a distance of ∼210 mm. This gives:

ωwd = Asw[2(bo + ho) + 5bo]/(bohosw) fyd/ fcd

= (π122/4) × [2 × (1055 + 250) + 5 × 250]

(500/1.15)/(35/1.5)/(1055 × 250sw)

and for ωwd≥ 0.08 we need: sw< 385 mm. So, in the end the minimum requirement
on stirrup spacing governs: sw=min{8dbL; bo; 175 mm}=175 mm, which provides
ωwd=0.08 × 385/175=0.176.

With the chosen arrangement and detailing of the boundary elements, we have:
nb=2, nh=7 and:

a = (1 − 0.5 × 175/250)(1 − 0.5 × 175/1055)[1 − {250/((2 − 1)

× 1055) + 1055/((7 − 1) × 250)}/3] = 0.409, aωwd = 0.072.

With this available value of aωwd, the condition aωwd=30μφ(νd+ων)εydbw/bo–
0.035 gives an available value of μφ: μφ=11.5, which in turn gives a correspond-
ing value of qo=(μϕ+1)/(2MEdo/MRdo)=6.3. So, with the confinement reinforcement
placed, the wall has ductility and deformation capacity that can support a q-factor
value 57.5% higher than that of a DC H wall and a design peak ground acceleration
of 0.525 g, instead of the present one of 0.25 g. However, this flexural deforma-
tion capacity cannot be exploited in the framework of Eurocode 8 design for DC H,
because, with its shear resistance reduced to 40% of the Eurocode 2 value, the wall
cannot take the highly amplified design shear forces of a DC H design.

Above the “critical region” (in this case, from the 3rd to the top storey) transverse
reinforcement is required around the 25 mm-dia. vertical bars near the edges of the
wall section, because there the vertical steel ratio, ρL, exceeds 2%. Such transverse
reinforcement is placed all along the storey height, because the distance of 4bw=1.2
m above and below the floor slabs leaves just 250 mm at storey mid-height as the
part of the wall where a wider transverse reinforcement spacing suffices.

A 8 mm-dia. (dbw≥dbL/4) perimeter tie at 180 mm centres (sw≤0.6bwo) is used
around the outermost 25 mm-dia. vertical bars at the level of interest. It is supple-
mented by cross-ties with centreline length ∼250 mm engaging every 3rd pair of
25 mm-dia. vertical bars on opposite faces of the wall in its short direction (so, in
the compression zone the distance of laterally unrestrained bars from the nearest
restrained one is ≤150 mm). More specifically (see Fig. 5.10(a)):

1. Wherever the full twenty-eight 25 mm-dia. bars are needed near each end
of the wall section, the compression zone extends to ∼900 mm from the
edge of the section and the 8 mm-dia. perimeter tie engaging the four corner
25 mm-dia. bars has centreline dimensions boxho≈1055 × 250 mm. It is
supplemented by three cross-ties with centreline length ∼250 mm engaging
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every 3rd pair of intermediate 25 mm-dia. vertical bars on opposite faces of the
wall (see bottom section in Fig. 5.10(a)).

2. Wherever twenty-two 25 mm-dia. bars are placed near each end of the section,
the compression zone extends up to ∼760 mm from the section edge and the
8 mm-dia. perimeter tie engaging the four corner 25 mm-dia. bars has centreline
dimensions boxho≈800 × 250 mm. It is supplemented by two cross-ties with
centreline length ∼250 mm engaging every 3rd pair of intermediate 25 mm-dia.
vertical bars on opposite faces of the wall (see 2nd section from the bottom in
Fig. 5.10(a)).

3. Wherever sixteen 25 mm-dia. bars are needed near each section end, the com-
pression zone extends to ∼640 mm from the edge of the section and the
8 mm-dia. perimeter tie engaging the 4 corner bars has centreline dimensions
boxho≈545 × 250 mm. It is supplemented by one cross-tie with centreline length
∼250 mm engaging only the middle pair of 25 mm-dia. vertical bars on opposite
faces of the wall (see 3rd section from the bottom in Fig. 5.10(a)).

4. Wherever ten 25 mm-dia. bars are needed near each end of the wall section, the
compression zone extends to ∼600 mm from the section edge but the vertical
steel ratio, ρL, exceeds 2% only over the outermost 340 mm. Only an 8 mm-dia.
perimeter tie is placed around the four corner 25 mm-dia. bars, with centreline
dimensions boxho≈290 × 250 mm (see 3rd section from the top in Fig. 5.10(a)).

5. Near the top of the wall, where four 25 mm-dia. bars are placed next to the edge
of the wall section, the compression zone extends up to ∼540 mm from the end of
the section, but the steel ratio, ρL, of the combination of the four 25 mm-dia. bars
and the 14 mm-dia. web bars exceeds 2% only over the outermost ∼330 mm. A
8 mm-dia. perimeter tie is placed around the two corner 25 mm-dia. bars and
the 2nd pair of 14 mm-dia. web bars, with centreline dimensions boxho≈285 ×
250 mm (see 2nd section from the top in Fig. 5.10(a)).

As pointed out at the beginning of this section, because the condition νd≤0.15
is met, 8 mm-dia. hoops @ 180 mm centres placed all around 25 mm-dia. bars at a
distance on the perimeter of 265 mm, are sufficient even in the “critical region”, i.e.
as in case 1 above. This gives:
ωwd = Asw[2(bo+ho)+5bo]/(bohosw)fyd/fcd = (π × 82/4) × [2 × (1055+250)+3 ×
250] × (500/1.15)/(35/1.5)/(1055 × 250 × 180) = 0.066. With the chosen detailing
of reinforcement in boundary elements, we have: nb=2, nh=7 and hence:
a=(1–0.5 × 180/250)(1–0.5 × 180/1055)[1–{250/((2–1) × 1055)+1055/((5–1) ×
250)}/3]=0.333, aωwd = 0.022. With this available value of aωwd the condition
aωwd=30μφ(νd+ων)εydbw/bo–0.035 gives an available value ofμφ:μφ=6.15, which
in turn gives a corresponding value of qo= (μϕ+1)/(2MEdo/MRdo)=3.6, consistent
with DC M design. So, indeed, at least in the present case with νd =0.045, confine-
ment of the “critical region” following just the Eurocode 2 rules is sufficient.

(r) ULS verification of diaphragms

According to Eurocode 8, floor diaphragms should have the in-plane resistance nec-
essary to transfer to the lateral-load-resisting systems the inertia loads that develop
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in them from the analysis for the design seismic action, multiplied by an over-
strength factor γ d, with a recommended value of 1.1 for ductile modes of behaviour
and failure (those associated with yielding of steel) or of 1.3 for brittle ones (e.g.,
for concrete in shear). The action-effects in a diaphragm may be estimated by mod-
elling it as a deep beam or plane truss, or with Strut-and-Tie models, consider-
ing the lateral-load-resisting system as providing elastic support in the horizontal
direction. Strictly speaking, explicit verification of concrete diaphragms is called
for in Eurocode 8 only for DC H buildings with recesses, re-entrant corners or
other diaphragm irregularities in plan, or irregularities in the distribution of mass
or stiffness (e.g., due to set-backs or off-sets in plan), or with basement walls only
along part of the perimeter or of the ground floor area. Special mention is made in
Eurocode 8 of the need to verify the transfer of horizontal forces from diaphragms
to the cores or walls of DC H buildings. To this end, the design shear stress at the
interface of the diaphragm and the core or wall should be limited to 1.5 times the
design value of concrete tensile strength, fctd. Besides, the resistance against shear
sliding should be verified with a strut inclination of 45◦.

Although this building does not fall in one of the cases where explicit verification
of diaphragms is required in Eurocode 8, such a verification is included here, not
only for illustration, but also because the entire floor inertia loads in each horizontal
direction are transferred to just two shear walls at the edges.

According to the analysis, the inertia loads at floor i of a building with nst storeys
are equal to the design spectral acceleration (in g’s) times 2i/(nst+1), times the floor
gravity load which is concurrent with the design seismic action.18 This concurrent
gravity load is computed without a reduction on the quasi-permanent part of the live
loads for simultaneity of loading at different floors (ϕ=1) and does not include the
weight of primary seismic vertical members. Normally the most critical diaphragm
is either at the roof (i = nst) or at the storey below, if it has larger floor weight than
the roof. In the present case the design spectral acceleration is 0.1204 g and the floor
weight at the roof is 8.2 kN/m2 and at the storey below is 8.2+0.2 × 0.6–25 × 2.65
× (2 × 5 × 0.3)/252 = 8.161 kN/m2. So, the roof is more critical, with inertia load
of qE=0.1204 × 8.2 × 2 × 7/(7+1) = 1.728 kN/m2.

The shear force for the ULS verification of the diaphragm in shear and
against shear sliding at the interface of the diaphragm and walls W1 is equal to
γ dqELxLx=1.3 × 1.728 × 252/2= 702 kN.

The diaphragms of this building may be considered to work under the horizontal
seismic action component in direction X as deep beams with span Ly=25 m and total
depth Lx=25 m, simply supported at mid-depth of the two end sections by the shear
walls W1 and subjected to a uniformly distributed in-plane load (qE = 1.728 kN/m2

at the roof). The deep beam idealisation is equivalent to a Strut-and-Tie model as a

18Nonlinear dynamic seismic response analyses, as well as measurements on buildings, give floor
response acceleration values much higher than suggested by a linear elastic analysis with the elastic
spectrum reduced by the q-factor. The large difference may be due to higher modes, as well as to
the overstrength of the lateral-load-resisting system, which extends the elastic range of response
much beyond what is assumed in design.
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plane truss over the part of the diaphragm between two parallel lines, at right angles
to the horizontal seismic action component in question:

1. the 1st line connects the centres of the two walls W1 which are parallel to the
horizontal component of the seismic action and resist the lateral loading;

2. the 2nd line is along the edge in plan on the “windward” side (where the over-
turning moment due to lateral loading induces tension in the vertical elements of
the lateral-load-resisting system).

The Strut-and-Tie model comprises (see Fig. 5.11):

a) a tension chord centred along line 1, with width equal to the length, lw, of the
walls W1 it connects;

b) a polygonal (about semi-circular) compression chord connecting the two ends of
the tension chord at the centres of the two walls W1; its apex is near the centre
of the orthogonal wall W2 on line 2;

c) a number of closely spaced tension ties parallel to the horizontal component of
the seismic action, running from the edge in plan which is parallel and opposite
to line 2 above; the ties collect the in-plane load qE=1.728 kN/m2 and transfer it
to the compression chord.

– Verification of the tension ties in (c) above:

Fig. 5.11 Strut-and-Tie model of diaphragm
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The longest tension ties (those close to the apex of the compression chord) collect
an in-plane load qE =1.728 kN/m2 along the full plan dimension Lx of the building
parallel to the horizontal component of the seismic action. For the ULS verification
of the ties in tension, any vertical section through the flat slab normal to horizon-
tal direction X should have reinforcement area at least γ dqELx/fyd= 1.1 × 1.728 ×
25/(0.5/1.15)=110 mm2/m over and above what is required for the moment resis-
tance of the flat slab for bending due to the floor gravity load which is concurrent
with the design seismic action.

The reinforcement of the flat slab is normally dimensioned for ULS resistance in
bending for the moments in the flat slab under the factored gravity loads, denoted
here as Md. If Mg+ψ2q is the moment (per linear meter) in the flat slab due to the floor
gravity loads which are concurrent with the design seismic action, then the surplus
of reinforcement area over and above what is necessary for ULS resistance under
this bending moment is ΔAs=max[As,min; Md/(zfyd)]–Mg+ψ2q/(zfyd), where z≈0.9 ×
(0.15–0.025)≈0.11 m is the internal lever arm and As,min the minimum reinforce-
ment in the flat slab according to Eurocode 2. Without crack control requirements,
it is: As,min=(0.26fctm/fyk)bd=(0.26 × 3.2/500) × 1000 × 125=208 mm2/m. If the
factored gravity loads combination is γ gG+γ qQ=1.35G+1.5Q, it produces a load
on the roof slab qd= 1.35 × 8.2+1.5 × 2=14.7 kN/m. The corresponding load due
to the gravity loads concurrent with the design seismic action is g=8.2 kN/m. So,
Mg+ψ2q=(8.2/14.7)Md. The critical location for ΔAs is where Md is minimum.

With the bending of the flat slab fully restrained at the edge by the weak direc-
tion of walls W2, the minimum value of Md along the longest tension ties is
the sagging moment at mid-distance between wall W2 and the 1st row of inte-
rior columns parallel to W2 (Section 1-1 in Fig. 5.11). According to the direct
design method in ACI (2008) this moment is equal to 0.35Mo, where Mo=qdlxn

2ly/8
is the total static moment in a flat slab panel, lxn=5–0.6/2–0.5/2=4.45 m is the
clear span of the exterior panel in the X direction and ly=Ly/5 its centre-to-centre
span in the orthogonal direction. The middle strip of the flat slab between col-
umn strips, having width 0.5ly=2.5 m, should resist 40% of the sagging moment
0.35Mo. So, the design moment in the middle strip is: Md=0.4 × (0.35 × 14.7 ×
4.452 × 5/8)/(2.5)= 10.2 kNm/m and requires reinforcement area As=10.2/(0.11
× 0.5/1.15)=213 mm2/m>As,min. Hence, the surplus of reinforcement area is:
ΔAs=(1–8.2/14.7) × 10.2/(0.11 × 0.5/1.15)=94.4 mm2/m, i.e., less than the
required area of 110 mm2/m. Verification of the tension ties requires increasing
the reinforcement area of the flat slab within its middle strips between wall W2 and
the 1st parallel row of interior columns, as well as between any rows of interior
columns, to ≥ 110+213 × 8.2/14.7=229 mm2/m.

Another potentially critical location is at the tension ties heading towards the
edge column next to wall W2 (Section 2-2 in Fig. 5.11). In flat slabs without edge
beams the minimum value of Md occurs near the edge column restraining the flat
slab. According to the direct design method of ACI (2008) the total moment trans-
ferred there from the slab to the edge column is 26% of Mo=qdlxn

2ly/8. This moment
is resisted by reinforcement at right angles to the edge of the flat slab, placed accord-
ing to Eurocode 2 within a slab width centred at the edge column and equal to
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the sum of its cross-sectional dimensions. This gives a design moment: Md=(0.26
× 14.7 × 4.452 × 5/8)/(0.5+0.5)=47.3 kNm/m and a surplus of reinforcement
area ΔAs=(1–8.2/14.7) × 47.3/(0.11 × 0.5/1.15)=438 mm2/m, i.e., more than the
required area of 110 mm2/m in the tension ties. Outside this slab width the reinforce-
ment at right angles to the edge of the flat slab is just the minimum in Eurocode 2:
As,min=208 mm2/m, which is again more than the area of 110 mm2/m required for
the tension ties.

A final potentially critical location for the tension ties is between the row of
columns at the edge of the slab and the 1st parallel row of interior columns
(Section 3-3 in Fig. 5.11). According to the direct design method of ACI (2008)
the middle strip of the flat slab, having width 0.5ly=2.5 m, should resist 52% of
Mo=qdlxn

2ly/8. This gives a design moment: Md=(0.52 × 14.7 × 4.452 × 5/8)/2.5=
37.85 kNm/m, producing a surplus of reinforcement area: ΔAs=(1–8.2/14.7) ×
37.85/(0.11 × 0.5/1.15)= 350 mm2/m, again greater than the minimum tension tie
area of 110 mm2/m. Therefore, it is only at the bottom surface of the flat slab within
its middle strips between wall W2 and the 1st parallel row of interior columns, as
well as between any rows of interior columns, that the reinforcement area should
be increased to a total of 229 mm2/m (sum at top and bottom surface), to allow
the tension ties to transfer the floor inertia loads to the compression chord of the
Strut-and-Tie model.

– Verification of the tension chord between the supports of the deep beam by the
two walls W1.

The tension force in this chord may be estimated from moment equilibrium between:

• the couple of internal forces in the tension chord connecting the walls W1 on
one hand and in the compression chord close to wall W2 on the other, and

• the uniformly distributed in-plane load of 1.728 kN/m2 and the force reactions
to it at walls W1.

This gives an internal lever arm in the deep beam z≈Lx/2 and a force in the
tension chord: (qELxLy

2/8)/(Lx/2) = qELy
2/4. The required reinforcement area is:

As,t-chord = γ dqELy
2/(4fyd) = 1.1 × 1.728 × 252/(4 × 0.5/1.15)=683 mm2, i.e.

683/5=136.5 mm2/m within the 5 m of the width of the tension chord from one
wall W1 to the opposite. The minimum area of reinforcement available in that
5 m-wide strip, over and above what is necessary for ULS resistance against the
bending moments in the flat slab due to the floor gravity load concurrent with
the design seismic action is ΔAs= max[As,min; Md/(zfyd)]–Mg+ψ2q/(zfyd), computed
with the minimum values of Md and Mg+ψ2q= (8.2/14.7)Md along the strip. With
the flat slab fully restrained at the edge by the weak direction of walls W1,
the minimum value of Md in that strip according to the direct design method
of ACI (2008) is the sagging moment at mid-distance between W1 and the 1st
parallel row of interior columns, or between any two rows of interior columns:
Md=0.35Mo=0.35qdlyn

2lx/8, where lyn=5–0.6/2–0.5/2= 4.45 m is the clear span
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of the exterior panel in the Y direction and lx=Lx/5 its centre-to-centre span in
the orthogonal direction. 40% of that moment is resisted by the 2.5 m-wide mid-
dle strip between the two column strips centred along the rows of columns defin-
ing the tension chord. The sagging design moment in the middle strip is then:
Md=0.4 × (0.35 × 14.7 × 4.452 × 5/8)/2.5= 10.2 kNm/m, requiring reinforce-
ment area: 10.2/(0.11 × 0.5/1.15)=213 mm2/m>As,min and giving surplus rein-
forcement area ΔAs=(1–8.2/14.7) × 10.2/(0.11 × 0.5/1.15)=94.4 mm2/m, i.e., less
than the required area of 136.5 mm2/m for the tension chord. So, the reinforce-
ment area neccesary between W1 and the 1st parallel row of interior columns, as
well as between any rows of interior columns between the two walls W1, should be
increased to at least 136.5 mm2/m+Mg+ψ2q/(zfyd) = 136.5+8.2/14.7 × 10.2/(0.11 ×
0.5/1.15) =255.5 mm2/m

Taking into account that the design seismic action is applied separately in hori-
zontal directions X and Y, the conclusions of the Strut-and-Tie verifications of the
diaphragm are:

– Within the 5 m-wide strips of the flat slab extending from one wall of the perime-
ter to its counterpart on the opposite side in plan, the reinforcement area of the
flat slab should be at least 255.5 mm2/m.

– Outside the above 5 m-wide central strips, the reinforcement area should be at
least 229 mm2/m.

(s) Design action effects for the perimeter elements of the box foundation

The perimeter wall of the box foundation collects a gravity load from the tributary
area of the perimeter elements of the superstructure and the top slab of the basement
equal to:

Nperimeter = 2.5 × (25 + 25 + 20 + 20) × 8.2 × 8 = 14760 kN

The total gravity load at the bottom of the foundation includes the self weight of
the basement wall and of its strip footing. Our preliminary estimates of the width of
the footing is 1.0 m and of its thickness 0.25 m (to be verified by dimensioning the
foundation). Then, the additional weight of the basement wall, etc. is:

Nbasement = 25 × 4 × 25 × (5.0 × 0.2 + 0.8 × 0.25) = 3000 kN

and the total vertical force at the bottom of the foundation is: NEd=14760+3000=
17760 kN.

The total seismic action effects at the top of the box foundation from the elastic
analysis comprise a horizontal force of 4320 kN and an overturning moment of
4320 × (2/3) × 7 × 2.8= 56448 kNm, applied to it through the two superstructure
walls which are parallel to the horizontal component of the seismic action. These
action effects are not affected by the accidental eccentricity, which increases the
shear and overturning moment in one of the walls and decreases them by an equal
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and opposite amount at the opposite one. They should be multiplied by the capacity
design magnification factor, aCD=γ RdMRd/MEd of Eq. (2.15a) in Section 2.3.4,
where MRd=2 × 29900 kNm is the total design moment resistance at the base of
the two walls and MEd=56448 kNm is the bending moment in them from the elastic
analysis, without the effect of the accidental eccentricity. So, aCD=1.271. However,
as the box foundation system supports also many secondary seismic elements,
notably the 28 columns of the flat slab system and the two walls that are at right
angles to the horizontal component of the seismic action and respond in their weak
direction, it is prudent to design the foundation with the value aCD=1.4 allowed
by Eurocode 8 for common foundations of several elements (see Eq. (2.16)). The
increased value of aCD provides for the seismic action effects transferred to the
foundation by the many secondary seismic elements. No matter how unreliable
it is for design purposes, the lateral force resistance of these secondary seismic
elements may be significant in magnitude. So, the design values of the seismic
action effects are:

– At the top of the box foundation:

• horizontal force (base shear): 1.4 × 4320=6050 kN
• overturning moment: 1.4 × 56448=79030 kNm.

– At the base of the box foundation:

• horizontal force (base shear): VEd=6050 kN
• overturning moment: MEd=79030+5 × 6050=109280 kNm.

The horizontal force is transferred to the ground through shear stresses at the
interface between the soil and the underside of the foundation strip of the perimeter
wall. The overturning moment, acting together with the total vertical force at the
level of the foundation bottom, is transferred via vertical bearing pressures.

(t) Dimensioning of the width of the strip footing on the basis of the ULS of the
foundation against sliding or bearing capacity failure

According to Part 5 of Eurocode 8 (CEN 2004c):

– the design normal force NEd and bending moment MEd at the foundation can be
transferred to the ground by means of the vertical force resultant and bending
moment resultant of:

1. the (design values of) resisting vertical forces acting on the base of the foun-
dation, and

2. the (design values of) the horizontal and vertical shear resistance between
the embedded sides of deep foundations (boxes, piles, caissons) and the soil.
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For shallow foundations, only the first of the two mechanisms may be relied
upon.

The design horizontal shear force VEd can be transferred to the ground by the
design shear resistance developing between the ground on one hand, and the hori-
zontal base and the vertical sides of the foundation on the other. Up to 30% of the
design lateral resistance Epd arising from fully-mobilised passive earth pressures on
the sides of the foundation may be added to the design shear resistance, if:

1. the backfill is compacted against the vertical sides of the foundation, or
2. the vertical sides consist of concrete poured directly against a clean, vertical soil

face, or
3. the vertical sides belong to vertical walls driven into the soil.

The 2nd or 3rd conditions are not met in this case. For simplicity, we do not rely
on the compaction of the backfill against the vertical sides of the box foundation.
So, passive earth pressures on the sides of the box foundation will not be taken to
contribute to the transfer of the design horizontal force VEd to the ground.

If the base of the foundation is above the water table (as in the present case),
the design shear resistance is the design friction resistance of the horizontal base,
calculated as the normal force on the horizontal base times the design value of tanδ,
tanδ/γM, where δ is the friction angle of the interface of the base and the soil and γM

the material partial factor, taken equal to that applied on tanφ′ (the recommended
value in Part 5 of Eurocode 8 is: γ φ′ =1.25).

According to Annex D of Eurocode 7 (CEN 2003), the design value of the
bearing capacity of a concentrically-loaded rectangular footing with rough and
horizontal base having (effective) dimensions bz

′≤by
′ and (effective) surface area

Af
′=by

′bz
′, on cohesionless soil under drained conditions, is:

RN

A′
f

= q N q sq iq +c′ Nc sc ic +0.5γ ′ Nγ b′
x sγ iγ (5.56)

where:

– q′ is the (design) effective overburden pressure (surcharge) at the level of the
foundation base;

– c′ is the effective cohesion of the soil;
– γ ′ is the effective weight density of the soil below the foundation level;
– the dimensionless factors for the bearing capacity are:

Nq = eπ tanφ′
tan2

(
45 + φ′

2

)
; Nc = Nq −1

tanφ′ ; Nγ = 2(Nq −1) tanφ′ (5.57)

with φ′: angle of internal friction or shearing resistance (design value);
– the dimensionless shape factors are:
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sc = sq Nq −1

Nq −1
; sq = 1 + sinφ′ b′

z

b′
y

(b′
z < b′

y); sγ = 1 − 0.3
b′

z

b′
y

(b′
z < b′

y)

(5.58)
– the dimensionless factors for the inclination of the vertical load to the horizontal

(owing to a horizontal load, with components Vz and Vy) parallel to sides bz
′, by

′,
respectively, are:

iq =
⎛
⎝1 −

√
V 2

z + V 2
y

NEd +A′
f c′ cotφ′

⎞
⎠

m

; iγ =
⎛
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√
V 2

z + V 2
y

NEd +A′
f c′ cotφ′

⎞
⎠

m+1

;

ic = iq Nq −1

Nq −1
(5.59)

with:

m =
2 + b′

z

b′
y

1 + b′
z

b′
y

sin2 ψ +
2 + b′

y

b′
z

1 + b′
y

b′
z

cos2 ψ (b′
z < b′

y) (5.60)

where ψ=arctan (Vz/Vy) is the direction angle of the resultant of Vz, Vy, with
respect to side by

′.

Recall that the effective dimensions of the footing are derived from the actual ones,
by, bz, as:

by
′ = by − 2ey; b′

z = bz − 2ez, (5.61)

where the eccentricities ey = MEd,y/NEd, ez = MEd,z/NEd result from the moments,
MEd,y, MEd,z with respect to the centre of the actual footing. MEd,y, MEd,z act within
vertical planes parallel to by, bz, respectively.

In the present case ey = MEd,y/NEd=0, ez = MEd,z/NEd = 109280/17760 = 6.153
m. The effective footing is a composite one, consisting of the following rectangular
parts, with uniform soil pressures developing at the bottom of each one of them
(hence each rectangular part is considered as concentrically loaded):

1. A rectangular part at the side BC of the plan where the seismic overturning
moment induces (the maximum) compression (“leeward” side), see Fig. 5.9. Its
dimensions are by

′= by = 25 m, b′
z = bz = b, where b is the width of the strip

footing of the perimeter basement wall (bz
′≤by

′)
2. Two rectangular parts at the sides AB and CD of the plan which are parallel to

the horizontal component of the seismic action considered. Their dimensions are
by

′ = by = X, b′
z = bz = b (bz

′≤by
′). Regarding dimension, X:
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a. if the effective area of the overall footing extends into the “windward” side
AD in plan opposite to the one where the seismic overturning moment
induces maximum compression, then: X = 25 m;

b. otherwise, X is unknown, to be determined so that the vertical force resultant
of the soil bearing pressures on parts 1 and 2 of the footing above coincides
with the point of application of the total vertical force at the bottom of the
foundation: NEd=18635 kN.

3. Another part exists at the “windward” side AD of the plan, only if case 2(a)
above applies. Then this part is rectangular, with dimensions by

′=by=25 m,
b′

z = bz=xb and (bz
′≤by

′). The unknown fraction x of the width of the strip foot-
ing is determined so that the vertical force resultant of the bearing pressures on
parts 1, 2 and 3 of the footing has the same point of application as the total
vertical force at the bottom of the foundation, NEd=18635 kN.

If case 2(b) above is taken to apply, and the vertical soil pressure is assumed
uniform over the effective area of the base of the composite footing (as in the ULS
verification of the bearing capacity of the foundation), then the length X can esti-
mated from the condition that the eccentricity of the soil bearing pressures on parts
1 and 2 of the footing is equal to ez = 6.153 m:

2X2/2/(25 + 2X ) = 12.5 − 6.153 = 6.347 m → X = 20.45 m < 25 m,

So, case 2(b) above applies indeed. This means that the sides AB and CD of
the plan which are parallel to the considered horizontal component of the seismic
action are engaged in the transfer of the seismic action effects to the soil only up to
a distance of 20.45 m from the “leeward” side BC. The entire “windward” side AD
opposite to BC uplifts and does not participate in the effective footing.

The total bearing capacity of the overall footing is the sum of the individually
computed bearing capacities of parts 1, 2 and, in general 3, above. Their parameters
are:

– Design value of angle φ′
d of shearing resistance: φ′

d=tan–1(tanφ′
k/γ φ′)=30◦

(denoted simply as φ′),
where the value recommended in Part 5 of Eurocode 8 (CEN 2004c): γ φ′ =1.25
has been used.

– Mean surcharge due to soil overburden on both sides of the footing:
q = hγ soil=2.5 × 20=50 kN/m2

– Effective cohesion c’=0.
– γ=20 kN/m3

– Nq =18.4, Nc = 30.14, Nγ=20.1.
– All individual rectangular parts of the overall effective footing have very elon-

gated shape. So, their dimensionless shape factors are all approximately equal to
1.0: sc≈ sq≈ sγ≈1.0.
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The horizontal force (base shear) VEd=6050 kN, transferred to the box founda-
tion by the two walls of the superstructure which are parallel to the considered hor-
izontal component of the seismic action, will be transferred to the ground mainly
through the base of Part 2 of the composite footing. For simplicity, the safe-sided
assumption is made that 100% of this force is transferred to the soil through that
part. As it is assumed that there is no transfer of horizontal force to the soil by Part
1 (or 3, in general) of the overall footing, there the dimensionless inclination factors
iq, iγ are approximately equal to 1.0 (ic is of no interest, as c′=0).

For Part 2 of the effective footing area, we have Vy=VEd, Vz=0,
ψ=arctan(Vz/Vy)=0 and, as bz

′/by
′=1.0/20.45≈0, Eq. (5.60) gives for Part 2

m≈1. The value of NEd in Eqs. (5.60) should be taken equal to the part
of the full value NEd=18635 kN attributed to Part 2, i.e. to 17760 × 2 ×
20.45/(2 × 20.45+25)=11020 kN. So, for Part 2: iq=1–6050/11020=0.451, iγ≈
(1–6050/11020)2 =0.203 (ic is not relevant, as c′=0).

The design value of the bearing capacity is:

– for Part 1 of the effective footing: RN/(25b)=50 × 18.4+0.5 × 20 × 20.1=1121
kN/m2. For RN>17760–11020 =6740 kN →b>0.24 m;

– for Part 2 of the effective footing: RN/(2 × 20.45b)=50 × 18.4 × 0.451+0.5 ×
20 × 20.1 × 0.203= 455.7 kN/m2. So, for RN>11020 kN →b>0.59 m.

Sides AD and BC of the plan, where Part 1 is, become Part 2 of the founda-
tion when the horizontal component Y of the seismic action is considered. So, the
value b>0.59 m applies for the full length of the strip footing. The width of the
strip footing finally chosen is: b=1.0 m. This choice provides an additional safety
margin of 1.0/0.59 = 1.7 on the bearing capacity for the part of the strip footing
which is parallel to the horizontal component of the seismic action considered and
of 1.0/0.24=4.17 for the part orthogonal to it.

The full horizontal force VEd=6050 kN is transferred to the soil by a 20.45 m-
long part of sides AB and CD of the foundation strip which are parallel to the con-
sidered horizontal component of the seismic action. This part transfers to the ground
a vertical force NEd=11020 kN. So, the design friction resistance of the horizontal
base is:

FRd = NEd tan δ/γM = NEd tanφ′
d = 11020 tan(30◦) = 6360 kN ≥ VEd = 6050 kN.

Therefore, the ample safety margin of bearing capacity is not matched by the
verification against sliding. It is reminded, though, that the contribution of passive
earth pressures on the vertical sides of the box foundation to the transfer of the
horizontal shear force VEd to the ground has been neglected, to be on the safe side.

(u) Action effects in the basement wall for its ULS dimensioning

The action effects in the basement wall (bending moments and shear forces) are cal-
culated assuming that the vertical soil pressures applied to the underside of the strip
footing vary linearly in the two horizontal directions, X and Y. This is consistent
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with the rigidity of the box foundation relative to the underlying soil and with the
large safety margin against bearing capacity failure (owing in part to the material
partial factors involved in the design values of the soil strength parameters). This
safety margin implies that the vertical soil pressures acting on the base of the strip
footing are in the elastic range of soil behaviour.

If there is no uplift at the base of the foundation, the distribution of vertical soil
pressures at the base of the foundation is:

σ = NEd

A f
+ MEd

I f
x (5.62)

where:

– Af=2b(Lx+Ly) and If=bLx
2(Lx+Ly/3)/2 denote the surface area and the moment

of inertia, respectively, of the plan of the strip footing around the perimeter of the
basement, and

– x is the distance of the centre of the foundation in plan from the point on the
centreline of the strip footing where the vertical soil pressure is computed; x
is measured in the direction of the horizontal component of the seismic action
considered.

For Lx=Ly =25 m, b=1.0 m, NEd=17760 kN, MEd=ezNEd=6.153NEd, Eq. (5.62)
gives:

σ = NEd

A f

(
1 + 6ex

Lx
· x

Lx

)
= 17760

4 · 1.0 · 25

(
1 + 6 · 6.153

25
· x

25

)

Therefore, at x = Lx/2: σ=308.7 kN/m2 and at x=−Lx/2: σ=46.5 kN/m2>0.
So, there is indeed no uplift at the base of the foundation and Eq. (5.62) does
apply.

In addition to the vertical soil above, acting upwards on the base of the strip foot-
ing, the self-weight of the basement wall exerts a uniform load downwards gw=25
× (5.0 × 0.2+0.8 × 0.25)= 30 kN/m or 30/1.0= 30 kN/m2. This load reduces the
upwards soil pressures of Eq. (5.62) into a net upwards load (in kN/m):

bσ − gw = 17760

4 · 25

(
1 + 6 · 6.153

25
· x

25

)
− 30 = 147.6 + 262.3

x

25
,

i.e. to 278.7 kN/m for x = Lx/2= 12.5 m and to 16.5 kN/m for x=−Lx/2=–12.5 m
(see Free-Body-Diagrams in Fig. 5.12).

The Free-Body-Diagrams in Fig. 5.12 for sides AD and BC and in Fig. 5.13 for
part AB (or CD) of the basement wall show:

– At the bottom of the basement wall:
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Fig. 5.12 Free-Body-Diagram of sides of basement wall at right angles to the seismic action
component: (top) “windward” side AD, (bottom) “leeward” side BC

• the upwards vertical load due to soil pressure minus the self-weight of the
wall, trapezoidally distributed at the top of wall part AB (or CD), or constant
for parts AD and BC, and

• the horizontal force (base shear) VEd=6050/2=3025 kN acting to the left.

– At the top of the basement wall:

• vertical forces equal to 2.5 × 5 × 8 × 8.2=820 kN, due to gravity loads of
the seven overlying storeys plus the basement roof, are applied downwards by
each one of the two columns on either side of the shear wall; for simplicity,
such a vertical force is also taken to be applied at each end of the wall itself;

• each corner column applies a downwards vertical force of (2.5 × 2.5 × 8 ×
8.2)/2=205 kN due to gravity loads of the eight storeys (the other half of the
total vertical force of the corner column goes to the orthogonal wall); and

• the shear wall applies to the top of wall part AB (or CD) a seismic
base moment of 79030/2=39515 kNm and a horizontal force (base shear)
VEd=6050/2=3025 kN to the right.
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Fig. 5.13 Free-Body-Diagram of sides AB (or CD) of basement wall (parallel to the seismic action
component)

– At the left-hand-end A of part AB (or D of part CD) of the basement wall:

• a vertical force is applied downwards by the orthogonal wall AD, equal to
one-half of the difference between:

• the total gravity load of the eight storeys applied on part AD of the base-
ment wall via the shear wall, the corner columns and the two edge columns
of this part of the perimeter: 4 × 820+2 × 205=3690 kN, and

• the resultant of the vertical soil pressure of the strip footing of part AD of
the basement wall, which is 16.5 × 25=412.5 kN

So this downwards vertical force is: (3690–412.5)/2=1638.75 kN. That same
force is applied upwards by parts AB and CD at the two ends A and D of the
orthogonal wall, AD.

– At the right-hand-end B of part AB (or C of part CD) of the basement wall:

• a vertical force is applied upwards by the orthogonal wall, BC, equal to one-
half of the difference between:

• the resultant of the vertical soil pressure of the strip footing of part BC of
the basement wall, 278.7 × 25=6967.5 kN, and

• the total gravity load of the eight storeys applied on part BC of the base-
ment wall via the shear wall, the corner columns and the two edge columns
of this part of the perimeter, 3690 kN.
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So, this upwards vertical force is: (6967.5–3690)/2=1638.75 kN. That same
force is applied downwards by parts AB and CD to the two ends B and C of
the orthogonal wall, BC.

(v) Dimensioning of the basement wall for the ULS in shear

The individual parts, AB, BC, CD or AD of the basement wall are considered as
horizontal beam elements, with centroidal axis at mid-depth of the basement wall.
Their effective depth is taken to mid-depth of the strip footing: d=5–0.25/2=4.875
m; the internal lever arm is equal to the distance between the mid-depths of the roof
slab of the basement and of the strip footing: z≈5–(0.25+0.15)/2=4.8 m.

Parts AB and CD, in particular, may be considered as cantilevering from both
sides of the shear wall they support and loaded by transverse loads at both top and
bottom: predominantly upwards on the part to the right of the shear wall, inducing
tension at the bottom flange (at the strip footing); primarily downwards on the part
to the left of the shear wall, inducing tension in the top flange (at the slab of the
basement roof). Part BC may be considered as a simply supported beam, loaded
primarily by upwards transverse loads at the bottom, causing tension at the bottom
flange (at the strip footing). Part AD may be considered as a simply supported beam,
loaded predominantly by downwards transverse loads at the top, inducing tension
in the top flange (at the slab of the basement roof). The shear forces and bending
moments are calculated from the Free-Body-Diagrams in Figs. 5.12 and 5.13.

The shear force in parts BC or AD of the basement wall is maximum right at
their end sections and equal to VE=1638.75+205=1843.75 kN or VE=1638.75–
205=1433.75 kN, respectively.

In part AB of the basement wall, the shear force is:

– just to the right of the 2nd column from the left end A: VE=1638.75+205+820–
16.5 × 5–(5/25) × (278.7–16.5) × 5/2 =2450 kN;

– just to left of the shear wall: VE=1638.75+205+820–16.5 × 10–(10/25) ×
(278.7–16.5) × 10/2= 1974.35 kN;

– just to the right of the shear wall: VE=278.7 × 10–(10/25) × (278.7–16.5) ×
10/2+1638.75–820–205= 2876.4 kN, which is the maximum shear force any-
where along part AB of the basement wall.

This last value is the maximum-ever shear force anywhere around the basement
wall, to be used in the verification of the wall thickness in shear: VEd=2876.4 kN.

If foundation elements are dimensioned for seismic action effects obtained by
multiplying those from the elastic analysis times the capacity design magnification
factor, aCD (in this case aCD=1.4), their dimensioning and detailing follows just the
rules of Eurocode 2 for non-seismic actions.

Shear resistance for the ULS verification against diagonal compression (web
crushing):



592 5 Detailing and Dimensioning of New Buildings in Eurocode 8

VRd,max = 0.3(1 − fck(MPa)/250)bwz fcd sin 2δ = 0.3(1 − 35/250)

× 0.2 × 4.8 × (35000/1.5) sin 2δ=5780 sin 2δ(kN) ≥ VEd = 2876.4 kN→sin 2δ

≥ 0.497 → δ > 14.9◦. So, δ = 21.8◦ and cot δ = 2.5.

The shear (i.e. vertical) reinforcement ratio of the basement wall, ρv=Asw/(bwsv),
is calculated from the acting shear force at the section of maximum shear, not at a
distance d from it, because the connection of the basement wall to the shear wall
of the superstructure is not a direct support of the beam, with the transverse loads
being applied to one flange and the reaction to them to an opposite one.

For cot δ= 2.5, VRd,s=bwzρvfywd cot δ = 0.2 × 4.8 × (500000/1.15) × 2.5ρv

> VEd=2876.4 kN: ρv>0.276%. A curtain of 12 mm-dia. @ 200 mm centres
is placed near each face of the basement wall (1131 mm2/m, ρ=1131/(200 ×
1000)=0.565%). This is sufficient even for shear design with cot δ=1.22.

(w) Dimensioning of the basement wall for the ULS in bending

The sagging bending moment, causing tension at the bottom flange (at the strip
footing) is maximum either:

– at the mid-point of part AD: M+=(1638.75–205) × 12.5–820 × 7.5–820 ×
2.5+16.5 × 12.52/2=11010 kNm, or

– in parts AB and CD, just to the right of the shear wall:
M+=(1638.75–205) × 10–820 × 5+278.7 × 102/2–(10/25) × (278.7–16.5) ×
102/6–(10/25) × 3025 × 5/2 ≈ 19400 kNm (the last term is due to the fraction of
the horizontal force acting on the bottom of parts AB and CD to the right of the
shear wall).

The maximum hogging moment (tension at the top flange, at the slab of the
basement roof) occurs either:

– at the mid-point of part BC:
M–=(1638.75+205) × 12.5+820 × 7.5+820 × 2.5–278.7 × 12.52/2=9475 kNm,
or

– in parts AB and CD, just to the left of the shear wall:
M–=(1638.75+205) × 10+820 × 5–16.5 × 102/2–(10/25) × (278.7–16.5) ×
102/6–(10/25) × 3025 × 5/2 = 16945 kNm (the last term is due to the frac-
tion of the horizontal force acting on the bottom of parts AB or CD to the left of
the shear wall).
Note that the shear span is equal to:

– 16945/1974.35=8.585 m at the section just to the left of the shear wall; and
– 19400/2876.4=6.745 m at the section just to the right of the shear wall.

and does not exceeds the depth of the wall, h=5 m; so the basement wall does not
need to be dimensioned with a Strut-and-Tie model.

A curtain of 12 mm-dia. @ 200 mm centres is placed near each face of the base-
ment wall (1131 mm2/m, ρh=1131/(200 × 1000)=0.565%), as web reinforcement
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over the internal lever arm of z=4.8 m. The entire web reinforcement, Ash=4.8 ×
1131=5430 mm2, contributes to the design moment resistance with:

MRd,h ≈ 0.5Ash fydz = 0.5 × 5430 × (0.5/1.15) × 4.8 = 5670 kNm.

The difference ΔMRd
+=MEd

+–MRd,h=19400–5670=13730 kNm should be
resisted by reinforcement with cross-sectional area: As1≈ΔMRd

+/zfyd=13730/(4.8
× 0.5/1.15)=6580 mm2. Fourteen 25 mm-dia. bars (6870 mm2) are placed for that:
six 25 mm-dia. bars @ ∼180 mm centres at top and bottom of the longitudinal sec-
tion of the strip footing, plus an intermediate 25 mm-dia. bar at each one of the two
vertical sides of that section.

The difference ΔMRd
–=MEd

––MRd,h=16945–5670=11275 kNm should be
resisted by similar reinforcement at the top: As2≈ΔMRd

–/zfyd=11275/(4.8 ×
0.5/1.15)= 5400 mm2. Eleven 25 mm-dia. bars (5400 mm2) are placed in the slab of
the basement roof: six at the top surface of the slab and five at the bottom one, within
a ∼1.0 m-wide strip of the slab parallel to the basement wall (i.e., @ ∼200 mm
centres).

For tension at the bottom, the resulting design resisting moment, MRd
+, is calcu-

lated with ν=0; d=5–0.125=4.875 m; d1=0.15/2=0.075 m (δ1=75/4875=0.0154);
b≈1.0 m; ω1= 6870/(4875 × 1000) × (500/1.15)/(35/1.5)=0.02626; ω2=5400/
(4875 × 1000) × (500/1.15)/(35/1.5)= 0.02064; ωv=5430/(4875 × 1000) ×
(500/1.15)/(35/1.5)=0.02075. The left-hand-side value of Eq. (3.51) is equal to –
0.0197 and Eq. (3.51) is satisfied. Eq. (3.52) gives then: ξ=0.0317, so that indeed
x = ξd=0.1545 m and essentially it does not exceed the thickness of the slab. Eq.
(3.60) gives then: MRd

+=19900 kNm > MEd
+=19400 kNm.

For tension at the top, the resulting design resisting moment, MRd
–, is calculated

with: ν=0; d= 5–0.075=4.925 m; d1=0.25/2=0.125 m (δ1=125/4925=0.0254);
b≈1.0 m; ω1 = 5400/(4925 × 1000) × (500/1.15)/(35/1.5)=0.02043; ω2 =
6870/(4925 × 1000) × (500/1.15)/(35/1.5) = 0.026; ωv = 5430/(4925 × 1000)
× (500/1.15)/(35/1.5) = 0.02054. The left-hand-side value of Eq. (3.51) is equal
to 0.0415 and Eq. (3.51) is not met. Eq. (3.54) gives then ξ=0.0354 and indeed
x = ξd=0.1745 m is less than the depth of the strip footing. MRd is obtained from
Eq. (3.59): MRd

–=16900 kNm ≈ MEd
–=16945 kNm.

Taking into account the alternating nature of the seismic action, the top and bot-
tom reinforcement calculated above for the basement walls are placed on both sides
of the shear walls W1 and W2. Besides, with the tension shift of 0.5z cot δ =6 m for
the value cot δ =2.5 originally considered in the ULS verifications in shear, or 0.5z
cot δ =2.95 m for the value cot δ=1.22 which is consistent with the shear reinforce-
ment placed in the basement walls, the top and bottom reinforcement calculated
above continue uncurtailed to the end of the corresponding part of the basement
wall.
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Chapter 6
Seismic Assessment and Retrofitting of Existing
Concrete Buildings

This chapter is the only one in the book devoted exclusively to existing concrete
buildings. It builds on:

– Chapter 1, for the seismic performance requirements that may be apply to exist-
ing buildings and to their upgrading,

– Chapter 2, for the demonstration of the inherent vulnerability of substandard
existing buildings,

– Chapter 3 for the quantification of the cyclic force and deformation capacity of
concrete members, including the effect of poor detailing or retrofitting, and on

– Chapter 4 for the estimation of the seismic response via (mainly nonlinear)
analysis.

The first part of the chapter is mainly devoted to seismic assessment of the as-is
building. The rest to its upgrading through appropriate and cost-effective retrofitting.
One section, namely Section 6.5, is specific to Part 3 of Eurocode 8. Retrofitting
strategies and techniques commonly used today and in the foreseeable future for
a concrete building as a whole and for its members, respectively, are described
and their scope, pros and cons highlighted. Procedures, rules and expressions are
given for practical member retrofit design. Finally, practical retrofitting is illustrated
through two real applications.

6.1 Introduction

In many parts of the world, including Europe, design of new buildings for earth-
quake resistance is a relatively recent development. In those regions, resistance of
buildings to lateral forces resulted in the past only from wind considerations. Provi-
sions for seismic design and detailing of members and structures resembling those
found in modern seismic codes did not appear before the mid-1970s in US stan-
dards, or the mid-1980s in European national codes. So, in the light of our current
knowledge, the building inventory of many seismic regions worldwide is by and
large substandard and seismically deficient.
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Although today and for the years to come the major earthquake threat to human
life and property comes from existing substandard buildings, the emphasis of earth-
quake engineering research, practice and code-writing has been, and still is, on new
construction. Policy makers hope that the problem of existing buildings will be
solved gradually by attrition (sometimes accelerated by urban renewal and rede-
velopment). This may be a socio-economically optimal solution for those regions
where the rate of occurrence of moderate to strong earthquakes is much lower than
the attrition rate of old buildings. Although seismic resistance adds very little to
the construction cost of a new building, the cost of seismic upgrading an existing
one, including disruption of use, relocation of tenants, removal and replacement of
non-structural parts, etc., is normally a large fraction of the building replacement
cost and may be prohibitive for private owners or difficult for the local economy
to bear.

Regardless of the economics, seismic retrofitting of buildings is effective in miti-
gating the seismic risk posed by a substandard building stock. The owner, private or
public, may take the initiative individually, often on the occasion of a change in use,
architectural remodelling or repair of damage due to an earthquake. Besides, in the
context of a broader strategy for seismic risk mitigation, national or local authorities
may launch “active” or “passive” seismic assessment and retrofitting programmes:

– In “active” programmes owners of certain categories of buildings may be
required to complete the seismic assessment and – depending on its outcome –
the retrofitting by certain deadlines. The buildings to be targeted may depend
on the seismicity and ground conditions, on the importance, occupancy and per-
ceived vulnerability of the building – as influenced by the type of material and
structural system, the number of storeys, the time of construction with respect to
certain benchmark dates of code enforcement, etc.

– In “passive” programmes seismic assessment – possibly leading to retrofitting –
is triggered by events or activities related to the use of the building, such as a
change that increases occupancy or importance class, repair of damage after an
earthquake, remodelling of a minimum percentage of the floor area or above a
certain budget, etc.

The seismic performance requirements to be met by the building as is or
after retrofitting – if necessary – may be less stringent in compulsory, “active”
programmes than in “passive” ones. In a “passive” programme triggered by remod-
elling, performance requirements may gradate with the extent and cost of remod-
elling works.

The need to retrofit or not a specific building and the scope and targets of the
retrofitting (in terms of weaknesses and deficiencies to be corrected) normally come
out of a detailed seismic assessment (or evaluation) of the building. A technically
sound seismic assessment is a challenge. However, even when the need to retrofit
is obvious, a detailed seismic assessment is worth carrying out: once a structural
model of the building as-is is set up and analysed, it can be used at little extra
cost as the basis for studying various retrofitting options and for detailed retrofit
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design. Besides, a detailed assessment in principle provides an objective picture
of the seismic vulnerability and resistance, independent of any preconceptions of
the engineer doing it. So, recent years have seen a dramatic decline in the use and
perceived value of empirical rapid screening methods, used in the past to identify
whether seismic retrofitting is indeed necessary.

It is nowadays recognised that rapid screening procedures are not reliable and
cannot replace detailed seismic assessment of individual buildings. Rapid screening
may be considered as a useful guide in “active” seismic assessment and retrofitting
programmes for seismic risk mitigation in a certain region or urban area, help-
ing to identify priority buildings or categories thereof. The motivation of rapid
screening derives from the fairly good performance of most substandard buildings
in earthquakes as strong as in Mexico 1985, Luzon Philippines 1990, Erzincan
1992, Kobe 1995 or Kocaeli 1999. The objective then is to screen out the build-
ings that can withstand a strong earthquake by virtue of overstrength alone, rather
than ductility. The more costly detailed assessment may be reserved for the most
vulnerable part of the building stock. The final verdict for the individual buildings
identified as most vulnerable has to await the outcome of their detailed seismic
assessment.

For the reasons put forward in the previous paragraph, rapid screening procedures
are not dealt with in this book beyond broadly defining their features in the rest of
Section 6.1.

The archetypal rapid screening procedure is that in ATC (1988). As this proce-
dure is tailored to the building stock of the US, only its basic idea can be transferred
elsewhere. Any adaptation to the specific features of the local building stock should
be continuously calibrated on the basis of damage data from earthquakes that have
hit the area where the procedure is being applied. In general, in a ATC (1988)-type
of rapid screening, a single Basic Structural Score (BSS) is first assigned to a (con-
crete) building, depending on the combination of seicmicity zone, structural system
(frame, wall or dual), design code(s) applied and special features (e.g., partial or
full infilling, squat columns, open storey, etc.) that may or may not have been suffi-
ciently addressed by the design code applicable at the time of construction. A Struc-
tural Score S is calculated then, as the sum of BSS and of a series of Performance
Modification Factors (PMFs), accounting, e.g., for apparent construction quality
and deterioration (e.g., reinforcement corrosion), irregularity of the building in plan
and elevation, number of storeys, topography and ground conditions, location in the
building block and possibility of mid-floor pounding with adjacent buildings, etc.
The seismic vulnerability of the building at the specific site is evaluated on the basis
of its final S-value.

To bridge the gap between the empirical, narrow-scope rapid screening in
ATC (1988) and modern-day detailed seismic assessment, a three-tier assessment
approach has been introduced in the US (ASCE 2003). The 3rd tier is a full-fledged
detailed seismic assessment of the type in ASCE (2007). The 1st one comprises
several checklists requiring trivial calculations and some detailed information on
the as-built structure. Under certain conditions of seismicity, number of storeys and
target performance level, a positive outcome of the 1st tier may be taken as definite
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and make recourse to the 2nd tier (which is a simplified detailed seismic assess-
ment) redundant. The earlier Japanese three-tier approach (JBDPA 1977) is of a
similar character.

6.2 Seismic Vulnerability of Existing Concrete Buildings

6.2.1 System and Layout Aspects and Deficiencies

Normally existing substandard buildings have been designed for very low lateral
force resistance, if any. So, they are expected to develop significant inelastic action,
even under a moderate earthquake. To sustain it, they should have considerable
ductility. As emphasised in Chapter 1, this requires ductility at both the local and
the global level. As pointed out in the next section, in existing substandard build-
ings potential plastic hinge regions are not detailed for ductility. Besides, members
are not capacity-designed against pre-emptive brittle failure in shear. More impor-
tant, though, existing substandard buildings seldom have the strong and stiff vertical
spine necessary for spreading inelastic deformation demands throughout their height
and avoiding a storey mechanism. If they have one in the form of strong walls, it
is more by coincidence than by design. Even more important, as a rule their overall
structural layout is seismically deficient.

The compelling consideration in conceptual structural design of old buildings
was not earthquake resistance but gravity loads and conformity to the architectural
layout. Complete two-way frames are the exception rather than the rule, as beams
are often indirectly supported on other beams instead of columns (see Figs. 2.13(c),
2.25 and 4.14 for examples), or are mainly in a single horizontal direction to support
one-way slabs (as, e.g., in Figs. 2.21 and 2.24). Overall, old buildings have few, if
any, of the attributes listed in Section 2.1.2 and analysed in the rest of Section 2.1
as favourable for earthquake resistance. Torsional imbalances of lateral resistance
and stiffness are common (see Fig. 2.1), as are vertical irregularities of strength
and stiffness (Fig. 2.4) or geometry (Fig. 2.3). Floor diaphragms are sometimes
not continuous or strong enough (see Figs. 2.21 and 2.25) or well connected to the
lateral load resisting elements (see Figs. 2.6 and 2.7) to tie everything together into
an integral system. Buildings with only the ground storey open (for commercial use
or parking) are not protected by strong walls from soft-storey collapse (Fig. 2.10)
or may develop plastic hinges in strong columns connected with weak beams owing
to the effect in Fig. 2.9(b) and (c) (see Fig. 3.27(a) and (b) for examples). Captive
columns are quite common for architectural reasons (Fig. 2.12), etc.

As pointed out in Section 2.1.13.5 in connection with Fig. 2.13(a), the contribu-
tion of staircases to the storey lateral strength and stiffness sometimes helps flexible
buildings. Most of the times, however, depending on its connection to the elements
of the lateral load resisting system and/or its location in plan, the staircase does
more harm than good (see Fig. 2.13(b) and (c) and case at the bottom left corner of
Fig. 3.35).
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The systematic deficiencies of old substandard concrete buildings do not neces-
sarily mean that they will do poorly in the event of an earthquake. Quite a few of
them have gone unscathed through strong earthquakes thanks to unintended, albeit
significant, lateral strength provided by design and construction practices of the past.
Examples include closely spaced columns, uniform infilling with strong, good qual-
ity masonry having few large openings, or even large concrete walls, be it underre-
inforced.

6.2.2 Common Deficiencies and Failure Modes
of Concrete Members

Owing to their poor structural layout, the lack of a strength hierarchy engineered
to control the inelastic response mechanism, deficient or discontinuous load paths,
etc., existing substandard buildings may experience certain concentration of seis-
mic deformation demands to few of their elements in the event of a strong earth-
quake. Unfortunately these elements may be ill-prepared to withstand the increased
demands, as they lack detailing for ductility and are not protected from pre-emptive
brittle failures.

Non-ductile failures of members or connections due to poor detailing are aplenty
in reconnaissance reports. Regarding flexural plastic hinges, Fig. 3.27(b), (c) and (f)
depict failed column end regions with little confining reinforcement. In these fig-
ures ties not anchored by a 135◦ hook into the concrete opened up. Figure 3.27(f) is
also a case of poor lapping at floor level. Figure 3.29 shows that beam bars (espe-
cially bottom ones) may pull-out from corner joints, if not anchored there by a 90◦-
bend or hook. Figure 3.35 depicts several shear failures of columns or walls having
only widely spaced perimeter ties and indeed in some cases poorly closed ones.
Obviously, the members in Fig. 3.35 have not been protected from shear failure by
capacity design. Finally, the two corner joints in Fig. 3.47(b) and (c) had no hori-
zontal reinforcement.

Columns without engineered earthquake resistance have normally been designed
only for gravity compression with a nominal eccentricity. So, they are not only
undersized and poorly detailed, but also have low flexural and shear resistance
against lateral loads. By contrast, the beams of seismically deficient buildings nor-
mally have substantial flexural and shear resistance thanks to their design for fac-
tored gravity loads. So, unlike column failures which abound, beam failures are
rare. They are mostly limited to bar pull-out of the type of Fig. 3.29, as anchorage
of bottom bars at the supports is of little importance for gravity loading. This type
of failure reduces the moment resistance of the frame and increases its flexibility,
but poses little threat to life safety.

Faced with the poor detailing and obvious lack of engineered earthquake resis-
tance of old concrete members and the deficiencies of the structural layout, the engi-
neer carrying out a seismic evaluation of an existing building will contrast them with
current knowledge and design practice for new buildings (including his/her own
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practice) and may come to the conclusion that the building is doomed in the event
of a strong earthquake. This is human, but it may be premature. Each building has
its own personality, reflecting that of the original designer and his/her perceptions,
which may be different from the preconceptions of the engineer carrying out the
evaluation. He/she should also look for possible sources of overstrength (see last
paragraph of Section 6.2.1) that may partly make up for the member and system
deficiencies. Although good judgment and experience are of prime importance for
the seismic evaluation of an existing building, only a meticulous detailed assess-
ment, e.g., along the lines of Section 6.5, can point out its real deficiencies and
overstrengths and guide properly the decisions for its retrofitting.

6.3 The Predicament of Force-Based Seismic Assessment
and Retrofitting

In the past detailed seismic assessment of individual buildings was force-based,
mimicking design of new buildings. Capacity-demand comparisons were carried out
at the member level in terms of forces, with internal force demands and resistances
determined according to code provisions for the seismic design of new buildings. A
prime example is the ENV version of the relevant part of Eurocode 8 (CEN 1996),
according to which assessment had to be carried out by checking whether the provi-
sions of the part of the ENV-Eurocode 8 for the design of new buildings for one of
three Ductility Classes (H, M or L) were met. So, all members were first examined
for fulfilment of detailing and minimum/maximum reinforcement rules of the three
alternative DCs. If all of them satisfied those of one of the two upper DCs, they were
also checked for fulfilment of the corresponding capacity design rules. If these rules
were met, the value of the q-factor for which the building qualified was determined,
according to its structural system and regularity. Otherwise, the engineer would clas-
sify the building as DC L and be content with its low q-factor value.1 With the value
of the behaviour factor q known, the design spectrum could be entered and linear
analysis, of the lateral force or of the modal response spectrum type was employed
to determine the design internal forces, Ed, of members (including P-Δ effects and
the applicable capacity-design calculations). Design values of member resistances,
Rd, were also determined, according to the relevant rules of Eurocode 2, as mod-
ified by Eurocode 8, if DC M or H was applicable. If Ed > Rd was not satisfied,
strengthening of the building was required.

Assessment of existing structures by checking compliance with a standard for the
design of new ones is neither rational nor practical. An old structure is very unlikely
to meet the very stringent requirements of modern codes for structural regularity,
ductility at the local level (member detailing) and at the structural level (control of
inelastic response through capacity design), continuity of the load path, etc., and

1The ENV-Eurocode 8 did not provide for “secondary” members, to allow exempting some ele-
ments from full satisfaction of the requirements of DC M or H for detailing, capacity design, etc.
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qualify for a Ductility Class that uses ductility and energy dissipation capacity for
earthquake resistance. If it doesn’t, and unless it is a low-rise building with large
concrete walls, it is also very unlikely to have the lateral strength necessary to resist
elastically the seismic action (i.e., with q = 1.5). In this way all old structures may be
found to be inadequate and to need retrofitting. If so, to comply with a code for new
structures, practically all structural elements would have to be upgraded to meet all
the resistance and detailing requirements of that code. Then the cost of retrofitting
would exceed that of replacement. The owner is then very likely to decide to do
nothing and continue using (or living in) a building that is now known to be unsafe.

6.4 Seismic Performance Requirements and Criteria for Existing
or Retrofitted Buildings

In view of the predicament of conventional force-based approaches, the perfor-
mance requirements, criteria and procedures adopted now for existing or retrofitted
buildings differ from those in current codes for new construction. Recognising the
much higher total cost of retrofitting (including the indirect cost of disruption of
occupancy) compared to new construction, the new approach adopts more flexible
requirements, which address the real intent of the owner and of the code-maker. The
new requirements are served by more rational and less conservative criteria, limiting
retrofitting to the cases where it is really needed and making it more cost-effective.
Note that the pragmatic new attitude does not rely on the presumably shorter remain-
ing service life of an existing building, as on that basis a building could be evaluated
as adequate for the lower seismic action corresponding to a remaining life of a few
years, after the eventless end of which the positive evaluation might be renewed for
another period, etc., which does not make much sense.

The new requirements are fully and explicitly performance-based, in the sense
of Section 1.1.2. A multi-level performance menu is provided, for the owner (or
the competent authority) to choose the performance objectives that fit not only the
importance, use and occupancy of the building, but also his/her means and intent.
For example, an owner may be prepared to pay more, to avoid any disruption of
the operation of the facility after a rare earthquake. By contrast, another owner may
just have the means and the wish to avoid collapse under an occasional earthquake,
retaining the option of retrofitting to a higher performance objective if financing
conditions improve in future (see Section 1.1.2 for the meaning and definitions of
the various performance and hazard levels).

The new criteria serving the performance objectives are also more rational and
less conservative than the prescriptive ones associated with the performance require-
ments of current codes for new buildings:

– Poor detailing combined with low force resistance in many members is not
a problem, provided that the system of lateral-load-resisting elements, old,
retrofitted or new, assures global stability. Some members may be explicitly
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allowed to develop large, permanent post-ultimate-strength deformations, pro-
vided that their gravity-load capacity is not impaired. These may be “secondary
members”, at a number and with a contribution to lateral resistance which are
more relaxed compared to new buildings or not capped at all. They may even be
“primary” ones, under the condition that the system as a whole meets the perfor-
mance objectives. This of course entails checking member deformation demands
against their capacities.

– Sources of earthquake resistance and energy dissipation in the existing and in the
retrofitted structure that are normally neglected in the design of new buildings,
are explicitly taken into account. Examples include the positive effects of non-
structural elements (e.g. masonry infills) and the redistribution and reduction of
seismic demands thanks to nonlinearities in the structural system and the foun-
dation, without artificial limits. This of course entails modelling and analysis at
a higher level of sophistication than in the simple, yet conservative, approaches
commonly used for new designs.

As these new trends become established through successful application in assess-
ment and retrofitting projects, they will start affecting codes for the design of new
structures as well. This represents a reversal over the past tradition, where proce-
dures and codification for existing structures followed and emulated those for new
ones.

6.5 Performance- and Displacement-Based Seismic Assessment
and Retrofitting in Eurocode 8

6.5.1 Introduction

Part 3 of Eurocode 8 (CEN 2005a) is unique among all EN-Eurocode parts in many
respects:

1. It is the only one in the whole set of 58 EN-Eurocode that deals with existing
structures.2

2. It is essentially the first standard in Europe on seismic assessment and
retrofitting. So, as there is no previous experience in European practice with cod-
ified seismic assessment and retrofitting, Part 3 of Eurocode 8 is an experiment.
It is not sure yet how it will work in engineering practice.

3. Unlike all other EN-Eurocodes, which will eventually apply for all structures
within their scope (i.e., to all new structures), Part 3 of EN-Eurocode 8 will not
apply to all structures in its scope, i.e., to all existing buildings, but only to those
that the owner – or local Authorities – have decided to seismically assess and
possibly retrofit. So, this EN-Eurocode addresses only the structural aspects of

2As a matter of fact, an effort for an Annex to EN1990: “Basis of Design” on “Assessment and
Retrofitting” has been launched in 2008.
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seismic assessment and retrofitting and will apply once the requirement or will
to assess a particular building has been established. The conditions under which
seismic assessment of individual buildings – possibly leading to retrofitting –
may be required are beyond the scope of Part 3 of EN-Eurocode 8. The initia-
tive for seismic assessment and retrofitting lies with the owner, unless a national
or local programme is undertaken for seismic risk mitigation through seismic
assessment and retrofitting.

4. As a consequence of the other peculiarities, the extent and scope of the normative
(i.e., mandatory) part of Eurocode 8-Part 3 is limited, covering only the general
rules on:

– the performance requirements and criteria,
– the applicability conditions of the four analysis methods,
– the type of verifications for ductile and brittle modes of behaviour and failure,

and
– the collection of information for the assessment and its implications, etc.

All material-specific aspects and details (including expressions for modelling
and verifications) can be found in Informative Annexes, for:

– concrete structures,
– steel or composite structures, and
– masonry buildings.

The information in these Annexes is not binding. It is up to National Authorities
(but not to individual designers or owners) to adopt or not this information or
even replace it with reference to other, national, sources of information.

6.5.2 Performance Requirements

Section 1.1.3 has described the three performance levels provided in CEN (2005a),
called there Limit States:

1. “Damage Limitation” (DL);
2. “Significant Damage” (SD); and
3. “Near Collapse” (NC).

As pointed out in Section 1.1.3, it is not necessary to fulfil all three Limit
States under the corresponding the “hazard level”. The country, through its National
Annex – or the owner, if the country doesn’t make a choice – will decide how many
and which of the three should be met. National authorities will also choose the “haz-
ard levels” corresponding to these Limit States, depending on the prevailing level
of risk tolerance and the socio-economic conditions. National authorities may well
leave the choice open for the owner to make.
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It is hoped that national authorities will choose the performance requirements for
existing buildings in their territory so that they encourage owners to retrofit their
property, while the population of buildings to be retrofitted is acceptable for the
society and the national economy. As a matter of fact, the intent of the Eurocode
is to let the owner make all these choices (of course after listening to advice from
the designer or an engineering consultant), depending on his/her means, priorities
and needs. For example, an owner may afford only to upgrade the very poor seismic
resistance of his/her residence for collapse prevention in an occasional earthquake,
while another may have the interest and means to retrofit his/her facility to be oper-
ational even after a rare event.

Unlike its practice for most Nationally Determined Parameters, the Eurocode
itself does not a give a recommendation for the “hazard levels” corresponding to
the three Limit States. It mentions, instead, in a note that the performance objec-
tive recommended as suitable to ordinary new buildings is a 225 year earthquake
(20% probability of exceedance in 50 years), a 475 year event (10% probability in
50 years), or a 2475 year one (2% probability of being exceeded in 50 years), for the
DL, the SD or the NC “Limit State”, respectively. As a matter of fact, countries and
owners should avoid adopting blindly this note, because in most seismic regions of
Europe the 475 year earthquake is not much stronger than the 225 year one. So, if
the 225 year earthquake is indeed chosen for the “Damage Limitation” Limit State,
it will govern the whole assessment and/or retrofitting sufficiently to make it at best
uneconomical or sometimes unfeasible.

Note that an earthquake with a mean return period of 475 years, mentioned in
the above note of Part 3 of Eurocode 8 as suitable for the “Significant Damage”
(SD) level in ordinary new buildings, is also the choice recommended in Part 1
of Eurocode 8 for the “local-collapse prevention” level of new designs. It appears,
therefore, that these two parts of Eurocode 8 do not recommend any differentiation
in the “performance objective” that has to do with Life Safety between new and
existing buildings. However, such differentiation is made through the “compliance
criteria” specified in these two parts for this single performance level. Although
there is no direct correspondence of the criteria, those in Part 3 for existing buildings
are less demanding than what Part 1 provides for new ones.

Performance differentiation of essential or large occupancy buildings from ordi-
nary ones is effected as in new buildings, i.e., by multiplying the seismic action with
the “importance factor”, which has the recommended values given in Part 1 for new
buildings (see Section 1.1.1).

6.5.3 Information on the As-Built Geometry, Materials
and Reinforcement

A prime prerequisite for the seismic assessment or retrofitting of an individual build-
ing through analysis of a fairly detailed structural model is to have all the infor-
mation needed for setting up the model: the topology of the lateral-load-resisting
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system, the cross-sectional dimensions, reinforcement and relevant material proper-
ties of its members, the gravity loads acting concurrently with the seismic action
and the corresponding masses, etc.. If infill walls play an important role in the
seismic response and will be included in the model, their topology, thickness and
openings, as well as the masonry properties, should also be known. Ideally, all this
information will be available in as-built drawings and material test reports from the
time of construction and should be confirmed through spot-checks and lab testing
of few samples. However such information is often not available, or turns out to
be incomplete or unreliable. In that case, missing information is collected through
a survey of the building and a campaign of in-situ measurements and lab tests on
samples.

If the building as-is has certain earthquake resistance and is assessed to find out
whether retrofitting might be avoided, it is essential to have good knowledge of the
amount and detailing of the reinforcement and of the material properties in at least
the critical structural and non-structural members. However, it is in such a building
that collection of this information through exposure of reinforcement and extract-
ing samples for lab tests is harder, as in all likelihood it is occupied and used at
the time. Moreover, any damage to members that will not be retrofitted in the end
should be fully redressed and not just patched-up. In other cases it is clear from the
outset that the as-is building is doomed unless drastically upgraded, e.g., by adding
major new components, such as concrete walls, to provide most of the required
earthquake resistance. Then its structural model, although still valuable for identi-
fying the specific deficiencies to be remedied by retrofitting, is mainly used as the
basis for studying different retrofitting schemes. In such situations the performance
of the retrofitted building is not very sensitive to the amount and detailing of the
reinforcement or the material properties in the existing structural and non-structural
members. The same applies for (vertical) members suffering from severe reinforce-
ment corrosion and to be concrete-jacketed anyway. Unfortunately, these are also the
cases where collection of information is easiest, as the building may be evacuated
anyway before the retrofitting and any damage due to exposure of reinforcement and
material sampling will be corrected anyway during retrofitting. At any rate, plenty
of judgement is needed to adapt the scope and depth of the campaign of destruc-
tive in-situ measurements and sampling to the specific conditions and needs of a
project. To this end, the in-situ collection of data should be carried out – or at least
controlled – by the engineer in charge of the subsequent seismic assessment and
retrofit design. It should never be delegated to another team that follows blindly
a protocol producing lots of redundant data, while possibly leaving out crucial
information.

Needless to say, the more extensive and reliable the information, the smaller
is the uncertainty and the closer is the analysis model to reality. The uncertainty is
reflected in the values of the partial safety factors, γm, for the calculation of member
capacities and of any model uncertainty factors, γ Rd, involved in the verifications
of the existing or of the retrofitted building. So CEN (2005a) distinguishes three
different cases, depending on the amount and reliability of the information available
for the as-built structure:
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1. “Limited knowledge”;
2. “Normal knowledge”;
3. “Full knowledge”.

These three cases are defined as follows:

1. In “limited knowledge” permanent loads and masses, as well as member and
infill geometry should be derived either:

– from drawings of the original construction and of any subsequent modifica-
tions, validated in-situ visually and with spot-measurements, or

– through a full campaign of in-situ measurements of geometrical quantities.

Original information on the amount and detailing of reinforcement or the mate-
rials used is not essential. Indirect information and judgement may be used for
them, instead. One can make default assumptions for the materials on the basis
of the codes applicable and the practice prevailing at the time of construction
(for the steel, after visual identification of its grade among the ones used at that
time). These assumptions should to be spot-verified or calibrated in-situ with one
material sample per floor for each type of member (column, beam or wall). Past
codes and practice may also be the basis for the estimation of the amount and
detailing of reinforcement through simulation of the original design. In other
words, to figure out the reinforcement the engineer tries to put him/herself in
the position of the original designer and contractor. The results of the simulated
design should be confirmed or calibrated through spot checks of a small fraction
of the total number of structural members of each type, recommended in CEN
(2005a) as at least 20%. Needless to say, all this requires good knowledge of past
codes and design/construction practice, as well as experience and judgement. For
example, attention and spot-checking should focus on the important primary ele-
ments (especially those of the most critical storey) and may be more lax for
secondary ones or for infills. Spot-checking should be prolonged if it has given
large scatter or significant deviations from the default assumptions for materials
or from the outcome of the simulated design. Extraction and testing of concrete
cores should be supplemented with an extensive campaign of indirect measure-
ments (with concrete hammer or ultrasounds), calibrated against the core test
results.

2. “Normal knowledge” is the reference case for the available information. It entails
knowledge of structural topology, cross-sectional dimensions, infills and amount
and detailing of reinforcement either from:

– original construction drawings (including any subsequent modifications),
confirmed by in-situ checks (as in “limited knowledge”), or

– (if original construction drawings are unavailable or not confirmed by the
spot-checks) a full campaign of in-situ measurements, with exposure of rein-
forcement in a large fraction of the total number of structural members of
each type, recommended in CEN (2005a) as at least 50%.
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Material properties are derived either:

– from the original specifications, verified in-situ with few samples (Eurocode
8 recommends one per floor for each type of member), or

– through in-situ sampling and testing of some samples (Eurocode 8 recom-
mends two per floor and member type).

Although masonry infills are not specifically mentioned by Eurocode 8 in this
connection, it makes sense to estimate their strength properties and Elastic Mod-
ulus from the properties and geometry of the masonry blocks and mortar using
semi-empirical expressions (e.g., those in Eurocode 6).

3. For “full knowledge”, the engineer should draw information for the permanent
loads, the topology of the structural system, the member cross-sectional dimen-
sions, the amount and detailing of reinforcement and the location and geometry
of infill walls from detailed original construction drawings, confirmed by check-
ing at least 20% of all members per member type (column, wall, beam or infill).
If the outcome of the spot checks does not fully agree with the drawings, then
it is as if these drawings were not available. Lacking original drawings, a thor-
ough survey of the structure is carried out, including exposure of reinforcement
in almost all structural members of each type ((CEN 2005a) recommends at least
80%). Material properties are inferred either:

– from test reports at the time of construction, verified by few samples ((CEN
2005a) recommends one per floor and member type), or

– from in-situ testing, material sampling and lab tests of several samples ((CEN
2005a) recommends three per floor and member type).

If masonry infills are considered in the assessment, certain sampling and testing
for shear and compressive strength and for Elastic Modulus makes sense.

In all cases, whenever the scatter of test results in-situ or in the lab (as measured
by the coefficient of variation) is large, or there is evidence that supervision dur-
ing construction has not been so meticulous, the engineer should use judgment to
possibly extend sampling and testing beyond the minimum required.

According to CEN (2005a), the mean value properties of existing materials
should be used, as directly obtained from in-situ tests and any additional sources of
information, after “correction” with a “confidence factor”. The “correction” should
always be safe-sided. Mean material properties used in the calculation of a capacity
of an existing member (yield moment, shear resistance, chord rotation or curvature
at yielding or at ultimate, etc.) to be compared to a demand, are divided by the “con-
fidence factor”. By contrast, if these mean material properties are employed for the
calculation of a moment resistance from which capacity-design action effects are
derived for a brittle mode of failure through equilibrium (see Section 1.3.6), then
they are multiplied by the “confidence factor”. Similarly, the yield stress considered
for existing longitudinal bars at lap splices or bar anchorages is the mean value from
in-situ tests and any additional sources of information, multiplied by the “confidence
factor”.
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The values of the “confidence factor” recommended in CEN (2005a) are:

1. For “limited knowledge”: 1.35;
2. for “normal knowledge”: 1.20;
3. for “full knowledge”: 1.00.

No confidence factor is applied on the nominal strength of new materials added
for the purposes of retrofitting. If an existing member is modified, e.g., by FRP- or
concrete-jacketing, a “confidence factor” is applied only on its old materials. More-
over, although such a distinction is not clear in CEN (2005a), it makes sense to apply
to each old material (steel, concrete, or infill masonry) the value of the “confidence
factor” corresponding to its own level of knowledge. For instance, member sizes
may be well known and concrete may have been thoroughly sampled and lab-tested,
while the amount and detailing of reinforcing bars may be rather unknown, or bars
of a certain diameter or the infill material have not been sampled and tested at all.

According to CEN (2005a) “limited knowledge” may support only linear analy-
sis. Note that the applicability of an analysis approach does not really depend on the
level of knowledge available for the as-built structure. The restriction of the use of
nonlinear analysis methods only to the cases of “normal” or “full knowledge” stems
mainly from the concept of harmonised accuracy: it does not make much sense to
use sophisticated and complex modelling and analysis with poor and highly uncer-
tain input data. The real purpose, though, of the restriction is to motivate engineers
who prefer using a more advanced method of analysis as less conservative, to collect
also more information about the as-built structure. Note that, if the level of knowl-
edge associated with different aspects of the as-built structure (e.g., the loads, the
material strengths, the quantity and detailing of reinforcement, etc.) is different, it is
the lowest level of knowledge for any one of these aspects that determines the type
of analysis allowed.

6.5.4 Seismic Analysis and Models

6.5.4.1 Seismic Analysis Procedures and Applicability Conditions

As pointed out in Sections 4.1.2 and 4.11.1, the prime (if not only) aim of an analysis
for displacement-based seismic assessment or retrofitting is the calculation of the
deformation demands in structural members. Part 3 of Eurocode 8 (CEN 2005a)
provides to this end the full menu of analysis options described in Chapter 4:

– the two linear options: linear static (Section 4.3) and modal response spectrum
analysis (Section 4.4), and

– the two nonlinear ones: nonlinear static or “pushover” analysis (Section 4.6.1)
and nonlinear dynamic analysis (Section 4.6.2).

In seismic design of new buildings linear analysis uses the design response spec-
trum incorporating the behaviour factor q. In displacement-based assessment or
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retrofitting, by contrast, linear analysis – when applicable – uses the 5%-damped
elastic response spectrum. In CEN (2005a) member inelastic deformation demands
(e.g., chord-rotations) are derived directly from such an analysis, applying the equal-
displacement rule at the member level. The sole condition for this simplification is to
have uniform chord-rotation ductility demands throughout the building. As pointed
out in Section 4.11.1, uniformity of inelastic chord-rotation demands over the build-
ing is evaluated on the basis of the demand-to-capacity ratio, D/C, in flexure, where
D is the bending moment at the end of a member due to the seismic action and
the concurrent gravity loads from linear analysis and C the corresponding moment
resistance,3 calculated on the basis of the axial force due to gravity loads alone and
using mean-value properties of old materials from in-situ tests and any additional
source of information, or nominal values for new materials. Linear analysis is not
allowed, if the maximum D/C-ratio in all “primary members” exceeds its minimum
value over all such elements that have D/C > 1 by more than a factor in the range
of 2–3 (as a Nationally Determined Parameter) with a recommended value of 2.5.
Those sections around beam-column joints where plastic hinging is ruled out on the
basis of the sums of beam or column moment resistances, ΣMRb or ΣMRc, respec-
tively, are presumed to remain elastic and neglected in the check of the variation of
D/C throughout the structure. As noted in Section 4.11.1, although there is no limit
on the absolute magnitude of D/C for the applicability of linear analysis, there will
always be at least one section in the entire structure where D/C slightly exceeds 1.0,
making the relative limit on D/C essentially an absolute one.

If this applicability condition of linear analysis is not met, only nonlinear analy-
sis is permitted. Recall, however, that (CEN 2005a) allows nonlinear analysis only
when we have “normal” or “full knowledge” of the as-built structure. So, if only
nonlinear analysis turns out to be applicable, or if the engineer wants to include in
the structural model the contribution of “secondary members” to the lateral strength
and stiffness (see below), he/she has no choice but to collect enough information for
at least “normal knowledge”.

The rules and procedures for linear or non-linear analysis are those described in
Sections 4.3, 4.4 and 4.6 with reference to Part 1 of Eurocode 8 (CEN 2004a).

No matter which method of analysis is applied, we should take into account
torsional effects due to the accidental eccentricity and simultaneous seismic action
components according to Sections 4.8 and 4.7, respectively.

6.5.4.2 Modelling Aspects

For modelling, the reader is referred to Sections 4.9 and 4.10. Points which are
of special importance in the context of an analysis for seismic assessment and
retrofitting are highlighted and elaborated further in the present section.

Throughout the structural model mean values of material properties should be
used. For old materials, as derived from in-situ tests and any additional sources of

3If the equal displacement rule indeed applies, D/C is about equal to the demand value of the
chord-rotation ductility ratio, μθ.
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information without modification by the “confidence factor” of Section 6.5.3. For
new materials, as estimated on the basis of the nominal values of their properties.4

Part 3 of Eurocode 8 places special emphasis on the effective elastic stiffness
of members to be used in linear or nonlinear analysis. It recommends for that pur-
pose the secant stiffness to the yield-point from Eq. (3.68), instead of 50% of the
uncracked gross-section stiffness, which is the default for force-based design in
Part 1 of Eurocode 8 (see Section 4.9.2). For the purposes of Eq. (3.68) My and
θy may be computed according to Sections 3.2.2.2 and 3.2.3.2, respectively, with
the effect of any lap-splicing or FRP-wrapping taken into account on the basis of
Sections 3.2.3.9 or 3.2.3.10, respectively, and that of concrete jacketing according
to Section 6.8.2.3.

As pointed out in Section 6.5.6, in order to have a successful (i.e., positive) seis-
mic assessment of the as-is building or evaluation of the retrofitted one, every single
member in the model, “secondary” or “primary”, should meet all relevant verifi-
cation criteria. Verification criteria for brittle modes of behaviour (i.e., in shear),
include a margin against failure (in that case, against significant loss of force resis-
tance). Verification criteria for ductile modes (namely in flexure), also in general
entail a certain margin from the expected value of ultimate deformation (conven-
tionally identified with a drop in peak force resistance to less than 80% of the maxi-
mum possible capacity). Therefore, there is no real need to incorporate in nonlinear
force-deformation models of members any strength decay due to this conventionally
defined failure. If indeed failure takes place, the verification criteria will in all like-
lihood be violated, signalling the need for (more effective) retrofitting. When in the
end all verification criteria are met, all members will be at sufficient distance from
ultimate conditions (identified with a drop in peak resistance) to justify using a non-
linear force-deformation model with a non-decreasing primary loading branch. For
example, Eqs. (4.82) and (4.85) may be used for the constant post-yield hardening
ratio of the uniaxial M-ϕ or M-θ curve in primary loading. In these expressions Mu

may be computed according to Section 3.2.2.5, My and ϕy from Section 3.2.2.2,
θu and θy according to Sections 3.2.3.5 and 3.2.3.2, respectively, and ϕu from
Section 3.2.2.4. Minor differentiations of the information in Annex A of CEN
(2005a) from the contents of these latter sections in Chapter 3 have been pointed
out: in Section 3.2.2.10 for ϕu, in Section 3.2.3.2 for θy and in Section 3.2.3.5 for θu.
Sections 3.2.3.9, 3.2.3.10 or 6.8.2.3 provide means to take into account the effects of
any lap-splicing, FRP-wrapping, or concrete jacketing, respectively, on Mu, My, ϕu,
ϕy, θu and θy and point out also any differentiation from the information in Annex
A of CEN (2005a).

Except wherever slippage of longitudinal bars from a joint or a foundation ele-
ment is prevented or restricted through positive means of fixity at the end section
or at a short distance inside the joint or the foundation element, model parame-
ters should be determined assuming that such slippage does take place (i.e., using
asl = 1 in Eqs. (3.66), (3.72), (3.78), etc.).

4The value fck + 8 MPa, from which the elastic modulus of concrete is calculated according to
Eurocode 2, is indeed a conventional mean value of the compressive strength of a concrete with
nominal strength fck.
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For any one of the simple models mentioned above we need to know the appli-
cable values of the member shear span and axial load. As pointed out in Sections
4.10.1.3 and 4.10.1.4, even in a nonlinear analysis the member effective stiffness
should stay constant throughout the course of the analysis. So, it should be based on
the member axial force due to the gravity loads concurrent with the seismic action
and on a constant value of the shear span at the member end(s) where a plastic hinge
might form. Section 4.10.1.4 has suggested and Section 4.10.5.1 adopted (at point
2) the following values of the shear span:

(i) At each end of a beam or column framing into a joint with another element:
half the clear length from one such joint to the next within the plane of bending,
neglecting any intermediate nodes along this clear length where the beam or the
column may be connected to another member lying in a plane at right angles
to the plane of bending.

(ii) The shear span of a beam ending at an indirect support on another beam may
be taken equal to its full clear span.

(iii) For each wall segment between successive floors: 50% of the height from the
bottom section of the storey to the top of the wall in the building.

Because there is a single effective stiffness for each member, the average secant-
to-yield-point stiffness at the two end sections in positive or negative bending should
be used. Beams or columns connected at intermediate nodes with other members
that have no stiffness within the plane of bending (e.g., a girder connected with
cross-beams or girders, a column with two-way frame action in certain storeys and
one-way action in others, etc.) have a single effective stiffness value throughout the
full length between successive nodes where the member in question frames into
elements with certain stiffness within the plane of bending. That effective stiffness
is determined using in Eq. (3.68) the yield moments at the two end sections of this
full length and as shear span 50% of the clear length between them.

During the course of nonlinear analysis any parameter of the member’s nonlin-
ear force-deformation relation other than its effective stiffness, such as the yield
moment and the post-elastic primary loading branch derived from it, may be taken
to vary with the axial force. Model parameters are not overly sensitive to the axial
force value, at least for the smooth variation it exhibits even during a response-
history analysis. By contrast, the shear span at each member end may vary wildly,
depending on the relative magnitude and sign of the end moments and – in beams –
on the concurrently acting transverse loads. So, it is strongly recommended to con-
tinue basing all parameters of the member nonlinear force-deformation relation on
the initially adopted values of the shear span at the two member ends.

Note that the fixed-end moments at beam end sections due to the concurrent
transverse loads induce zero chord rotation there. Moreover, the shear span value
used in the calculation of the member’s single effective stiffness normally differs
from the moment-to-shear ratio at an end section at the time it first reaches its yield
moment, My, during the calculated response. For these two reasons we may have
significant disparity between the end’s chord rotation at first yielding from the anal-
ysis on one hand, and the value of θy from Section 3.2.3.2 on the other. To avoid
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ambiguities, yielding of an end section should be considered to take place when My

is attained there, no matter how much the concurrent chord rotation from the analy-
sis, θy,act, differs from the θy-value used in the calculation of the effective stiffness
from Eq. (3.68). Plastic deformations are taken to start from that chord rotation.
For member assessment the demand value of the plastic chord rotation should be
compared with the plastic part of the ultimate chord rotation, θu

pl, i.e., with the part
of the ultimate chord rotation, θu, in Eqs. (3.72), (3.78) and (3.79) beyond θy (as
this part is modified for the effect of any lap-splicing or FRP-wrapping according to
Sections 3.2.3.9 and 3.2.3.10, respectively). It is also that demand value of plastic
chord rotation that should be divided by the value of θy from Eqs. (3.66) to give
a μθ

pl-value for use in the verification of the member in cyclic shear through Eqs.
(3.114), (3.115) and (3.127). If it is the total ultimate chord rotation, θu, from Eqs.
(3.72), (3.78), (3.79), (3.80) and (3.84), etc., or a fraction thereof (see Section 6.5.6
and Table 6.1) that is compared to the demand for the purposes of member veri-
fication, that demand should be the value from the analysis plus (θy,act.– θy), with
θy,act being the chord rotation from the analysis when My is attained there and θy the
value from Eqs. (3.66).

Unlike in new buildings, the contributions of “secondary members” to strength
and stiffness against lateral loads may well be included in the structural model. Part
3 of Eurocode 8 (CEN 2005a) essentially requires including them, if the analysis
is nonlinear. If their contributions are neglected, as allowed by CEN (2005a) in lin-
ear analysis, we cannot determine the seismic deformation demands against which
“secondary members” should be verified (see Section 6.5.6.1 and Table 6.1). In that
case, we should carry out two linear analyses per horizontal component of the seis-
mic action, namely those referred to as analysis no. 1 and 2 in Section 4.12.3 (see
also models no. 1 and 2 in Section 4.12.5.1). The seismic deformation demands in
the “secondary members” of storey i from analysis no. 2 (including the “secondary
members”) is then multiplied by the ratio of interstorey drifts of that storey from
analysis no. 1 (neglecting them) to those from no. 2. The outcome may be taken as
the seismic deformation demands in the “secondary members” and compared to the
corresponding capacities.

As pointed out in Section 4.12.5.2, if the cyclic degradation of strength and stiff-
ness in “secondary members” is thought to be indeed much larger than in “pri-
mary” ones, it can be included in a nonlinear model via a descending post-yield
branch (with negative slope) of the force-deformation curve in primary loading. In
nonlinear dynamic analysis the hysteresis rules may instead include degradation of
strength with cycling (see Section 4.10.1.6).

6.5.5 Estimation of Force Demands by Capacity Design In Lieu
of Linear Analysis

Brittle mechanisms of behaviour, such as shear, are assessed in terms of forces. Lin-
ear analysis is not appropriate for the estimation of internal force demands in the
inelastic regime, even when it is applicable for the estimation of member inelastic
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deformation demands. When the relevant applicability conditions are met and mem-
ber inelastic deformation demands are indeed estimated for simplicity from lin-
ear analysis, we should resort to capacity design calculations of the internal force
demands on members going into the inelastic range.

According to CEN (2005a) any moment resistance involved in the estimation of
internal force demands through capacity design may be calculated using the axial
force due to gravity loads alone, neglecting the one induced by the seismic action.
After all, this latter value is unknown in the framework of linear analysis.

6.5.5.1 Shear Forces in Beams or Columns

Taking into account the possibility that under the seismic action of interest and the
concurrent gravity loads plastic hinging in a column may take place at both, or just
one, or none of the two end sections, i =1, 2, its shear force is estimated from the
following modification of Eq. (1.12):

VCD,c = Mc1 + Mc2

Hcl
(6.1)

where:

– if
MEd,ci > MR,ci min

(
1;

∑
MR,b∑
MR,c

)
i

, then Mci = MRd,ci min

(
1;

∑
MR,b∑
MR,c

)
i

(i = 1,2) (6.2a)

– if MEd,ci ≤ MR,ci min

(
1;

∑
MR,b∑
MR,c

)
i

, then Mci = MEd,ci (i = 1,2) (6.2b)

MEd,ci in Eqs. (6.2) denotes the moment at column end section i (=1, 2) from the
linear analysis for the seismic action of interest and the concurrent gravity loads.
MR,ci is the moment resistance there calculated from the mean material proper-
ties from in-situ tests and any additional sources of information. MRd,ci, appear-
ing only in the 2nd part of Eq. (6.2a), is the moment resistance from these mean
material properties times the relevant “confidence factor” corresponding to the
“knowledge level” applying to this case. The ratios of sums of moment resistances,
ΣMR,b, ΣMR,c, refer to the end sections of those beams and columns, respectively,
that frame into the joint at column end i (=1, 2). Hcl is the clear height of the
column.

By the same token, the shear force at cross-section x along the part of the beam
nearest to beam end 1 (the other end denoted as 2) is estimated from a modification
of Eq. (1.9a):

max VCD,b1(x) = M−
b1 + M+

b2

Lcl
+ Vg+ψq,o(x) (6.3)



614 6 Seismic Assessment and Retrofitting of Existing Concrete Buildings

where:

– if MEd,b1
−>MR,b1

− min

(
1;

∑
MR,c∑
MR,b

)
1

, then Mb1
−

= MRd,b1
− min

(
1;

∑
MR,c∑
MR,b

)
1

(6.4a)

– if MEd,b1
− ≤ MR,b1

− min

(
1;

∑
MR,c∑
MR,b

)
1

, then Mb1
− = MEd,b1

− (6.4b)

– if MEd,b2
+>MR,b2

+ min

(
1;

∑
MR,c∑
MR,b

)
2

, then Mb2
+

= MRd,b2
+ min

(
1;

∑
MR,c∑
MR,b

)
2

(6.5a)

– if MEd,b2
+ ≤ MR,b2

+ min

(
1;

∑
MR,c∑
MR,b

)
2

, then Mb2
+ = MEd,b2

+ (6.5b)

In Eqs. (6.4) and (6.5) MEd,bi (i=1, 2) is the moment at beam end section i (=1, 2)
from the linear analysis for the seismic action of interest and the concurrent gravity
loads. MR,bi is the value of moment resistance there from the mean material strengths
from in-situ tests and any additional sources of information and MRd,bi its value from
these mean material properties times the relevant “confidence factor” corresponding
to the “knowledge level” applying to this case. Hogging moments (superscript (–),
tension at the top flange of the beam) are considered at end section 1 which is closer
to the beam cross-section x where the shear force is calculated and sagging ones
(tension at the bottom flange, superscript (+)) at the opposite end, 2. All moments
enter in these expressions as positive, no matter whether they are hogging or sag-
ging. The same for the shear force Vg+ψq,o(x) at cross-section x in a simply supported
beam subjected to the concurrent gravity loads, g+ψq.

6.5.5.2 Shear Forces in Walls

Capacity-design shears along the height of a multistorey wall cannot be established
from the moment resistances of beams framing into it at floor levels, because the
(unknown) lateral forces transferred to the wall by the floors enter also into the
equilibrium condition. So, for all types of walls, “squat” (with hw/lw>2) or “slender”
(hw/lw > 2), Part 3 of Eurocode 8 allows calculating capacity design shears from the
following modification of Eq. (1.14):

– if MEd,w (z = 0) > MR,w (z = 0), then VCD,w(z) =
(

MRd,w(z = 0)

MEd,w(z = 0)

)
VEd,w(z)

(6.6a)
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– if MEd,w (z = 0) ≤ MR,w (z = 0), then VCD,w(z) = VEd,w(z) (6.6b)

where z is elevation above the base, MEd,w(z) and VEd,w(z) are the moment and the
shear from linear analysis for the seismic action of interest and the concurrent grav-
ity loads, MR,w(z=0) is the value of moment resistance at the base section from the
mean material properties from in-situ tests and any additional sources of informa-
tion and MRd,w(z=0) its value there from mean material properties times the rele-
vant “confidence factor” corresponding to the “knowledge level” applying to that
case.

According to the reasoning in Section 1.3.6.4 about Eq. (1.15), Eq. (6.6a) may
be seriously on the unsafe side for “slender” walls in the nonlinear response regime,
as it neglects higher mode effects on wall shears after yielding at the base. To avoid
being on the unsafe side, for “slender” walls (i.e., where hw/lw > 2) with MEd,w(z)
> MR,w(z=0), Eq. (6.6a) may be replaced by the following adaptation of Eq. (1.15)
to the present conditions:

VCD,w(z) =
√(

MRd,w(z = 0)

MEd,w(z = 0)

)2

+ 0.1

(
Sa (TC )

Sa (T1)

)2

VEd,w(z) (6.7)

As in Eq. (1.15), Sa(T1) and Sa(TC) are the elastic spectral accelerations at the
period of the fundamental mode in the horizontal direction closest to that of the wall
shear force and at the corner period, TC, of the spectrum, respectively.

6.5.5.3 Shear and Bond in Joints

By referring to the provisions for DC H beams in Part 1 of Eurocode 8, Annex A of
Part 3 bases the calculation of shear force demands in joints on plastic hinging in the
beams, Eqs. (3.134) and (3.135), discounting the possibility of column hinging. This
is safe-sided. It makes more sense, however, to consider both possibilities and use
the full set of Eqs. (3.134), (3.135), (3.136), (3.137), (3.138), (3.139) and (3.140)
in Section 3.3.3.1 for the shear force and stress demand in a joint. Note that, if the
moments from the linear analysis, MEb, MEc, are such that

∑
MEb <

∑
MRb and∑

MEc <
∑

MRc, then the nominal shear stress in the joint, vj, may be estimated
either:

– from Eq. (3.135) and a joint horizontal shear force, Vjh, calculated using in
Eq. (3.134)

∑
MEb instead of

∑
MRb, or

– from Eq. (3.140) and a joint vertical shear force, Vjv, calculated using in
Eq. (3.139)

∑
MEc instead of

∑
MRc.

According to the spirit of Part 3 of Eurocode 8 (CEN 2005a), the value of fy
to be used in Eqs. (3.134), (3.136) and (3.138) is the mean yield strength of beam
bars estimated from in-situ tests and any additional sources of information times
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the relevant “confidence factor” corresponding to the “knowledge level” applying
to the case in question. By referring to the rules for DC H beams in Part 1 (CEN
2004a), however, the letter only introduces a multiplicative factor of γ Rd = 1.2 on
fy, to account for strain-hardening.

CEN (2005a) does not explicitly mention bond along beam bars crossing or
anchored at beam-column joints, which is also a force-controlled mechanism. At
any rate, Section 5.4.1 and Eqs. (5.10) in particular apply for their maximum diam-
eter. The values γ Rd = 1.0 and k = 0.75 may be used in these expressions. The
mean tensile strength of concrete inferred from in-situ tests and any additional
sources of information should be used there, divided by the “confidence factor”
corresponding to the “knowledge level” applying to the particular case. The mean
yield strength of beam bars from in-situ tests and any additional sources of infor-
mation times the relevant “confidence factor” should be used there as fyd. By the
same token, νd should be calculated using the mean compressive strength of con-
crete as estimated from in-situ tests and any additional sources of information times
the relevant “confidence factor”. Note, however, that in existing buildings beam bars
crossing or anchored at beam-column joints are very unlikely to fulfil Eqs. (5.10)
applied according to the present paragraph. If they don’t, we should keep in mind,
first, that the problem cannot be easily fixed by retrofitting and, second, that the
consequences of slippage of beam bars through or from joints are not so catas-
trophic. They amount to an apparent increase of beam flexibility due to fixed-end
rotations and to a cap on the moment resistance of beams anchored at a joint without
a bend.5 If we want to take this latter effect into account, we may compute the beam
moment resistance on the basis of a steel yield stress multiplied by the ratio of the
bar diameter from Eq. (5.10b) to the actual diameter. The effective elastic stiffness
of the beam from Eq. (3.68) does not need to be revised. However, the ultimate
chord rotation at the beam end framing into such a joint is governed by the uncon-
trolled fixed-end rotation due to bar pull-out and cannot be computed anymore from
Sections 3.2.3.4 or 3.2.3.5.

6.5.5.4 Transfer of Seismic Action Effects to the Ground

CEN (2005a) does not explicitly mention force-controlled mechanisms other than
shear in beams, columns, walls or joints. Loss of bearing capacity under (part of)
the foundation during an earthquake amounts to permanent deformations of the soil,
leading to a permanent tilt and/or settlement of the building. Therefore, in essence
it may be considered as a deformation-controlled, “ductile”, mode of behaviour
and failure. However, procedures for the estimation of permanent soil deforma-
tions in an earthquake and displacement-based verifications of the ground in the

5A bar passing through an interior joint, even when it slips along its length within the joint, will
be stabilised in the beam at the other side of the joint. Beam bars anchored at a joint through a 90◦

bend or a 180◦ hook rely on it for ultimate stabilisation against pull-out.
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framework of an integrated, fully-coupled seismic design of the superstructure-
foundation-soil system are still far away. The transfer of action effects to the
ground is still checked as force-controlled and will do so for the foreseeable
future.

Tie-beams and foundation beams of an existing building may be treated like the
beams of the superstructure, allowed to enter the inelastic range and develop plas-
tic hinges. So, if analysis is linear, these beams may be verified in flexure on the
basis of elastically estimated chord-rotation demands6 and in shear on the basis of
forces derived according to Section 6.5.5.1. The bearing capacity of the underlying
soil, however, should be checked in terms of forces. As long as we don’t discover in
the end that there is bearing capacity failure, the foundation soil may be considered
elastic. The rules presented in Section 2.3.4 for the capacity design of the foundation
may be applied for the calculation of the seismic action effects (forces and moments)
transferred to the ground by the foundation system. This entails multiplying all seis-
mic action effects transferred to the ground according to linear analysis by a factor
aCD. For individual footings Eq. (2.15a) may be adopted to the present conditions as
follows:

– if MR,y ≥ MEd,y and MR,z ≥ MEd,z, then aCD = 1 (6.8a)

– if MR,y < MEd,y or MR,z < MEd,z, then aCD = min[(MRd,y/MEd,y);

(MRd,z/MEd,z)]
(6.8b)

where MEd,y, MEd,z are the two orthogonal moment components at the base of the
column or the wall from the linear analysis for the seismic action of interest and
the concurrent gravity loads. MR,y, MR,z are the values of the corresponding uniax-
ial moment resistances from the mean material properties from in-situ tests and any
additional sources of information, and MRd,y, MRd,z are those from these mean mate-
rial properties times the relevant “confidence factor” corresponding to the “knowl-
edge level” applying to the case in question.

For common foundations of N > 1 vertical elements (e.g. on a foundation beam,
a box-type foundation, a raft, etc.) the simplification allowed in Part 1 of Eurocode 8
(CEN 2005a) for new buildings (aCD = 1.4, Eq. (2.16)) is not meaningful, as in the
present case the seismic action effects from linear analysis should be de-amplified
(aCD ≤ 1). A sensible option is to determine from Eqs. (6.8) a value of aCD at the
base of each one of the jointly-founded vertical elements, indexed by i (i=1, N) and
weight-average the individual values, aCD,i, into a composite one:

6Note that the applicability of the equal displacement rule to buildings considered on compliant
elastic ground, and to the elements of the foundation system in particular, has not been confirmed
yet.
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aCD =

N∑
i=1

aCD,i MEd,i

N∑
i=1

MEd,i

(6.9)

where MEd,i is that moment component MEd,y, MEd,z from linear analysis for the
seismic action of interest and the concurrent gravity loads which gives the minimum
ratio MR,y/MEd,y or MR,z/MEd,z at the base of vertical element i (hence governs plastic
hinging there).

6.5.6 Verification Criteria for Existing, Retrofitted,
or New Members

6.5.6.1 Overview of the Criteria

For a (as-is or retrofitted) building to meet a given performance level (Limit State)
under the corresponding seismic action, all its members, “primary” or “secondary”,
old, retrofitted or new, should conform to the corresponding verification criteria. As
pointed out in Section 4.12.1, different criteria are used for “primary” and “sec-
ondary elements”, with more safe-sided ones applying to the “primary” ones. It is
up to the engineer to evaluate the real importance of certain elements of the existing
or retrofitted building for its earthquake resistance and (re-)classify some of them
as “secondary”, if they meet the criteria for “secondary elements” but not those for
“primary” ones.

The criteria follow the general verification format, Ed ≤ Rd (cf. Eq. (1.3)), but
using for Ed and Rd:

– Deformations in the “ductile” modes of behaviour and failure (i.e., for flexure).
– Forces for the “brittle” ones (i.e., for shear).

The normative text of Part 3 of Eurocode 8 (CEN 2005a) describes these criteria
in very general terms:

– At the Damage Limitation (DL) Limit State, structural elements, ductile or brittle,
should stay below yielding;

– At the Limit State of Significant Damage (SD), ductile elements should not
exceed certain “damage-related deformations” and brittle ones their “conserva-
tively estimated strengths”; and

– At the Near Collapse (NC) Limit State, ductile elements should stay below
“appropriately defined ultimate deformations” and brittle ones below their “ulti-
mate strengths”.

The information given then in Annex A of CEN (2005a) for concrete mem-
bers is very specific, as summarised in Table 6.1. Following the proposals in
Fardis (1998, 2001) and Fardis et al. (2003), the deformation measure used in
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Table 6.1 Compliance criteria for assessment or retrofitting of concrete members in Annex A of
CEN (2005a)

Mechanism Member
Damage
limitation – LD Significant damage – SD Near collapse – NC

Flexure
(ductile)

Primary ME ≤ My θE ≤ 0.75 θu,m-σ θE ≤ θu,m-σ

Secondary or θE ≤ θy,act θE ≤ 0.75 θum θE ≤ θum

Shear
(brittle)

Primary VE ≤ VRd,EC2 and VE ≤ VRd,EC8/1.15; joints: VCD,j ≤ VRd,j EC8

Secondary VE ≤VRm,EC2 and VE ≤VRm,EC8/1.15; joints: VCD,j ≤ VRm,j EC8

these specific criteria is the chord-rotation at member ends The demand and the
capacity measures in Table 6.1 are elaborated further in Sections 6.5.6.2 and 6.5.6.3,
respectively.

6.5.6.2 The Demand Side of the Verification

The demand and its measures in Table 6.1 are due to the seismic action in question,
plus the concurrent gravity loads:

1. The moment, ME, and the chord-rotation, θE, are of interest only at sections
where the member frames into others having stiffness within a plane normal to
the vector of ME.

2. The shear force demand VE at the SD or NC Limit State is obtained from capacity
design calculations according to Sections 6.5.5.1 and 6.5.5.2, if linear analysis is
used. Otherwise, the analysis results are used.

3. VCD,j is the maximum shear force in the joint from capacity design calculations
according to the first paragraph of Section 6.5.5.3.

It is necessary to clarify how θE is determined. The chord with respect to which
the rotation of member end sections is measured should be fairly consistent with the
shear span used for the calculation of the corresponding ultimate chord rotation, θu,
at the two ends:

– In a member expected to be in counterflexure when it yields at one end, θE is
measured with respect to the chord connecting its two nodes on either side of
the expected point of inflection. More specifically, in beams or columns with end
nodes where the member frames into elements with certain stiffness within the
plane of bending, θE is measured with respect to the chord connecting these two
nodes, no matter any intermediate ones with other members having no stiffness in
the plane of bending. The length of this chord is twice the shear span determined
according to (i) in Section 6.5.4.2.

– If the member is expected to be in single curvature when it yields at one end, θE

is measured with respect to the chord connecting that end to a node at or near
the expected point of inflection. For example, if a beam frames into a column at
one end and ends at an indirect support on another beam at the other, θE may be
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measured with respect to the chord connecting these two ends. In a wall θE is
of interest at a storey’s bottom section and is measured with respect to a chord
connecting the node there to one about half-way the distance from the top of
the wall. In all these cases the length of the chord is equal to the shear span
determined according to (ii) or (iii) in Section 6.5.4.2.

For the implementation of the above in systems beyond full two-way frames in
3D, the post-processor of analysis results for member verifications should allow the
user to define for each member the chord with respect to which chord rotations at
the nodes of interest are defined within each plane of bending and then calculate θE

from the nodal rotations and displacements of these nodes in the global co-ordinate
system.

6.5.6.3 The Supply or Capacity Side

(1) My in Table 6.1 is the yield moment at the end section, as computed, e.g., from
Section 3.2.2.2, taking into account FRP-wrapping of the end of the member,
short lap splices there or short anchorage beyond the end section, according to
Sections 3.2.3.10 and Effect of Lap-Splicing on the Yield Properties in Section
3.2.3.9, respectively. For concrete-jacketed members Section 6.8.2.3 applies.
Biaxial effects on yielding may be taken into account according to Section
3.2.3.8. As My is in this case an indirect measure of a deformation capacity,
namely of θy,act in (2) below, it is based on mean strengths of old materials
divided by the confidence factor applicable and on the nominal strengths of
new materials. Because of the confidence factor, it is generally different from
the value used in Eq. (3.68) for the effective stiffness.

(2) θy,act in Table 6.1 is the chord-rotation demand at the time the value of My in (1)
above is attained during the analysis. Note that, if the verification is in terms of
deformations, Annex A of Part 3 of Eurocode 8 recommends using instead the
value of θy from Eqs. (3.66) in Section 3.2.3.2 (corrected for FRP-wrapping,
short lap splicing or anchorage and biaxial loading according to the sections
mentioned in (1) above). As discussed in Section 6.5.4.2, if this suggestion is
adopted we may have a mismatch with attainment of My and ambiguities about
yielding.

(3) θum in Table 6.1 is the expected value of the ultimate chord-rotation under
cyclic loading, calculated using mean strengths for old materials divided by
the confidence factor and nominal strengths for new materials. According to
Annex A of CEN (2005a) the reference approach for its estimation is via
Eqs. (3.78a) or (3.78b), modified for: poor detailing through to Eqs. (3.79),
but with coefficient 0.825 instead of 1/1.2 = 0.833; for lap-splicing of lon-
gitudinal bars starting from the end section according to approach (i) in sec-
tion Effect of Lap-Splicing on the Flexure-Controlled Ultimate Deformation in
Section 3.2.3.9; for FRP-wrapping of a plastic hinge region via the approaches
in Section 3.2.3.10 based on Eq. (3.92) with lap-splicing or (3.89) without.
The application of the reference approach to concrete-jacketed members is
described in Section 6.8.2.4. The second approach in Eurocode 8 for θum applies
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only to members detailed for earthquake resistance. It does not have exten-
sions for poor detailing, lap-splicing, FRP-wrapping or concrete jacketing. It
employs Eq. (3.70a), with the full expression for θ y from Eqs. (3.66) instead of
the flexure-only term, ϕyLs/3. It calculates ϕu as described under point (a) at the
end of Section 3.2.2.10, giving two confinement options. A different expression
for the plastic hinge length, Eq. (3.75) or (3.76) in Section 3.2.3.4, goes with
each option.
Section 3.2.3.5 has pointed out that Eq. (3.78c) is an equally good alternative
to the reference approach in Annex A of CEN (2005a), Eqs. (3.78a) or (3.78b).
Section 3.2.3.10 has added two alternatives to Eq. (3.89) for the estimation of
the effect of FRP-wraps over a plastic hinge region without lap-splicing. Section
3.2.3.4 has shown that Eq. (3.72), used with Eq. (3.73) or (3.74) for the plastic
hinge length and with ϕu according to Sections 3.2.2.4 and 3.2.2.10, predicts
θum much better than its Eurocode 8 counterpart, albeit worse than the reference
one based on Eqs. (3.78). When extended according to approach (ii) in sub-
section Effect of Lap-Splicing on the Flexure-Controlled Ultimate Deformation
for members with lap-spliced longitudinal bars, Eqs. (3.72), (3.73) and (3.74)
predict θum better than approach (i) in sub-section Effect of Lap-Splicing on
the Flexure-Controlled Ultimate Deformation in Section 3.2.3.9, which is the
counterpart of the reference approach. The extension of Eqs. (3.72), (3.73) and
(3.74) to members with continuous bars and FRP wrapping according to sub-
section Members with Continuous Bars in Section 3.2.3.10 is also as successful
as the reference approach with Eqs. (3.89), (3.90) and (3.91). As pointed out
at the end of sub-section Members with Lap-Spliced Ribbed Bars in Section
3.2.3.10, however, this extension is not so good for FRP-wrapped members with
lap-spliced bars. Last, but not least, the approach of Section 3.2.3.4, Eqs. (3.72),
(3.73) and (3.74), has not been extended to members with continuous bars but
poor detailing. All things considered, the extended version of Eqs. (3.72), (3.73)
and (3.74) is still not as good or general as the reference approach of Section
3.2.3.5 and its extensions.
As pointed out at the end of Section 3.2.3.8, for biaxial bending both the
approach in Section 3.2.3.4 and that of Section 3.2.3.5 may be applied in
Eq. (3.84).

(4) θu,m-σ in Table 6.1 denotes the mean-minus-standard deviation estimate of the
ultimate chord-rotation under cyclic loading. Like θum above, it is calculated
from mean strengths for old materials divided by the confidence factor and from
nominal strengths for new materials. Annex A in CEN (2005a) replaces this
estimate directly with:

(i) θu,m-σ = θum/1.5, if θum is obtained from Eq. (3.78a) in Section 3.2.3.5 and
its extensions for poor detailing, lap-splicing, FRP-wrapping, etc.;

(ii) θu,m-σ = θy +θpl
um/1.8, if one uses the value of θy from Eq. (3.66) in

Section 3.2.3.2 and θpl
um from Eq. (3.78b) in Section 3.2.3.5, with their

corresponding extensions for poor detailing, lap-splicing, FRP-wrapping,
etc.
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(iii) θu,m-σ = θum/2, for θum from Eq. (3.70a) but with θ y from Eqs. (3.66)
instead of θ y = ϕyLs/3, with Eq. (3.76) for the plastic hinge length and
ϕu calculated according to point (a) at the end of Section 3.2.2.10 with
the confinement model in Eurocode 2 and CEB (1991), Eqs. (3.8), (3.9),
(3.13) and (3.25);

(iv) θu,m-σ = θum/1.7, if θum is obtained from Eq. (3.70a) with θ y as in (iii)
above, with Eq. (3.75) for the plastic hinge length and with ϕu calculated
according to point (a) in Section 3.2.2.10 with the confinement model of
Eqs. (3.4), (3.5), (3.10) and (3.18).
In the light of the test-to-prediction statistics for cyclic loading quoted
in Section 3.2.3.5 for unretrofitted members with continuous bars and
elsewhere in Section 3.2.3 for members with lap-splices and/or FRP-
wrapping, the values in (i) and (ii) above may be considered as close
to mean-minus-standard deviation estimates, for the cases when θum as
a whole is obtained from either one of Eqs. (3.78), or θpl

um is estimated
from Eqs. (3.78b) and (3.78c), respectively (also for the extensions of Eqs.
(3.78) for poor detailing, lap-splicing, FRP-wrapping, etc.). However, the
statistics quoted in Section 3.2.3.4 right below Eqs. (3.75) and (3.76) show
that the values in (iii) and (iv) above are higher than mean-minus-standard
deviation estimates by 50 and 37.5%, respectively. The statistics for cyclic
loading quoted in the Section 3.2.3.4 right below Eqs. (3.73) and (3.74)
suggest that a mean-minus-standard deviation estimate of θu may indeed
be obtained as:

(v) θu,m-σ = θum/1.8, for θum from Eq. (3.72), with a plastic hinge length from
Eqs. (3.73) or (3.74) and ϕu according to Sections 3.2.2.4 and 3.2.2.10.

(5) VRd,EC2 in Table 6.1 is the monotonic shear resistance before flexural yielding
according to Eurocode 2, as given in detail in sub-section The Variable Strut
Inclination Truss of the CEB/FIP Model Code 90 and Eurocode 2 in Section
3.2.4.2. It is computed using mean strengths of old materials divided by the
confidence factor and nominal strengths of new materials, in all cases divided
by the partial factor for the material.

(6) VRd,EC8 is the cyclic shear resistance after flexural yielding from Eurocode 8,
i.e., from Eqs. (3.114) for cyclic diagonal tension, or Eqs. (3.115) and (3.127),
for cyclic diagonal compression in squat walls or columns, respectively. Like
VRd,EC2, it is computed from mean strengths of old materials divided by the
confidence factor and from nominal strengths of new materials, always divided
by the partial factor of the material.

(7) VRd,jEC8 is the cyclic shear resistance of the joint according to Part 1 of Eurocode
8, Eqs. (5.13) and (5.14) in Section 5.4.2 ((3.143), (3.144) in Section 3.3.3.1),
from the mean strength of old steel and concrete divided by the confidence
factor and from the nominal one for new materials, in both cases divided by the
partial factor of the material. Equations (5.15) (or (3.142) in Section 3.3.3.1)
may be used as alternative to (5.14) and (3.143), with fy at the right-hand-side
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taken equal to the mean yield strength of beam bars multiplied by the confidence
factor and by γ Rd = 1.2 for strain hardening, without material partial factor.

(8) VRm,EC2, VRm,EC8, VRm,jEC8 in Table 6.1 are the shear resistances as in (5), (6) and
(7), respectively, but computed from mean strengths of old materials modified
through the confidence factor and from nominal strengths of new materials.

Annex A of CEN (2005a) recommends for (6)–(7) the usual values of partial
factors for concrete and steel: 1.5 and 1.15, respectively, and a value of 1.5 for FRP.

The ultimate deformation estimates in (3) and (4) above increase with increasing
shear span, Ls, at the end in question and with decreasing axial force, N, in the mem-
ber. When N increases, a member’s shear resistance in (5) or (6) increases, while
that of a joint in (8) may increase or decrease. The shear resistance in (6), VRd,EC8,
decreases with increasing Ls and with increasing demand value of the chord rota-
tion ductility factor, μθ, at the end in question. All these parameters vary during
the seismic response. If the analysis is linear, the verifications take place in the end,
using the initial values of Ls (e.g., as listed under (i)–(iii) in Section 6.5.4.2) and
N (due to gravity loads alone) and the peak value of μθ from the analysis. If the
analysis is nonlinear, it is preferable to check all verifications at each point during
the response, using the instantaneous values of N and μθ. For Ls it is normally suf-
ficient to use the current value of M/V only at beam ends and, as a matter of fact,
only when they are in hogging bending. This is the most critical condition for the
shear and the chord rotation (at least for the usual position of the slab and distribu-
tion of longitudinal reinforcement between top and bottom). Conditions are rarely
critical at the sagging end, while the variation of M/V there may be such that absurd
instantaneous capacity estimates come out. If a nonlinear static (“pushover”) analy-
sis is carried out, the value of M/V at column or wall end sections varies smoothly
with increasing lateral forces and may be taken as the instantaneous value of Ls

in capacity calculations. However, during a nonlinear dynamic response analysis
the instantaneous value of M/V at these locations varies wildly and should never
be taken as instantaneous value of Ls. For this type of analysis the biaxial fail-
ure criterion, Eq. (3.84) in Section 3.2.3.8, should also be checked at each point
of the response, with the instantaneous values of the two chord rotation compo-
nents. For the other methods, a final biaxial check with the peak component values
suffices.

The shear verifications in Table 6.1 may be limited to the highest LS being veri-
fied, as they will then be met by default at any lower Limit State. Note also that the
ratio between the required chord rotation capacities at the Significant Damage (SD)
and the Near Collapse (NC) Limit States (LSs) is constant and equal to 0.75. Chord
rotation demands estimated via linear analysis are proportional to the Peak Ground
Acceleration (PGA) of the seismic action. So, the SD Limit State will govern, if the
PGA of the corresponding seismic action is less than 75% of that applying for the
NC LS. Conversely, if it exceeds that value. So, checking both LSs is redundant.
This conclusion may be extended to the use of nonlinear analysis, provided that the
ratio of the PGA values for the SD and NC LSs is not close to 0.75.
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6.5.7 Masonry Infills in Assessment and Retrofitting

According to Part 3 of Eurocode 8, wherever there are no specific provisions for
masonry infills, the pertinent ones of Part 1 (CEN 2004a) apply. According to one
of them, if walls take at least 50% of the base shear from a linear analysis, the inter-
action of the structure with the masonry infills may be neglected. This may be taken
to imply that it is allowed then to disregard the infills in the structural model. How-
ever, this is not always a safe assumption. Other implications for the analysis derive
from the CEN (2004a) requirements highlighted in Section 2.1.13.2, namely that
infills with strongly asymmetric or irregular layout in plan should be included in a
3D structural model and a sensitivity analysis of the effect of the stiffness and posi-
tion of the infills carried out (e.g., disregarding one out of three or four infill panels
per planar frame). If the layout of infills in plan is not so asymmetric or irregular
to warrant including them in the analysis model, the requirement in CEN (2004a)
to double the accidental eccentricity in an analysis that neglects them applies for
existing buildings as well. The provisions in CEN (2004a) about infills with irreg-
ular distribution in elevation (see Section 2.1.13.3) address the problem in a fully
force-based context. So, they can only guide the decision about including or not in
the structural model heightwise irregularly distributed infills. If the value of η from
Eq. (2.7) is less than 1.1, their heightwise distribution is not a sufficient reason for
including them.

For modelling of masonry infills the reader is referred to Sections 4.9.8 and
4.10.2. Recall the different values proposed in Section 4.9.8 for the effective width
of the diagonal strut of solid infill panels at the three Limit States of CEN (2005a).

Masonry infills included in the structural model seem more like “primary ele-
ments” than “secondary” ones, as they do not play a role in the support of gravity
loads and contribute only to lateral stiffness and strength. Infill panels are natu-
rally classified as “primary members”, if engineered into parts of the lateral-force-
resisting system for retrofitting, e.g., by adding overlays of shotcrete or strong
mortar with curtains of light reinforcement. Moreover, if confined at all four sides
by a fairly strong concrete frame, they may exhibit remarkable deformation capac-
ity (but offer little energy dissipation). So, they may well be checked in terms of
deformations.

Notwithstanding their effectiveness, CEN (2005a) does not explicitly cover
masonry infills engineered to be part of the lateral force resisting system. It only
mentions masonry infills in general, in relation to the Damage Limitation (DL) Limit
State, stating that at that LS they should be checked on the basis of their interstorey
drift capacity. This makes sense for the following reasons:

– At the Near Collapse LS we cannot rely on non-engineered infills. Even when
we include them in the model to take into account their potential adverse effects,
we will not bother to check their integrity, as falling hazards are accepted at this
LS;

– At the Significant Damage LS we may include non-engineered infills in the
model to also take into account any benefits derived from their contribution to lat-
eral strength and stiffness. Then we rely on their fairly large deformation capacity
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without explicitly checking it, since non-structural elements may be sacrificed at
this LS.

– One of the targets of the Damage Limitation LS is to ensure that damage to non-
structural components is minor (for infill walls, distributed cracking) and can be
easily and economically repaired later. So, masonry infills should be explicitly
checked at this LS.

CEN (2005a) does not give specific interstorey drift limits for infills at the Dam-
age Limitation LS. Note, though, that the interstorey drift checks required under
the Damage Limitation seismic action in the framework of the “q-factor approach”
(see Section 6.5.8) include indirect reference to the pertinent provisions of Part 1 for
new buildings. It is inferred from this that the target protection of infills in existing
buildings under the Damage Limitation seismic action is achieved, if we meet the
interstorey drift limits specified in Part 1 of Eurocode 8 for new buildings (listed in
Section 1.1.3 under (i) and (ii)). Indeed, limit (i) in Section 1.1.3 is physically rea-
sonable for the onset of damage in ordinary masonry infills. So, infills can be veri-
fied for the Damage Limitation LS by checking limits (i) and (ii) in Section 1.1.3.
Note that these limits (especially (i)) often govern member sizes in frame buildings
designed for earthquake resistance according to CEN (2004a), even though they are
checked using the default value of 50% the stiffness of the uncracked gross con-
crete section. With their smaller member sizes, existing frame buildings will have
larger difficulty in meeting these limits under the same Damage Limitation seis-
mic action, especially when the realistic stiffness values from Eq. (3.68) are used.
They may very well meet them, however, if the contribution of infills to lateral
stiffness is taken into account. So, we should not attempt to verify the interstorey
drift limits (i) and (ii) in Section 1.1.3 under the Damage Limitation seismic action,
unless the infills are included in the model for this level of seismic action. This is a
good practical reason to consider even non-engineered masonry infills as “primary
members”.

6.5.8 Force-Based Assessment and Retrofitting (the “q-factor
Approach”)

Part 3 of Eurocode 8 allows also force-based assessment and retrofitting using the
q-factor. The purpose is two-fold:

– To allow a positive seismic assessment for buildings that may have been
(recently) designed in accordance with EN-Eurocode 2 (CEN 2004b) and EN-
Eurocode 8 (CEN 2004a) – be it on the basis more of (over)strength than
of ductility – and avoid, therefore, embarrassing situations where a structure
designed as new on the basis of one part of the suite of EN-Eurocodes is for-
mally rejected by another when considered as an existing one.

– To facilitate retrofitting buildings by adding a new lateral-load-resisting sys-
tem capable of sustaining the full seismic action. The new system may be
designed in full accordance with CEN (2004a), considering all existing elements
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as “secondary” even when their total contribution to lateral stiffness might exceed
15% of that of the added system.

Note that, to claim that it is a Eurocode assessment and retrofitting, a force-based
one should comply with all relevant design provisions for new buildings in CEN
(2004a,b).

The “q-factor approach” is a two-tier seismic assessment and retrofitting similar
to a new design according to the EN-Eurocodes. It is based on two Limit States:

1. Damage Limitation, checked exactly as for new buildings, i.e., on the basis of
the interstorey drift limits listed in Section 1.1.3 under (i–iii); and

2. Significant Damage, identical to the No-(local-)collapse performance level for
new buildings and checked with the criteria and procedures of CEN (2004a).

The parallel with the design requirements for new buildings stops at the definition
of the seismic action, as it is not necessary to adopt for Limit States 1 and 2 above
the hazard levels specified in the National Annex to CEN (2004a) for the “damage
limitation” and the “design” seismic action, respectively. The National Annex to
Part 3 (CEN 2005a) applies instead, which may leave to the owner and the designer
the choice of these hazard levels.

As in new designs, most demanding is the fulfillment of Limit State 2 above.
This entails a linear analysis with the design spectrum in CEN (2004a), Eqs. (4.5)
in Section 4.2.2. There we are always entitled to use q = 1.5. For this q-factor
value safety verifications are limited to checking that in every single “primary ele-
ment” internal force and moment demands due to the design seismic action plus
the concurrent gravity loads do not exceed the corresponding force and moment
resistances.7 These resistances are computed as in new buildings, except that for old
materials mean strengths are used divided by the confidence factor. Like the nom-
inal strengths of new materials, they are divided in the end by the material partial
factor.

To use a value of q higher than q = 1.5, one has to show that the building
has the corresponding local and global available ductility according to Part 1 of
Eurocode 8:

– For retrofitting with a new lateral-load-resisting system capable of sustaining the
full seismic action, one has to choose a Ductility Class from Part 1 of Eurocode 8
(DC M or H) and use the associated q-factor value. The new system and its con-
nection to the old one should meet all the detailing and capacity design require-
ments for the chosen DC.

– To find out what q-factor value can be used for the existing system as is, possi-
bly with some of its members retrofitted or with certain new elements added, one
may first check one-by-one the end sections of all “primary elements” where Part

7“Secondary elements” are checked as in new buildings, see Section 4.12.3.
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1 of Eurocode 8 would require detailing for ductility and determine the value of
the curvature ductility factor, μϕ, for each one from its detailing. More specifi-
cally, at the end sections of each “primary beam” Eq. (5.4b) is inverted for the
available value of μϕ. Equation (5.8) is also inverted for μϕ at the base section
(connection to the foundation) of each “primary column” (taking ωvd = 0) and
“primary wall”. The minimum of all these so-determined μϕ-values is used then
to invert Eqs. (5.2) for the basic value of the behaviour factor, qo. This exercise
should be carried out separately for each horizontal direction. By going back to
Table 1.1 (and the rest of Section 1.4.3.1 for the default value of αu/α1), one may
find out which DC the building (as is or retrofitted) may claim to belong for the
specific lateral-load-resisting system of the horizontal direction considered. If,
for example, the qo-value is between those of DC M and H, the building might
qualify for DC M. This preliminary conclusion on a single potential DC for both
horizontal directions should be confirmed, by making sure that every single “pri-
mary element” and its connections meet the prescriptive detailing rules and the
capacity design provisions (Eq. (1.4) if applicable, as well as in shear, etc.) per-
taining to this DC (see Tables 5.1, 5.2 and 5.3). It is only after this is confirmed
that one can determine the final q-factor value (incorporating any reductions for
irregularity in elevation) and calculate the internal force and moment demands
due to the design seismic action on the basis of the design spectrum. Needless to
say, it is very unlikely that the as-is building or a moderately upgraded version
of it will meet all detailing, capacity design and strength verification require-
ments for DC M buildings (let alone DC H). However, this exercise may point
out (hopefully few) “primary members” that need to be modified or downgraded
to the class of “secondary”, for the building to qualify for a Ductility Class higher
than L.

For conformity with Part 1 of Eurocode 8 and the background of Eqs. (5.2), (5.4b)
and (5.8), the analyses for the “damage limitation” and the “design” seismic action,
should use the default stiffness of 50% of that of the uncracked gross concrete sec-
tion. Seismic action effects should not be reduced by including non-structural infills
in the model.

6.6 Liability Questions in Seismic Assessment and Retrofitting

The designer and the contractor of a building normally share the liability for prop-
erty damage, injuries or casualties in the event of an earthquake, subject of course to
any statute of limitations. The picture is not so clear, once a new engineer assesses
the building as adequate, according to the performance targets set by the owner who
hired him/her and/or the applicable codes and standards. Besides, if the assessment
is followed by retrofitting, the designer and the contractor who carry it out enter the
picture as well. At first sight, the new people bear the full liability for the building,
especially if the original designer and/or contractor are not available anymore or are
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protected by statute of limitations. However, if the original designer has chosen a
poor structural layout, its effects on seismic response and performance cannot be
fully reversed through retrofitting. Moreover, owing to cost constraints or time pres-
sures, or to limit disturbance and damage to the building for material sampling and
exposure of reinforcement, the campaign of in-situ measurements may not reveal
potential serious flaws in materials or detailing, for which the original contractor is
responsible.

It may be difficult for the owner to find a designer and a contractor prepared to
bear the full responsibilty and liability for the actions of others. In some cases, the
new engineer of the retrofitting may choose to protect himself from future liabilities
by taking a very safe-sided attitude. He/she may recommend retrofitting a build-
ing that would normally be assessed as meeting the performance targets, and/or
choose a heavy and unduly costly retrofitting strategy. In addition to being a waste
of resources, such an attitude does not serve well the cause of seismic risk mitigation
through retrofitting of existing buildings, as owners may in the end be discouraged
to go ahead with the implementation of a prohibitively expensive retrofit design.
Therefore, competent authorities should make sure that the applicable legal frame-
work for liability is perceived by designers and contractors of retrofitting projects
as fair and equitable. Targeted programmes for the reduction of seismic risk by
retrofitting existing buildings may well include special litigation schemes to resolve
potential liability cases for the buildings to be rehabilitated.

6.7 Retrofitting Strategies

6.7.1 General Guidelines

The aim of retrofitting is to modify the seismic demands, Ed, and/or the capacities,
so that all relevant elements of the retrofitted building fulfill the general verification
inequality, Ed ≤ Rd, at all performance levels (“Limit States”) under the correspond-
ing seismic action (see Sections 6.5.6 and 6.5.7 for Eurocode 8). This goal may be
achieved by adopting one of the following approaches or strategies, or even com-
bining them:

1. By reducing the seismic demands on members and the structure as a whole;
2. By increasing the member capacities.

Each strategy may be implemented using one or more retrofitting techniques
(fib 2003, Thermou and Elnashai 2006, Thermou et al. 2007b). Techniques serving
mainly Strategy no. 2 are described in Section 6.8, while some of those employed for
Strategy no. 1 are highlighted in Section 6.9. Each technique has its own advantages
and drawbacks, scope and limitations of use and fits better in one of these strategies.
The choice of the technique depends on:
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a. the locally available materials and technologies;
b. cost considerations;
c. the disruption of use it entails and the duration of the works;
d. architectural, functional and aesthetic considerations or restrictions, etc.

One or more retrofitting technique(s) are normally chosen on the basis of con-
siderations (a–d), etc. This choice and how it is implemented determines which
retrofitting strategy is being adopted.

Each retrofitting intervention is a special case, with more than one appropriate
solutions. So, generalisation of rules is neither possible nor advisable. With this in
mind, there are some general (but not absolute) guidelines to follow, depending on
the outcome of the assessment of the as-built structure:

1. If there is general deficiency in the building, retrofitting Strategy no. 1 above is
more cost-effective, as it can reduce the seismic demands throughout.

2. If there are capacity deficiencies in just a few scattered members, it is more cost-
effective to focus on them and upgrade their capacities with retrofitting Strategy
no. 2.

3. If the deficiencies are concentrated in a single or few (“weak”) storeys, they
may be due to a vertical irregularity. Retrofitting Strategy no. 2 is an option, to
upgrade the capacities of the members of these storeys. Retrofitting Strategy no.
1 could be adopted instead, to remove the irregularity by adding strong and stiff
new elements from the ground to the weak storey(s) and beyond, or to strengthen
and stiffen existing elements there to overshadow the irregularity and suppress
storey-sway mechanisms.

4. If the deficiencies are concentrated at a single side of the building, they may be
due to a torsional imbalance in plan. It may be chosen to stiffen and strengthen
existing elements on that side or add new ones there, to balance the stiffness and
strength (retrofitting Strategy no. 1). Alternatively, the deformation capacity and
the shear strength of the members of the “flexible side” may be upgraded, to
accommodate the larger demands on them (retrofitting Strategy no. 2).

In buildings with a large surface area and strongly irregular and asymmetric
structural layout, it may even be chosen to introduce vertical joints at selected loca-
tions in plan, converting the building to a number of structurally independent regular
units. Vertical elements should be provided in that case at both sides of each joint,
for independent support of the corresponding horizontal elements. The width of the
joint should be sufficient to prevent pounding, especially if there is large disparity
in lateral stiffness between the parts being separated. Conversely, if the building is
already separated by vertical joints into a number of structurally independent but
asymmetric in plan units, it may be decided to join them into an integral structure,
by providing structural continuity across the joints. In this way we avoid pounding
between the units during their strongly torsional seismic response. More important,
it is easier to come up with a structure with an overall balanced in plan lateral stiff-
ness and strength. An example is given in Section 6.10.2. Note that, by the time
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of the retrofitting the joints would have served their primary mission, notably to
accommodate the shrinkage of concrete. With shrinkage practically complete, future
movements at the joints due to daily or seasonal temperature cycles alone will be
minor and, if suppressed, they will not induce high stresses in the horizontal ele-
ments of the integral building. Besides, if the connection across a joint takes place
at ambient temperatures markedly below the yearly average, these stresses will be
compressive most of the time.

Regardless of its type and extent, a retrofitting intervention should in no way
impair the safety or capacity of any part of the building, e.g. by introducing irregu-
larities in plan or elevation, by shifting the deformation demands to inadequate com-
ponents or other failure modes, etc. Upgrading the moment resistance of a member
should never make it critical in shear. Strengthening of beams should not shift plastic
hinging to columns.

6.7.2 Reduction of Seismic Action Effects Through Retrofitting

In this strategy seismic deformation demands on existing structural or (drift-
sensitive) non-structural elements are reduced below the corresponding capacities,
which may remain unchanged. Absolute displacements are also reduced, decreas-
ing the likelihood of pounding with adjacent buildings. Shear force demands cannot
decrease, unless the member in question is kept in the elastic region.

This strategy lends itself better for a multi-tier performance-based rehabilitation.
It can prevent member failures in rare, strong earthquakes, while limiting structural
and non-structural damage in frequent, moderate ones.

The most effective and common means for the reduction of seismic deformation
demands is by increasing the global lateral stiffness. Normally this brings about an
increase in global lateral strength, which, however, should be seen as a by-product
and not as the main target of the retrofitting. In order of decreasing effectiveness,
global lateral stiffness may be increased by:

1. Adding a whole new lateral-load-resisting system to take almost the full seismic
action. This system may consist of steel bracing (see Section 6.9.3), new concrete
walls (Section 6.9.2), new moment frames, or combinations thereof. The new
elements are normally placed at the perimeter, to facilitate their foundation and
to limit disruption of use of the building (under certain conditions, operation
may continue during retrofitting). The new system can overshadow completely
any irregularities in plan or elevation. Critical elements in this approach are the
foundation of the new lateral-load-resisting system and the connection to the
existing system for the transfer of inertia forces. This approach lends itself to
application of force-based retrofitting according to Section 6.5.8. In that case
the new system is designed for ductility in full accordance with a code for new
buildings, while the existing elements are considered as “secondary” and verified
as such.
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2. Adding new elements (new concrete walls, see Section 6.9.2, or steel bracing,
Section 6.9.3), to supplement the existing structural system. The new elements
may be used to advantage to balance a strongly asymmetric layout in plan, or to
eliminate soft/weak storeys. If the contribution of the added elements to lateral
stiffness is large, this approach may be considered as a scaled-down version of
approach 1. Then what has been said for it above still holds, except the applica-
bility of Section 6.5.8 for force-based retrofitting.

3. Converting non-structural infill walls into structural elements, integrating them
with the surrounding frame. The approach has many aspects in common with
3 above, but is not covered at all in this chapter, because there is not sufficient
technical basis for the verification of infill walls as “primary” structural elements.
Note that, if the overlays added to the infills contain curtains of light reinforce-
ment, detailing aspects (e.g., the connection or anchorage of the reinforcement
to the frame and how it affects the behaviour and the verifications; corrosion pro-
tection of the reinforcement, in view of the small thickness of the overlay, etc.)
become very important.

4. Concrete jacketing, mainly of columns. This is closer to retrofitting for the pur-
poses of increasing the capacities. Only when practically all columns are jack-
eted (e.g., when architectural reasons do not allow adding new walls or steel
bracing, or when there is wide-spread reinforcement corrosion), it might also be
considered as part of a strategy to reduce seismic demands, albeit not the most
cost-effective and less disruptive one.

Depending on the case, the engineer may use approaches 2, 3 or 4 in the same
retrofitting. The stiffening (and strengthening) should not be discontinued vertically
at a level below the top, without considering the potential concentration of damage
just above that level.

Reduction of mass is another means of reducing deformation and displacement
demands, as in the pseudo-velocity controlled region of the spectrum, where the
effective fundamental period of concrete buildings normally falls, seismic displace-
ment demands are about proportional to the square root of the total mass. Except
in special cases (e.g., when there is a single large mass at the upper floors), this
approach is marginally effective by itself, but can be used to advantage in com-
bination with other techniques or approaches. It can be implemented by removing
heavy items (e.g., water tanks, heavy pieces of equipment, storage loads), by replac-
ing heavy floor (or roof) finishings, cladding or partitions with lighter ones, or even
by demolishing one or more top floors. Demolition of penthouses and upper storey
setbacks also removes extreme irregularities in elevation and is sometimes worth
considering. If the deficiencies identified in the existing structure are marginal,
reduction and removal of masses throughout the building or, in extreme cases,
complete removal of the upper storey(s), may make seismic upgrading of the rest
unnecessary.

The introduction of base isolation and energy dissipation is also a means to
reduce seismic deformation demands. These two techniques are not covered in this
book at all, even for new buildings. For seismic upgrading, they are best suited for
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bridges, where they often represent by far the best option. However, for existing
buildings normally they are not cost-effective. This is more so for base isolation,
as inserting the isolation devices is technically challenging: one needs to cut one-
by-one the vertical elements at the base, while jacking up the superstructure around
them.8 Base isolation provides not only safety to the building and its occupants
under very strong and rare earthquakes, but also protection of building contents
under any earthquake event. Therefore, if the facility is required to remain opera-
tional during the earthquake or be available for immediate occupancy afterwards,
isolation may be the most cost-effective strategy, provided that the building is not
slender but stocky (to avoid axial tension on the devices, due to the overturning
moment) and the superstructure has large stiffness (to be considered as rigid, com-
pared to the isolation system). At any rate, base isolation is a sophisticated and
complex technique and its application requires not only specialised expertise, but
also peer review of the design.

For energy dissipation to be effective, significant lateral seismic displacements
are necessary. So, it can only be used in flexible structures, as a supplement of
another system which does not significantly increase the global stiffness. Dissipa-
tion devices can be used together with base isolation, or can be inserted in braces
of an added steel bracing system. In this latter case the displacement demands for
the activation of the dissipation system are not concentrated at the base (isolation)
level but distributed throughout the structure, possibly causing significant damage
to existing structural and non-structural components. This technique also is sophis-
ticated, requires specialised expertise and peer review of the design, and is costly,
but less so compared to base isolation.

6.7.3 Upgrading of Member Capacities

The deformation capacity and shear strength of individual members may be signif-
icantly upgraded by FRP-wrapping, without modifying at all their stiffness. Con-
crete jackets also improve deformation capacity and shear strength, but increase
stiffness as well. So, when applied to many elements they also reduce deformation
demands, not only locally but also globally. Improvement of certain details (e.g., of
poor connections between the floor diaphragms and the lateral-load-resisting system
or within diaphragms, see Section 6.7.4) may also be considered to belong to this
retrofitting strategy.

Modification of existing components uses up less floor area and does not require
closing openings. So it is, in general, more convenient for the future functional-
ity of the building than the addition of new elements, or of a large concrete vol-
ume to existing members to increase stiffness and reduce seismic demands. How-
ever, it may entail removal and replacement of finishing materials and often partial

8A double foundation, sandwiching the isolation system, would normally be used in a new
building.
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demolition and reconstruction of partitions, lengthening the work and increasing its
cost. Besides, modification of interior elements may disrupt use of the building. So,
retrofitting via enhancement of member capacities alone makes more sense when
deficiencies are limited to few members or connections or to part of the structure
(a storey or one side in plan). It may also be adopted when it is not feasible to add
new elements (e.g., because of architectural constraints) and/or provide a proper
foundation for them.

Unless very specific and substantial deficiencies are identified in some beams,
upgrading of existing members may be limited to vertical elements, possibly includ-
ing their joints with the beams. Due to the integral connection of the beams with the
slabs, upgrading a beam is technically more difficult than upgrading a column or a
wall. Besides, experience from past earthquakes shows that damage in beams is far
less common than in columns and its impact on global stability minor. Moreover,
the design of beams for gravity loads normally provides sufficient top reinforce-
ment at the supports (supplemented by the slab bars within a sizable effective flange
width) and substantial shear reinforcement in the form of stirrups which are closed at
the critical side (the bottom one). What is missing in such beams is continuity and
anchorage of bottom bars over the supports. However, bar pull-out under sagging
moments, if it occurs, only increases the lateral deformability of frames. Another
weak point is the poor deformation capacity of the bottom flange in compression, in
plastic hinges under hogging moments, which however, not always take place. Note
that concrete jacketing of the columns into which a beam frames, improves, albeit
indirectly, anchorage of its bottom bars and confinement of its bottom flange. Last
but not least, the main hazard for existing buildings is posed by too much, rather
than by too little, moment resistance of beams with respect to columns.

Existing components may sometimes be modified to improve not their own per-
formance but that of elements they connect to. For example, a weak-beam/strong-
column combination may be achieved by cutting beam longitudinal bars at the
support by the column, provided that this is acceptable for gravity load resistance.
Captive columns may also be set free by severing their connection to spandrel walls.

6.7.4 Completeness of the Load-Path

No matter which retrofitting strategy and technique he/she chooses, the engineer
should check carefully the retrofitted structure for continuity of the load path(s).
Transfer of inertia forces from the masses to the (primary) elements of the lateral-
load-resisting system and from there to the foundation should be ensured. Note that
inertia forces that may need to be transferred are proportional to peak floor acceler-
ations, which are increased by global strengthening and stiffening.

Any connection within the floor system, between the floors and the lateral-load-
resisting elements and between existing and new members should be checked in
terms of forces, for the maximum possible demands that it may be required to trans-
fer. Connectors and fasteners may exhaust their deformation capacity soon after
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yielding, as they are called to accommodate within their small size significant rela-
tive displacements of the components they connect. So, even though they normally
consist of a ductile material (steel), they should be checked in terms of forces and
protected from yielding. Connections likely to be subjected to cycles of tension and
compression may fracture under forces below their nominal tensile capacity, if they
buckle or are severely deformed in a previous compression half-cycle. Welded or
bolted connections are inherently brittle. Steel parts in an existing connection that
appear adequate in construction documents may have corroded in the mean time.

Connections between prefabricated elements, especially in diaphragms consist-
ing of precast units, are potentially weak links in the load path. Thin and lightly
reinforced toppings in precast floors or roofs may already be cracked over seams
between the precast units, or may easily crack during the earthquake and break
open. It is difficult and not cost-effective to ensure integrity of a precast floor or
roof, topped or untopped, through retrofitting. It is better to replace such a floor
with a proper cast-in-place concrete floor or roof, integral with the vertical framing
elements.

Cast-in-place slabs are normally considered to provide a continuous load path.
However, one-way slabs in old buildings may have little reinforcement in their sec-
ondary direction. Floors with one-way slabs may break open through the points of
inflection of the supporting beams under gravity loads, because in old days beam
longitudinal reinforcement was dimensioned without the shift rule and had short
anchorage. So, it was curtailed near the inflection point, as this came out from the
analysis for gravity loads.

6.8 Retrofitting Techniques for Concrete Members

6.8.1 Repair of Damaged Members

6.8.1.1 Scope of Repair Techniques

For completeness, repair of seismic damage without strengthening is addressed
before going in detail in the application and design of various means of modifying
existing members. Nowadays seismic damage almost invariably triggers upgrad-
ing of the deficient earthquake resistance of a building through global seismic
retrofitting. So, the subject of repair is of interest only for those members which
are not upgraded, but just restored to their pre-earthquake condition.

Retrofitting enhances one or more properties of a member which are important
for its seismic behaviour and performance. By contrast, the target of repair is just
to re-instate some original characteristics that may have degraded because of age
and/or adverse environmental influences, or owing to an earthquake or other dam-
aging event. When such deterioration or damage is minor to moderate, repair may
be sufficient, provided that any necessary global upgrading of earthquake resis-
tance is provided elsewhere or by other means. The effects of severe damage,
with disintegration of concrete inside the stirrups and/or buckling or fracture of
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the reinforcement, cannot be fully redressed by simple repair. Repair is then usually
followed by certain upgrading of the damaged zone (e.g., through jacketing with
concrete of FRP), overshadowing any residual effects of the damage.

Repair may comprise one or more of the following:

– Replacement of buckled or fractured bars.
– Injection of cracks with epoxy or sometimes grout.
– Replacement of concrete that is loose, or has spalled, or has been removed to

replace bars.

These measures are also applied, as appropriate, to damaged members before
retrofitting with concrete or FRP jackets. In such cases it is not essential to inject
fine cracks (e.g., less than about 0.3 mm wide), while spalled or removed concrete
may be replaced with the cast-in-situ concrete or the shotcrete of the jacket.

Some practical information about these repair measures is given below.

– Replacement of reinforcing bars: Longitudinal bars that have fractured or suf-
fered visible buckling are often replaced over a certain length. After removing
the concrete around this length, the old bar is cut and its two ends are butt- or
lap-welded to a new piece of bar. This is not a trivial operation and should be
undertaken only when the old bar is essential. Otherwise, we just do not rely on
it anymore.

– Replacement of concrete: Any loose concrete should be removed. If a bar is bro-
ken or has buckled, or has been partially exposed owing to spalling or disinte-
gration of concrete, any still sound concrete around the length affected should
also be removed to provide sufficient room for the repair mortar to surround the
bar. The replacement material is commonly epoxy- or cement-based nonshrink
grout mortar, with sand, pea-gravel or coarser aggregates, depending on the size
and depth of the cavity. The mortar is normally trowelled against the substrate or
against the previous mortar lifts, without applying an epoxy-based bonding agent
as a primer. Formwork is redundant.

– Injection of cracks: If properly carried out, injection fully reinstates the continuity
of the material and the tensile strength and cohesion across a crack. A common
low-viscosity epoxy can be used to fill cracks wider than about 0.1 mm and up to
few (2 or 3) mm. Cracks narrower than 0.2–0.3 mm may not be worth injecting,
as the depth of penetration of the epoxy is uncertain and the epoxy is fairly expen-
sive. For crack widths from 2 or 3 mm to 5 or 6 mm, medium-viscosity epoxies
are more appropriate. Wider cracks, up to 20 mm, should better be grouted with
cement.

– Before injection or grouting, loose material is removed from the trace of the
crack on the concrete surface. For epoxy injection, the trace is fully sealed with
epoxy paste, leaving only surface-mounted plastic nozzles as injection ports.
Ports should be not further apart along the crack than the distance the epoxy
can travel before it hardens. This distance depends on the width of the crack and
the viscosity of the epoxy at the application temperature. If the member is thicker
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than this distance, injection should take place through cracks on opposite faces.
The injection starts from the lowest level where a crack appears in the member
and continues upwards. It stops when the epoxy bleeds out from another port.
The current port is then sealed by bending and tying the nozzle and injection
continues from the next port. In the end, after the epoxy fully sets, the ends of the
nozzles may be cut flush with the finished surface of the repaired member.

The procedure for cement grouting is similar, but the injection pressure is much
lower.

6.8.1.2 Effectiveness of Repair for Strength, Stiffness
and Deformation Capacity

There are very few cyclic tests in the literature on RC members repaired and retested
without strengthening (Fardis et al. 2005). In these tests repair was limited to
replacement of the crushed concrete shell of the plastic hinge with epoxy mortar,
non-shrink concrete, fibre-reinforced concrete, etc. Data on 15 such tests on walls
and 18 more on columns are given in (Fardis et al. 2005). The expressions in Section
3.2 may be applied to the repaired member, assuming that the strength of the repair
concrete used in the shell of the plastic hinge (typically higher than that of the origi-
nal concrete) applies to the whole element. The test-to-prediction ratio for the yield
moment My (from Section 3.2.2.2) has median values of 1.005, 1.035 and 1.015,
for columns, walls or overall, comparing well to those quoted for virgin members in
Section 3.2.2.2 under Comparison with Experimental Results and Empirical Expres-
sions for the Curvature, but the coefficient of variation of about 26% is markedly
higher. The medians of the test-to-prediction ratio for the chord rotation at yielding
θy (from Eqs. (3.66)) are 1.26, 1.66 and 1.27 for columns, walls or overall, while the
corresponding coefficients of variation are 24, 40.5 and 38%. The test-to-prediction
ratio for the secant stiffness to the yield-point (from Eq. (3.68)) has medians of
0.79, 0.54 and 0.725 for columns, walls or overall and coefficients of variation of
32.5, 58.8 and 45%, respectively. For 15 of the repaired columns carried to flexural
failure, the test-to-prediction ratio for the ultimate chord rotation, θu, has median
values of 0.675, 0.72, 0.705 or 0.705 and coefficients of variation of 32.5, 32.5,
32.5 or 54%, for θu computed from Eqs. (3.78a), (3.78b), (3.78c) or (3.72), (3.73)
and (3.74), respectively. The corresponding medians for the 15 walls are 0.7, 0.695,
0.825 or 0.97 and the coefficients of variation 55%, 58.5%, 53% or 58.5%. For the
total of 30 repaired specimens carried to flexural failure, the test-to-prediction ratio
for θu has median values of 0.69, 0.71, 0.74 or 0.805 and coefficients of variation
of 43.5, 45.5, 43 or 57.5%, for θu computed from Eqs. (3.78a), (3.78b), (3.78c) or
(3.72), (3.73) and (3.74), respectively.

Although based on limited data, the above comparisons show that, even when
carried out as carefully as in a research lab, repair re-instates fully only the yield
moment (and hence the moment resistance), failing by 25–30% to recover the secant
stiffness to the yield-point and the deformation capacity. Interestingly, repaired walls
exhibit much larger loss of stiffness than repaired columns, but they fare a little
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better than columns at ultimate (although the difference is statistically insignificant).
Although the small sample size normally reduces the apparent scatter, the dispersion
of test results with respect to predictions is much larger than in virgin specimens,
even for the yield moment which is recovered well on average. Apparently, not only
the repair process and materials, but also the type and degree of the original damage,
introduce significant additional uncertainty.

The final conclusion is that, no matter how carefully it is done, mere repair can-
not be considered to fulfil its intent, notably the re-instatement of key properties
of the member. It is especially disconcerting in the context of displacement-based
assessment and retrofitting that, the repaired members will be subjected to increased
seismic displacement and deformation demands than similar virgin ones, owing
to their loss of stiffness, while having more difficulty copying with them, given
their reduced deformation capacity. So, unless global measures are taken to drasti-
cally reduce seismic displacement demands, members that suffered major damage
or failed in the first event, will do even worse in a future one, despite the repair.

6.8.2 Concrete Jacketing

6.8.2.1 Introduction: Advantages and Disadvantages of Concrete Jackets

Owing to their cost-effectiveness, concrete jackets are still the method of choice for
seismic upgrading of individual concrete members. There are several reasons:

– Every engineer or contractor is familiar with the field application of concrete.
Recall in this connection that retrofitting, and especially modification of existing
members, does not lend itself to (even partial) prefabrication in shop. So concrete
is the prime candidate, as it is the most common structural material for field
fabrication and application.

– Concrete jacketing is the most suitable technique for retrofitting severely dam-
aged members, as crushed and removed concrete is replaced while casting or
shotcreting the jacket, while buckled or fractured bars do not need to be fully
restored if replaced by the new reinforcement of the jacket. This aspect was even
more important in the past, as only recent years have seen wide application of
seismic retrofitting without seismic damage as the trigger.

– Structural concrete is versatile and can adapt to almost any shape, e.g., in order
to fully encapsulate existing members and joints and provide structural continu-
ity between different components (between a joint and the adjoining members,
between members in adjacent storeys, etc.).

– A concrete jacket can, through the appropriate reinforcement, have multiple
effects. It is the only means to improve at the same time:

1. stiffness,
2. shear strength,
3. deformation capacity,
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4. anchorage/continuity of reinforcement in anchorage or splicing zones,
5. moment resistance (even turning a weak-column/strong-beam frame into a

strong-column/weak-beam one),
6. shear strength and bond in joints through which the jacket continues, and
7. protection of the old reinforcement from (further) corrosion.

– Stiffness and flexural resistance are enhanced by the increased cross-section and
the added longitudinal reinforcement, which – very importantly and unlike for
other retrofit techniques of individual components – can easily extend beyond the
member end into and through the joint. The main contribution to shear strength,
deformation capacity and anchorage or splicing of reinforcement comes from the
added transverse reinforcement, which works in shear, against buckling and for
confinement. The added concrete is also a factor there. The increased dimen-
sions of a joint when a jacket continues into and past it, provide more length for
bond along old bars going through the joint and improve the joint shear strength.
They also make room for adding transverse reinforcement in the joint. Finally, if
the jacket concrete is of sufficiently low porosity, it can prevent or arrest corro-
sion of old reinforcement even in carbonated concrete. As a minimum, it reduces
markedly the mechanical and aesthetic consequences of any corrosion that may
go on.

Concrete jacketing may be considered to serve at the same time both types of
retrofitting strategies in Section 6.7. By increasing the stiffness (item no. 1 above) it
reduces seismic displacement and deformation demands. Besides, it is very effective
in enhancing the force and deformation capacity of the jacketed member (items no.
2–7).

From the technical point of view, the multiple effectiveness of concrete jackets
is what mainly distinguishes them from the other seismic retrofitting techniques
for individual concrete members, which cannot readily extend beyond the member
end and into a joint region. Other techniques mainly enhance some or all of the
properties no. 1–4 above, but normally not the flexural strength, the resistance of
the joints themselves or the corrosion protection all along the member (items no.
5–7).

RC jackets have certain handicaps, compared to other member modification tech-
niques:

– They considerably increase member cross sectional dimensions. This may be a
serious drawback when space, especially floor area, is at a premium.

– They normally cause the largest inconvenience and the lengthiest disruption of
occupancy, produce the largest amount of dust and debris (especially if shotcrete
is used) and cause the most noise pollution and safety or health hazards for the
workers.

As the factors where concrete jackets are at disadvantage to the competition
become more and more important, the balance may soon turn against them, notwith-
standing their present and future advantage in direct construction cost.
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6.8.2.2 Detailing, Technological and Construction Aspects

The concrete overlay of the jacket should be at least 75–100 mm, to provide
sufficient cover of the new reinforcement and space for 135◦-hooks at tie ends
(Fig. 6.1(a)). For this range of thickness shotcrete is more convenient. Thicker over-
lays are normally cast-in-place.

(a)

(b)

(f) (g)

(c) (d) (e)

Fig. 6.1 Concrete jackets in columns: (a) simplest case; (b) jacket bars bundled near corners,
engaged by cross-ties or octagonal tie; (c) jacket bars bundled at corners, dowels at interface with
old column; (d) U-bars welded to corner bars; (e) steel plates welded to corner bars; (f) one- or
two-sided jackets; (g) one-sided concrete overlay with single curtain of two-way reinforcement at
exterior face of perimeter walls (cf. Section 6.10.2)
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For the moment resistance of vertical elements to increase, longitudinal rein-
forcement should be continued to the adjacent storeys through holes or slots in the
slab. To avoid perforating the beams on all sides of the cross-section into which a
beam frames, jacket bars continuing through the slab should be concentrated near
the corners of the new section, often in bundles (Fig. 6.1(b) and (c)). Jacket vertical
bars may be anchored into a foundation element either:

– by enlarging the foundation element to accommodate anchorage of the jacket
bars in new concrete there (possibly increasing at the same time the capacity of
the foundation element to meet the larger moment demands from the jacketed
vertical member), or

– by fastening (e.g. through epoxy) starter bars within vertical holes drilled in the
foundation element, to be lap-spliced with the jacket vertical bars outside the
plastic hinge that may form at the bottom of the retrofitted element.

If the target of the concrete jacket is just to enhance the deformation capacity of
the member by offering confinement and anti-buckling action to the old member,
to increase the shear strength and to remedy deficient lap splices without increasing
the moment resistance, then the jacket does not need to continue past the joint into
the next storey for a column or the next span for a beam. A gap of about 10 mm
is recommended there, to avoid increasing indirectly the moment resistance of the
member and, hence, the shear force demands in the member itself and the joint.
Concentration of flexural deformation demands in a few-millimetre-length of the
old member is not a concern. The gap serves there as a pre-existing wide crack.
Within its length the compression zone in the old member is effectively confined
by the concrete beyond the gap. At any rate, FRP jackets lend themselves better
than RC ones for shear strengthening, enhancement of deformation capacity and
improvement of deficient lap-splices without flexural strengthening.

A closed perimeter tie around the vertical bars of a column jacket restrains them
against buckling, adds shear strength and confines the concrete. If we need multiple
ties but do not want to drill holes and thread cross-links through the core of the old
column, we can supplement the perimeter tie with an octagonal hoop outside the
old column, which restrains buckling of any vertical bars close to, but not exactly
at the corner. Instead of the octagonal tie, short corner ties at 45◦ to the perimeter
may be used, engaging in 90–135◦ hooks the two bars adjacent to the corner bar
(Fig. 6.1(b)). A diamond-shaped tie can be used only when the side of the jacketed
column is at least twice as long as that of the old column. However, it is meaningless
unless the jacket has mid-side bars to be restrained.

Confined boundary elements can be added to poorly detailed shear walls by jack-
eting the edges of the cross section. The ties around the new boundary element can
come in two pieces: a straight one driven through a hole drilled in the web of the
wall and a U-shaped piece around the edge of the wall, lap-welded to the first. A
concrete overlay over one or preferably both sides of the web, with a curtain of
horizontal and vertical bars, can provide additional shear strength.

Three-sided jackets are sufficient for beams integral with the slab. However,
one-, two-, or three-sided jackets not fully surrounding an old column are much
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less effective than full jackets. Besides, their seismic behaviour is little known. If a
full jacket around a column is not feasible, the old reinforcement should be exposed
and the new ties welded to the old ones or bent around the old vertical bars (Fig.
6.1(f)). One-sided jackets are easy to add to the exterior face of perimeter members
in a building. If the member is a wall, a one-sided jacket having full horizontal and
vertical reinforcement and well connected to the old wall through dowels may play
the role of an appropriately reinforced new wall (Fig. 6.1(g)). The main contribu-
tions of the old wall are its concrete and the connection it provides to the rest of the
structural system and to the foundation for the transfer of seismic forces.

Past guidance documents for concrete jackets – and past practice alike – include
measures for shear connection of the old and the new concrete. Connecting the
(corner) bars of the jacket to the (exposed for this purpose) longitudinal bars of
the old column, by lap-welding both to Z- or U-shaped steel inserts is commonly
recommended and applied (see Fig. 6.1(d) and (e)). Alternatively, the surface of the
old element may be roughened and/or dowels may be driven into it (Fig. 6.1(c) and
(g)). The dowels are epoxy-grouted in holes drilled into the old element and protrude
in the overlay of new concrete for almost its full thickness. As this thickness is
usually small, the dowel is often bent at 90◦ for anchorage in the new concrete.

Welded steel inserts between the new and the old corner bars, as well as epoxy-
grouted dowels, were perceived in the 1970–1980s as a means to engage the jacket in
sharing the axial force of the column through shear forces in the welded steel inserts
and the dowels. The concern about gravity load capacity was motivated by the past
use of concrete jackets mainly – if not only – to repair heavily damaged columns,
whose core had often partially disintegrated. This concern is reflected in past rec-
ommendations to use props, wedges and even jacks under the beams framing into
the column, to relieve it from part of its axial load before jacketing. For undamaged
or moderately damaged columns these concerns are not warranted. Experimental
work has demonstrated that concrete columns subjected to large post-ultimate drifts
and heavy damage in the concrete core can retain a large part of their gravity load
capacity (Elwood and Moehle 2001).

As we will see in Section 6.8.2.3, welding the new corner bars to the old ones
through steel inserts may improve the column cyclic chord rotation capacity (pos-
sibly because it delays or prevents bar buckling). However, positive connection of
steels of different grade (and composition) may promote corrosion. So, it is not rec-
ommended here to connect the old and the new longitudinal bars by welding both
to pieces of steel in-between.

Dowels at the interface have a larger beneficial effect on the ultimate chord rota-
tion of the jacketed column and do not seem to have collateral negative effects. If
placed, they have a geometric ratio about equal to 0.2fctm/fyk, which gives about
18 mm or 20 mm-dia dowels at 500 mm centres. The designer may choose to
use dowels or not, taking into account their additional cost and time requirements.
He/she may consider cost-effective to rely on friction alone for the shear at the inter-
face, without connecting positively the new and the old concrete.

Friction is enhanced by the compressive stress building up normal to the inter-
face, as the old member restrains shrinkage of the concrete overlay in the radial and
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circumferential directions. The restraint induces radial compressive stresses in the
old and the new concrete and compressive circumferential ones in the old mem-
ber and the ties, new or old, but tensile circumferential stresses in the jacket. This
amounts to certain “active” confinement of the old element, even before any lateral
loading. To get an idea of the magnitude of these stresses and of their dependence
on various parameters, we consider for simplicity the old member as circular with
radius Ro. A final total (drying plus autogenous) shrinkage strain εcs in a jacket with
thickness tj induces radial compression normal to the interface (confinement stress
for the old member) equal to:
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where Ec,o and Ec,j denote the Modulus of the old concrete and of the jacket, respec-
tively, ϕ∞,o and ϕ∞,j their final creep coefficients9 and ν the Poisson ratio of con-
crete. Asw/sw is the total cross-sectional area (old and new) of transverse steel per
linear meter of the member, lumped for simplicity at the interface. Equation (6.10)
applies only if the jacket does not crack under the accompanying circumferential
tensile stress, which is equal to:
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In this case Asw,j/sw,j refers to the transverse steel of the jacket alone, still taken
for simplicity near the interface. In thin jackets around large members the stress
from Eq. (6.11) eventually exceeds the jacket tensile strength, fctm,j. Cracks may
then start along planes normal to the interface and parallel to the member axis. This
will reduce the stress normal to the interface to almost zero. By contrast, for typical
parameter values Eq. (6.10) gives normal stresses in the order of 1 MPa, which
can markedly improve friction at the interface. A large percentage of transverse
reinforcement in the jacket increases the compression from Eq. (6.10) and delays
cracking of the jacket in the circumferential direction (see Eq. (6.11)). So, its role is
vital for friction.

A rough interface enhances friction. For example, in a 1:1.5 scale two-storey,
one-bay frame tested in Stoppenhagen et al. (1995) with sizeable concrete jack-
ets around the heavily damaged columns of the original test specimen the interface

9The values of ϕ∞ ,o and ϕ∞ ,j depend on the age of the old concrete and the jacket, respectively, at
the time shrinkage starts. For a cast-in-situ jacket this is the age at stripping of the formwork; for
shotcrete it is zero.
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was just roughened. The jacketed frame sustained storey drifts of 1.25% (which,
if they are due to the columns alone, give a drift ratio of the clear column length
of over 4%) without loss of the column force resistance and with apparent mono-
lithic behaviour of the jacketed column. However, as we will see in Section 6.8.2.3,
artificial roughening of the old surface is not essential. Monolithic behaviour of
the jacketed columns and beams was apparently achieved in the tests in Alcocer
(1992) and Alcocer and Jirsa (1993), even though no positive measures were taken
to improve the shear capacity of the interface. The excellent performance of these
specimens deserves special mention. The tests were carried out on four 1:1.5-scale
3D beam-column subassemblies retrofitted with column jackets (continuous through
the joints), or – in one test – with beam and column jackets. The retrofitted sub-
assemblies developed a cyclic lateral force resistance at a storey drift of 4% between
3.5 and 6 times that of the unretrofitted companions. In the retrofitted specimens the
beams hinged, with a large part of the slab reinforcement fully contributing to the
tension flange of the beam. Joint shear was critical, but did not lead to a drop in
resistance even under bi-directional load cycles. No bond problems were observed
along the length of beam or column bars within the joint, although it was limited to
18 bar-diameters (or 10 equivalent bar diameters for the bar bundles) in the columns
and to 23 bar-diameters in the beams.

6.8.2.3 Strength, Stiffness and Deformation Capacity of Members
with Concrete Jackets

The cyclic behaviour of a concrete-jacketed member to and beyond yielding and up
to ultimate deformation is fairly complex, because it depends on the conditions at the
interface of the jacket and the old member, etc. (Thermou et al. 2007a). This com-
plexity notwithstanding, the dimensioning tools for practical retrofit design should
be (almost) as simple as those for the design of new members. The so-called “factors
of monolithic behaviour” have long been a popular means to this end (CEN 1996).
They are conversion factors applied on the strength, stiffness, etc. of an “equivalent”
monolithic member to approximate the corresponding property of the composite
jacketed one. Values often used for these factors are based on scant test data, some-
times limited to a single experimental study comparing concrete-jacketed members
to a monolithic reference specimen. Moreover, the conversion factor needed for
practical retrofit design is not one to be applied on the “real” (i.e., experimental)
value of the property of the monolithic member, which is also unknown. It should be
a factor that multiplies a monolithic property computed by simple, yet fairly reliable
means. The comprehensive portfolio of simple tools presented in Section 3.2 for the
estimation of strength, stiffness and deformation capacity of monolithic concrete
members may well serve as the reference for these conversion factors. To this end
Fardis et al. (2005) and Biskinis and Fardis (2009) have compared the experimental
strength, stiffness and deformation capacity of about 55 jacketed columns or walls
from the literature (about 35 of which carried to flexure-controlled ultimate condi-
tions) to those of an “equivalent” monolithic member, determined according to the
rules in Sections 3.2.2.2, 3.2.3.2, 3.2.3.3 and 3.2.3.5 in accordance with Table 6.2.
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Table 6.2 Characteristics of monolithic member considered “equivalent” to the jacketed one

I. Flexural resistance and deformation capacity, deformations at flexural yielding

Case A: The jacket longitudinal bars are anchored beyond the member end section

A1 Dimensions The external dimensions of the section of the “equivalent” member are
those of the jacket

A2: Longitudinal
reinforcement

The tension and the compression reinforcement are those of the jacket.
The longitudinal bars of the old member are considered at their actual

location between the tension and compression bars of the jacket:
– they may supplement any longitudinal bars of the jacket between

the tension and compression reinforcement and be included in a
“web” reinforcement ratio, considered as uniformly distributed
between the extreme layers of reinforcement;

– in a wall, the tension and compression reinforcement of the
jacketed member may be taken to include old vertical bars at the
edges, as appropriate.

Lap splices in the intermediate old reinforcement may be neglected.
Any difference between the yield stress of the new and the old
longitudinal reinforcement should be taken into account in all
cases.

A3 Concrete strength The fc value of the jacket applies over the full section of the
monolithic member, except for the 3rd term of Eqs. (3.66), where
the fc value of the concrete into which the longitudinal bars are
anchored beyond the end section is used.

A4 Axial load The full axial load is taken to act on the jacketed column as a whole,
although it was originally applied to the old column alone.

A5: Transverse
reinforcement

Only the transverse reinforcement in the jacket is taken into account
for confinement.

Case B. The longitudinal bars of the jacket stop at the end section

B1 Dimensions,
longitudinal
reinforcement,
concrete strength

My and ϕy (also in the 1st and 3rd term of Eqs. (3.68)) are calculated
using the cross-sectional dimensions, the longitudinal
reinforcement and the fc value of the old member, neglecting any
contribution from the jacket.
The effect of lap splicing of the old bars is taken into account
according to Section 3.2.3.9.
The section depth h in the 2nd term of Eqs. (3.68) is that of the
jacket.

B2 Transverse
reinforcement

The deformation capacity, θu, is calculated on the basis of the old
column alone, taken as confined by the jacket and its transverse
steel. Confinement in Eqs. (3.78) or (3.72), (3.73) and (3.74) is
taken into account with an effectiveness factor as = 1.0 and the
value of ρs = As/bwsh calculated using the value of As/sh in the
jacket and the width of the old column for bw.

II. Shear resistance

Shear resistance (even that without shear reinforcement, VR,c, from Eq. (3.67), to determine the
value of aV in the 1st term of Eqs. (3.66)) and anything having to do with shear are calculated
on the basis of the external dimensions and the transverse reinforcement of the jacket. The old
transverse reinforcement may be considered to contribute to shear resistance only in walls,
provided it is well anchored into the (new) boundary elements.
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The idea behind assumptions A3 and A4 in Table 6.2 is that, for common ratios
of jacket thickness to depth of the jacketed section, when yielding takes place and a
plastic hinge forms at the end section of the member, the compression zone there is
almost fully within the jacket, carrying the full axial load. Also, it is the jacket that
mainly governs shear resistance and bond along the longitudinal reinforcement of
the jacket.

An asterisk is used here to denote a calculated value for the jacketed member,
e.g., as My

∗, θy
∗, θu

∗. Values calculated for the monolithic member according to
the assumptions in Table 6.2 and Section 3.2 have no asterisk (My, θy, θu

pl). Ratios
of experimental values of My, θy, EIeff = MyLs/3θy and θu for the tested jacketed
members to values with the asterisk are shown in Fig. 6.2, separately for different
types of jacket-to-old-member connection and for members which had been dam-
aged by testing before been jacketed. Those specimens where the jacket longitudinal
reinforcement did not continue past the member end and those with lap-spliced rein-
forcement in the original member are identified in Fig. 6.2. Other than that, they are
lumped together with the specimens having continuous vertical bars in the original
member. For tests not reaching ultimate conditions and for the two walls that failed
in their unstrengthened storeys, an arrow pointing up signifies a test-to-prediction
ratio greater than the value plotted.

The average value and ± standard-deviation estimates of the mean test-to-
prediction ratios are shown in Fig. 6.2, separately for various groups of specimens
with different types of jacket-to-old-member connection and with or no damage
in the original column. The distance from the sample average to a certain refer-
ence value (e.g. 1.0), divided by the standard-deviation of the mean, is a crite-
rion to decide whether the jacketed member’s property in question may be taken
equal to that calculated for the monolithic member according to Table 6.2 times
that reference value. On this basis, the following simple rules are proposed for the
yield moment, the chord rotation at apparent yielding and the ultimate chord rota-
tion, My

∗, θy
∗, or θu

∗, respectively, of the jacketed member, in terms of the values
My, θy, θu

pl calculated for the monolithic member according to Table 6.2 (see also
Bousias et al. 2007b, Biskinis and Fardis 2009):

My
∗ = My,Sect.3.2.2.2 (6.12)

θy
∗ = 1.05θy,Eq.(3.66) (6.13)

(the main target being the effective stiffness at incipient yielding, computed from
Eq. (3.68) as EI∗eff = My

∗Ls/3θy
∗), and

θu
∗ = θy

∗ + θu
pl
Eq.(3.78b) or (3.78c) (6.14a)

θu
∗ = θy

∗ + θu
pl
Eq.(3.72),(3.73) (6.14b)
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Fig. 6.2 Experimental value
of the RC-jacketed member
divided by the value
calculated for the monolithic
member according to Table
6.2 (Key:(a) no treatment of
the interface; (b) no interface
treatment, pre-damaged
member; (c) welded U-bars;
(d) dowels; (e) roughened
interface; (f) roughened
interface, member
pre-damaged; (g) U-bars and
roughened interface; (h)
U-bars and roughened
interface, member
pre-damaged; (i) dowels and
roughened interface; (j)
dowels and roughened
interface, member
pre-damaged; (k) monolithic
member)
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Note that the value θy
∗ from Eq. (6.13) is used for the calculation of EIeff and

of θu at the denominator of the three lowermost plots in Fig. 6.2. Note also that the
data cannot support a statistically meaningful effect of a pre-damage in the original
column. So, Eqs. (6.12), (6.13) and (6.14) are proposed regardless of any such pre-
damage. If the jacket longitudinal bars stop at the end section, Eqs. (6.12), (6.13)
and (6.14) are used with assumptions B1 and B2 in Table 6.2.

Neglecting the effect of measures taken to enhance shear transfer at the inter-
face of the old and the new concrete and grouping together the data in Fig. 6.2, the
ratio of the experimental My to the prediction of Eq. (6.12) has a median of 1.035
and a coefficient-of-variation of 10.7%, compared to the values of 1.025 or 1.015
for the median and of 16.3% or 14.8% quoted in Section 3.2.2.2 under Compar-
ison with Experimental Results and Empirical Expressions for the Curvature for
My of monolithic beams/columns or rectangular walls, respectively. The median
and the coefficient-of-variation of the ratio of experimental θy to the prediction of
Eq. (6.13) are 0.99 and 23.5%, respectively, v the values of 1.025 or 0.995 and
32.1% or 33.7% given in Section 3.2.3.2 for the predictions of Eqs. (3.66) for θy of
monolithic beams/columns or rectangular walls, respectively. Regarding the ratio of
experimental EIeff to the value predicted as EI∗eff = My

∗Ls/3θy
∗ (for My

∗, θy
∗ from

Eqs. (6.12) and (6.13)), the median and the coefficient-of-variation are 1.005 and
30.5%, to be contrasted to the values of 1.01 or 0.99 and of 32.3% or 47.1% quoted
in Section 3.2.3.3 for the application of Eq. (3.68) to the database of monolithic
beams/columns or rectangular walls, respectively. The median and the coefficient-
of-variation of the experimental θu to the outcome of Eq. (6.14a) are 1.145 and 19%,
v 1.0 and 42.4% for the predictions of Eqs. (3.78) for monolithic members. They
become 1.08 and 24% for Eq. (6.14b), v 1.0 and 51.7% for Eqs. (3.72) and (3.73)
and monolithic members. These comparisons show that average agreement with the
experimental data is as good as that of the original expressions to the data they
have been fitted, except for the ultimate chord rotation, where Eqs. (6.14) (mainly
(6.14a)) are on the safe side. The small magnitude of the scatter for the jacketed
members, although primarily due to the small sample size, is also re-assuring.

The data in Fig. 6.2 suggest that bonding measures at the interface of the jacket
and the old member have a statistically significant effect only on the ultimate chord
rotation. Equations (6.14) underestimate the measured θu-value of the few speci-
mens with roughening of the interface and/or dowels. U-bars welded to the new
and the old vertical bars have a beneficial effect on θu according to Eq. (6.14a)
(maybe thanks to their anti-buckling action), but not according to (6.14b).10 Even
when no measure is taken to improve the interface between the old and the new
concrete or connect the two materials there, Eqs. (6.14) undershoot the ultimate
chord rotation of the jacketed member. It is therefore safe-sided for θu to use Eqs.
(6.14) neglecting any favourable effect of a connection measures at the interface
between the old and the new concrete. Interestingly, no systematic positive effect of

10Equations (6.14a) and (6.14b) point to opposite directions also about the effect of pre-damage
on θu for (the just two) specimens without treatment at the interface.
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roughening, dowels or welded U-bars on My and on the effective stiffness, EIeff, has
been found.

Note that slippage between the jacket and the old member is restrained in a real
column under double curvature, but not in the cantilever-type specimens used in
practically all tests from which the rules above were derived. Therefore, the effect
of poor connection between the two layers would be even less in practice than in
these tests.

According to Bousias et al. (2007b) there is no bias of Eqs. (6.12), (6.13) and
(6.14) with respect to:

– the ratio of fc or of the cross-sectional area of the jacket to those of the old
member;

– the ratio of the mechanical reinforcement ratio in the jacket to that of the old
member;

– the axial load, normalised either to the product of the full cross-sectional area of
the jacketed section times the fc-value of the jacket, or to the actual compressive
strength of the jacketed section; and

– the ratio of the neutral axis depth at yielding to the thickness of the jacket.

This lack of bias supports assumptions A3 and A4 in Table 6.2, even when the
compression zone extends beyond the jacket and into the old column.

None of the jacketed test specimens has shown any shear distress by the time
it failed in flexure, which is consistent with the margin of at least 30% found
between the shear resistance from Eqs. (3.114) and the maximum shear force
applied.

6.8.2.4 Dimensioning and Verification of Jacketed Members According
to Eurocode 8

On the basis of an earlier version of the database behind Fig. 6.2 and Eqs. (6.12),
(6.13) and (6.14), Annex A in CEN (2005a) has adopted for the jacket the rules in
Table 6.2, as well as Eqs. (6.12) and (6.14). However, for θy

∗ and for the effective
stiffness at yielding resulting from it as EI∗eff = My

∗Ls/3θy
∗, Eq. (6.13) has been

adopted only if the interface between the jacket and the old concrete is roughened.
For no treatment of the interface, or for epoxy-grouted dowels alone, or for connec-
tion of the jacket bars to the old ones via welded steel inserts, Part 3 of Eurocode 8
adopted a softer response up to yielding:

θy
∗ = 1.2θy,Eq.(3.66) (6.13a)

Faced with the scarcity of data on jacketed members failing in shear under
cyclic loading, Annex A in CEN (2005a) has again adopted a cautious approach. It
accepts for the jacketed member just 90% of the shear resistance computed for the
“equivalent monolithic” member according to Eurocodes 2 or 8 (at points (5)–(8) in
Section 6.5.6.3).
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VR
∗ = 0.9 VR (6.15)

The values of My
∗, θy

∗ and θu
∗ used in the verifications should be based on

mean strengths of the old materials divided by the confidence factor and on nominal
strengths of the new materials. These strength values enter in the calculation of
the shear resistance of “primary elements” further divided by the pertinent partial
factors. However, mean values of new or old materials, without a confidence factor,
are used to compute My

∗, θy
∗ entering in the calculation of EI∗eff = My

∗Ls/3θy
∗, for

the analysis.

6.8.3 Jackets of Externally Bonded Fibre Reinforced
Polymers (FRP)

6.8.3.1 Scope of Seismic Retrofitting with FRPs

Externally bonded Fibre Reinforced Polymers (FRPs) are used in seismic retrofitting
in order to enhance or improve (fib 2003, 2006):

a) The deformation capacity of flexural plastic hinges: A FRP jacket, with its fibres
mainly along the perimeter of the section, is applied over the full length of the
plastic hinge, to confine the concrete and prevent or delay bar buckling.

b) Deficient lap splices: A FRP jacket as in (a) above is applied over at least the full
lap length, and

c) Shear resistance: A FRP overlay is applied, with the fibres mainly in the direction
in which enhancement of shear strength is pursued.

Unlike concrete jacketing, which reduces through the added stiffness the seismic
displacement and deformation demands, externally bonded FRPs only enhance the
force and deformation capacities of the retrofitted member, serving therefore only
retrofitting Strategy no. 2 in Section 6.7.1.

FRPs do not lend themselves for the enhancement of the moment resistance of
members against seismic actions. The reason is that externally bonded FRPs with
fibres in the longitudinal direction of a beam, column or wall cannot easily be con-
tinued into the joint beyond the member end section where the seismic bending
moment is maximum. The moment resistance and the stiffness of a member can
easily be enhanced instead through a concrete jacket (see Section 6.8.2), that can
readily extend into a joint beyond the end of the member, providing continuity of
the retrofitting between the member and the joint and – at the same time – strength-
ening of the joint itself. So, FRPs lend themselves only for selective modification
of concrete members, notably of columns or walls, to improve their performance
attributes listed above as (a–c).

Despite their high cost-to-weight ratio, externally bonded FRPs are becoming the
material of choice in seismic retrofitting applications, owing to their:
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• high strength-to-weight ratio,
• immunity to corrosion,
• easy handling and application (reducing labour costs and minimising disruption

of use during installation) and
• very small thickness (minimising the loss in premium floor plan area, when the

FRP is externally applied to vertical members).

For cultural heritage or historic buildings, whose architecture should not be
altered by the intervention, externally bonded FRPs hold an advantage over any
other technique: they can be made to have almost no impact on the external dimen-
sions and appearance of structural elements. Moreover, their application is fully
reversible.

That said, we should keep in mind certain drawbacks of the FRPs, such as their
sensitivity to temperature and fire.

6.8.3.2 FRP Materials for Seismic Retrofitting

FRPs are relative new materials in seismic retrofitting and engineers are still not
very familiar with them. For this reason, they are described in the present section at
certain length.

The fibres of FRPs used for strengthening civil engineering structures are made
of carbon, glass, or aramid, giving a FRP commonly termed CFRP, GFRP or AFRP,
respectively.

Carbon fibres show the best stability under high temperatures and the best resis-
tance to deterioration in acidic, alkalic or organic environments, including marine
ones. They have high stiffness (Elastic Modulus) and tensile strength, but higher
Modulus normally goes together with lower tensile strength and ultimate tensile
strain. However, they are much more expensive than glass or aramid fibres (10–30
times more costly than E-glass fibres (fib 2007)).

Glass fibres are classified as (fib 2007):

– E-glass, which is popular as less costly;
– AR-glass, which is alkali resistant, but not available yet in sizes compatible with

common thermosetting resins; or
– S-glass, which is stronger and stiffer than the other types.

Glass fibres, especially E-glass ones, are less expensive than carbon or aramid
fibres. E-glass and S-glass fibres may lose up to 30–100% of their tensile strength
in alkaline environments, especially at high temperatures.

Aramid is the term used for polymeric fibres appropriately processed to achieve
high tensile strength-to-density ratio. Like E-glass and S-glass, these fibres may also
lose up to 25–50% of their tensile strength in alkaline environments, but have good
toughness and fatigue characteristics and are more tolerant to damage.

Fibres are linear-elastic up to failure, both in tension and in compression, with
strength and Modulus in compression a little less than in tension. Aramid fibres are
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Table 6.3 Typical tensile properties of fibres (fib 2003, 2006, 2007)

Fibre material Elastic modulus (GPa) Strength (GPa) Ultimate strain (%)

Carbon High strength
Ultra high strength
High modulus
Ultra high modulus

215–240
215–240
350–500
500–700

3.5–4.8
3.5–6.0
2.5–3.1
2.1–2.4

1.1–2.0
1.5–2.3
0.5–0.9
0.2–0.4

Glass E
S
AR

72.5
85–90
70–76

1.9–3.4
3.5–4.8
1.8–3.5

2.5–4.5
3.3–5.5
2.0–3.0

Aramid Low modulus
High modulus

60–80
115–175

2.8–4.1
3.4-4.2

4.3–5.0
1.5–3.5

the exception, being non-linear and ductile in compression with 80% less strength
than in tension. Values of important mechanical properties of fibre materials are
listed in Table 6.3. They apply for static loading in tension and for fibres not exposed
for long to adverse environment. The manufacturer normally gives more representa-
tive values than those of Table 6.3, as well as information on their reduction due to
adverse environmental exposures and long-term loading (which is not relevant for
seismic retrofitting).

The fibres come in the form of flexible sheets (called also fabrics, or textiles),
consisting of fibres mainly in one direction, or in two orthogonal ones, or in more
directions, including oblique ones. In seismic retrofitting, particularly in buildings,
the sheet is impregnated in-situ in a matrix, typically of a thermosetting polymer,
that serves also as adhesive to the concrete substrate. The matrix binds the fibres
together, transferring loads to them, and protects them in-situ from abrasion and
adverse environmental effects. Having much higher – by one to two orders of mag-
nitude – strength and Elastic Modulus than the matrix material, the fibres are the
main stress-bearing component. The matrix governs only the shear properties of
FRPs having fibres mainly in one or in two orthogonal directions, as well as the
transverse modulus and strength of FRPs with fibres primarily in one direction.

The tensile strength and stiffness of the FRP (per linear meter) are typically
derived from the corresponding values of the bare fibres (see Table 6.3), by mul-
tiplying them by the nominal thickness of the fibre sheet or fabric quoted by the
manufacturer (typically a small fraction of a mm) and the number of plies (or lay-
ers) of sheets applied. Normally, it is not considered worth accounting for the effi-
ciency of the fibre-matrix system and the sheet or fabric architecture, or for the small
increase due to the contribution of the matrix. The FRP tensile strength and stiffness
may also be obtained by multiplying the strength and Modulus of the FRP – given
by the supplier of the materials for the specific combination of fibre sheet or fab-
ric and matrix material used – by the nominal (and not the actual) thickness of the
finished FRP specified by the manufacturer.

FRPs subjected to sustained stresses do creep and may ultimately fail by creep-
rupture under stresses well below their short term strength. The time-to-rupture
decreases when the temperature or the ratio of sustained stress to short term
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strength increase, or when the FRP is subjected to alkaline environment, UV light,
or humidity, constant or not. The strength under sustained stresses is, however, of
little relevance if the FRP is applied for seismic retrofitting alone. Its low-cycle
fatigue behaviour is more important in that case. The structural response to a
seismic action of the type considered in retrofitting normally includes an order of
ten large cycles of almost constant amplitude. In such a scenario CFRP, AFRP and
GFRP may lose about 5–8%, 5–6%, or 10%, respectively, of their short term static
strength. The loss about doubles if 100 constant amplitude load cycles are applied
(fib 2007). The reduction is small enough to be considered as covered by the safety
factors applied on the FRP properties in the design of the retrofitting. Anyway,
if expressions used for the cyclic capacity of FRP-retrofitted members have been
calibrated or derived on the basis of cyclic tests, they are deemed to account for any
low-cycle fatigue of the FRP.

The coefficient of thermal expansion of FRPs is dominated by that of the fibres,
except in the transverse direction of unidirectional FRPs, where it is governed by the
matrix. GFRPs have about the same coefficient of thermal expansion as concrete,
except in the transverse direction of unidirectional GFRPs, where this coefficient is
about double. CFRP and AFRP have very low but negative coefficients of thermal
expansion (they shrink when temperature increases). If they are unidirectional, their
coefficient of thermal expansion in the transverse direction is an order of magnitude
higher than in concrete. Owing to the way CFRP and AFRP are externally applied
to concrete members for seismic retrofitting, such disparities do not cause serious
problems during service life.

Thermosetting polymeric matrix materials are epoxy, polyester or vinyl ester
resins. Epoxy resins offer good wetting and bonding to the fibres and to various
substrates and have rather long open time. They are more costly than polyesters
or vinyl esters, but have better mechanical properties, low creep, little shrinkage
during curing and good resistance to water, temperature and chemicals. Regarding
alkali resistance and water absorption, they rate in-between vinyl ester (which is
best) and polyesters (which are worst). Polyester resins have low viscosity. They
cure fast but shrink a lot while curing. Vinyl esters have good wetting and bonding
to glass fibres, high strength, excellent alkali resistance, low water absorption and –
very important – moderate cost. So, they are often the matrix of choice for GFRP.

Polymers, especially polyesters, absorb water from a humid environment, suf-
fering some deterioration of mechanical properties, including, very importantly,
debonding between the matrix and the fibres. Temperatures over 60◦C exacerbate
these adverse effects of moisture (fib 2007). Being polymeric, aramid fibres also
absorb water, suffering a reversible reduction of tensile strength and Modulus and
an irreversible decrease of their fatigue strength. Such reductions can reach 15–25%.

UV radiation inflicts considerable damage to the mechanical properties of poly-
meric matrices and Aramid fibres. The loss in tensile strength after long exposure to
UV light is negligible for CFRP and does not exceed 8% in GFRP. AFRP exhibits
larger reductions without a clear limit (fib 2007). To avoid losing eventually the
matrix, externally bonded FRPs should be shielded from direct sunlight, either
through cladding or rendering with plaster, or by means of proprietary protection
systems.
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CFRPs are almost immune to chloride attack, even under high moisture condi-
tions, but GFRP and AFRP are more vulnerable to chloride-moisture combinations
(fib 2007). The most important chemical threat comes from alkalis and the alka-
line environment of concrete. This threat is negligible for CFRP and GFRP with
AR-glass fibres, moderate for AFRP and very serious for GFRP with E-glass and
S-glass fibres, especially under high temperatures (fib 2007). Note, though, that the
surface layer of existing concrete elements would most likely be carbonated (hence,
non-alkaline) by the time the FRP is externally bonded to it for seismic retrofitting.
This greatly reduces the risk of alkali attack from within.

At their “glass transition temperature” polymers soften from their glassy state
to a rubbery one. That temperature ranges between 95 and 175◦C for epoxy
resins, from 70 to 100◦C for polyesters and from 70 to 163◦C for vinyl esters (fib
2007). In principle, it is prudent to select a matrix material that has glass transi-
tion temperature at least 30◦C above the maximum expected service temperature
(Karbhari et al. 2003). It should be kept in mind, though, that for FRP applied
for seismic retrofitting it is the quasi-permanent (average or arbitrary-point-in-time)
value of the temperature of the immediate environment of the retrofitted element
that should be taken as concurrent with the level of seismic action considered in
retrofitting.

The Elastic Modulus of CFRP, AFRP or GFRP decreases when the tempera-
ture increases above the glass transition temperature of the matrix. The reduction
is reversible, provided that the temperature level causing chemical degradation of
the polymer is not reached. The drop in Modulus of CFRP, AFRP or GFRP when
the temperature increases from –20 to +60◦C is about 10, 25 or 35%, respectively.
Being organic, Aramid fibres suffer not only a reduction in Modulus when the
temperature increases, but also a drop in tensile strength. However, at 180◦C they
still retain about 80% of their 20◦C strength (fib 2007). Carbon fibres can resist
temperatures of 800–1000◦C with little loss in mechanical properties. Glass fibres
do the same up to 300–500◦C. However, the polymeric matrix will burn at about
150–200◦C, governing the fire resistance of the FRP. This is a serious drawback
only if the surface-bonded FRP is applied to strengthen the member just against
gravity loads. Then its loss during fire may lead to direct structural failure and col-
lapse. FRPs applied for seismic retrofitting alone can always be replaced if damaged
by a fire. The earthquake resistance they originally offered can be fully re-instated
for future use.

The specification of the polymeric matrix should include the range of tempera-
tures appropriate for mixing, application and curing. The shelf-life of thermosetting
polymers (i.e. the time for which the unmixed resin and the hardener can be stored
with no degradation) is limited and depends on the storage temperature. It should be
checked that shelf-life has not expired by the time of mixing for in-situ application.
The effect of temperature on the resin pot-life (i.e., the time after mixing the resin
and the hardener during which the viscosity is low enough for application) and on its
open time (in this case, the maximum time available between the resin application
to a fibre sheet and the attachment of the sheet to the substrate) should be taken into
account.
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With the continuous decrease in fibre prices, the polymer is becoming an impor-
tant factor in the FRP cost. To reduce this cost and bypass the problem of poor fire
resistance of polymers, polymer-modified cement-based mortars have been used as
binders of the fibres and as adherents to the substrate (Triantafillou et al. 2006,
Triantafillou and Papanicolaou 2006, Bousias et al. 2007c). Unlike resins, mortars
cannot wet individual fibres. So, continuous fibre sheets need to be replaced by fab-
ric meshes of long woven, knitted or even unwoven fibre rovings in two or more
directions (Textile Reinforced Mortars, TRM). The quantity and spacing of rovings
per direction can be tailored to the target mechanical properties of the textile and
the ability of the mortar to penetrate the textile mesh.

6.8.3.3 Field Application of FRPs

In seismic retrofitting, particularly of buildings, FRPs are typically applied in situ
with the “wet lay-up” (or “hand lay-up”) method. In this flexible approach, a first
coating of adhesive is spread over the appropriately prepared concrete surface. The
dry fibre fabric, pre-cut at the desired size, is impregnated in place by pressing into
the adhesive usually with a roller (Fig. 6.3(a,b)). The adhesive and air are squeezed
out through the fibre sheet, taking care to avoid wrinkles in the FRP and bubbles of
entrapped air. The next ply and any subsequent ones are applied in the same way,
following fresh application of a layer of adhesive onto the underlying FRP layer.
Alternatively, the fibre fabric is impregnated with the adhesive on the floor and then
pressed in place against the previously applied layer (Fig. 6.3(c)). For continuous
wrapping of the FRP around the concrete member, the adhesive is rolled onto the
FRP layer applied last just ahead of the upcoming fibre sheet. A lapping of about
150 mm between the start of a continuous FRP wrapping along the member perime-
ter and its end is sufficient.

The number of FRP plies should be limited, e.g., to a maximum of five. As
mentioned at the end of the part of Section 3.2.3.10 on Members with Continu-

(a) (b) (c)

Fig. 6.3 Hand lay-up of FRPs in situ: (a), (b) dry fabric impregnated in place (courtesy A. Ilki);
(c) impregnation of the fabric right before placing (See also Colour Plate 15 on page 729)
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ous Bars and demonstrated by the last term in Eqs. (3.89), (3.90) and (3.91), the
tensile strength of the FRP which is effective in concrete confinement is less than
proportional to the total thickness of the FRP provided.

A smooth layer of non-shrink mortar (possibly polymer-modified) is often uni-
formly applied on the concrete surface. Its purpose is not to act as a bonding agent
(polymers bond well to concrete), but to cover any roughness or asperities and pro-
vide a smooth, even final surface for the application of the lowermost FRP layer. If
earthquake damage or other reasons of deterioration (e.g., reinforcement corrosion)
has caused spalling or disintegration of the concrete in the element being retrofitted,
the same non-shrink mortar is used to replace the spalled or loose concrete. The
surface of the substrate on which the FRP is applied should be absolutely clean and
dry. The FRP should not be applied while the substrate has water content more than
4% by weight or its temperature is below 5◦C. Below 10◦C, hardening of typical
polymers stalls.

Before application of the FRP, sharp edges should be chipped off and rounded
by applying a layer of non-shrink mortar to a corner radius of 20–30 mm. This is to
avoid stress concentrations that may lead to premature FRP rupture and to extend
the confining action of the FRP at the corner to a larger concrete volume (see. Eq.
(3.28) and Fig. 3.17 in Section 3.1.2.4).

FRP wrapping should start 10–15 mm from the end section of the member (at
the connection to a joint or a foundation element). The gap is to prevent bending
of the member from causing the FRP to bear against the surface of the element
or foundation into which the FRP-wrapped member frames. Such bearing is to be
avoided, because it increases the force in the compression zone and the flexural
capacity of the member, which in turn increases the shear force demand beyond
the capacity design shear (see Sections 6.5.5.1 and 6.5.5.2). An unwrapped length
of even 30 mm at the end of the member will not suffer from the lack of direct
confinement by FRP, thanks to confinement afforded to it by the FRP-wrapped
length of the member on one hand and by the volume of concrete of the transverse
member or foundation element into which the member in question frames on the
other.

Seepage of water into the FRP-concrete interface at the connection of FRP-
wrapped members to the foundation should be prevented through appropriate
sealants. If the lateral surface of the member needs to be continuously covered by
FRP over its full length (e.g., for shear strengthening), evapouration of moisture
should be allowed, e.g. through gaps of 30–50 mm between adjacently wrapped
(typically 600 mm-wide) fibre sheets.

6.8.3.4 Material Partial Factor on the Tensile Strength of FRPs

Committee 440 of the American Concrete Institute (ACI 2003) has the equivalent of
a material partial factor covering adverse environmental effects on CFRPs, AFRPs
and GFRPs, with values of about 1.05, 1.15 and 1.35, respectively. This factor is in
addition to (i.e., should multiply) the material partial factor that covers dispersion of
the mechanical properties and creep-rupture effects, the value of which, according
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to ACI (2003), is between 1.5 and 1.8. The specifications of the Japanese Society of
Civil Engineers (JSCE 1997) cover both adverse environmental effects and disper-
sion of mechanical properties through an overall material partial factor with values
of 1.15 for CFRP and AFRP, or 1.3 for GFRP. Annex A to Part 3 of Eurocode 8
provides just a material partial factor against dispersion of mechanical properties,
equal to 1.5, as if environmental deterioration would be prevented through appro-
priate measures.

6.8.3.5 Flexural Strength, Stiffness and Deformation Capacity of Members
with FRP-Wrapping

For members wrapped with FRP along the end region where yielding and flexu-
ral plastic hinging takes place (to improve the deformation capacity of the plastic
hinges and any deficient lap splices, see points (a), (b) in Section 6.8.3.1), Section
3.2.3.10 has presented models for the yield moment, the secant stiffness to the yield-
point and the cyclic ultimate chord rotation, as affected by the FRP wrapping. That
information is summarised here for convenience:

1. The yield moment of members with continuous bars is somewhat underesti-
mated, if the effect of any FRP wrapping is neglected. The prediction improves
if the confined concrete strength, fc∗, from Eq. (3.27a) in Section 3.1.2.4, is used
in this calculation. The same conclusions apply for the moment resistance.

2. In members with continuous bars the secant stiffness to the yield-point may be
estimated from Eqs. (3.66), (3.67) and (3.68), neglecting the effect of confine-
ment by the FRP.

3. The ultimate chord rotation of members with continuous bars may be estimated
from Eqs. (3.78) in Section 3.2.3.5, provided that either one of the following is
added to the exponent of the 2nd term from the end:

(i) term afρf ff,e, with ρf = 2tf/bw being the FRP geometric ratio parallel to the
loading direction, af the effectiveness factor for confinement by the FRP
given by Eq. (3.28) as an and ff,e the effective stress of the FRP from Eq.
(3.89); or

(ii) the term given by Eq. (3.90); or
(iii) the term given by Eq. (3.91).

Alternatives (ii) and (iii) are more accurate than (i), which is more safe-sided and
has been adopted in Annex A of CEN (2005a).

The so-predicted ultimate chord rotation is on the safe-side by about 5% on
average, for members that are intact when retrofitted with FRP. It may be some-
what unconservative for members that had suffered serious damage and were
repaired before been wrapped with FRP.

4. The ultimate chord rotation of members with continuous bars may be estimated
equally well as in point 3 above, if Eq. (3.72) in Section 3.2.3.4 is used, with Lpl

from Eq. (3.73) and ultimate curvature, ϕu, from:
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– the plane-sections analysis in Section 3.2.2.4 modified to use a parabolic-
trapezoidal σ-ε law for FRP-confined concrete, as in Lam and Teng (2003a,b)
instead of a parabolic-rectangular one,

– the (Lam and Teng 2003a,b) model for the confined strength, Eq. (3.27a), and
– Eqs. (3.29) and (3.30) for the ultimate strain of FRP-confined concrete under

cyclic loading.

5. If ribbed (deformed) longitudinal bars are lap-spliced over a length lo starting at
the end section and the member is wrapped with FRP all along the lapping, then:

(i) the yield moment, the chord rotation at yielding and the member effective
stiffness derived from them may be calculated with:

a. both bars in any pair of lapped compression bars counting as compres-
sion reinforcement and

b. with a maximum possible stress of the lapped tensile bars:

I. obtained from Eq. (3.31) in Section 3.1.3.2, using there Eq. (3.32a), or
II. equal to their yield stress times lo/loy,min ≤ 1, with loy,min from

Eq. (3.85a).

(ii) the ultimate chord rotation, θu, is obtained from Eqs. (3.78b) or (3.78c),
with θy corrected for the lap-splicing and the FRP-wrapping according to
5(i) above and the last term at the right-hand-side of Eqs. (3.78b) or (3.78c),
θu

pl, computed taking into account point 5(i)a above and then multiplied by
lo/lou,min ≤ 1, with lou,min from Eq. (3.92).

6. In members with serious damage (beyond yielding, to nearly ultimate deforma-
tion), FRP-wrapping adds very little to the effect of repair carried out accord-
ing to Section 6.8.1 on yield moment (which is re-instated, anyway) and secant
stiffness to the yield-point (which is reduced by previous damage to about three-
quarters of the value estimated according to point 2 above). However, unlike
mere repair, FRP-wrapping eliminates almost fully the adverse effect of such
damage on the member’s ultimate chord rotation, which seems to be nearly the
same regardless of any damage suffered by the member before been wrapped.

According to Annex A of CEN (2005a) the effect of FRP wrapping on the yield
moment, moment resistance and secant stiffness to the yield-point of members with
continuous bars may be neglected (see points 1 and 2 above), while that on ultimate
chord rotation may be found by applying approach 3(i) above to Eq. (3.78a). If
ribbed longitudinal bars are lap-spliced starting at the end section and the member
is wrapped with FRP all along this lapping, point 6(i)a and approach II in 6(i)b
above apply for the yield moment, the chord rotation at yielding and the member
effective stiffness. Point 6(ii) applies for the ultimate chord rotation.

Annex A of CEN (2005a) gives also alternative options for the dimensioning of
the FRP for a target value of the curvature ductility factor of the retrofitted member
and for clamping of short lap splices. Those alternative approaches, described in
detail in fib (2003, 2006) have not been validated/calibrated on the basis of test
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results, at least to the same extent as the Eurocode 8 options highlighted in the
present section and in Section 3.2.3.10.

The values of My, θy and θu used in verifications in the framework of retrofitting
according to EN-Eurocode 8 should be based on mean strengths of the old materials
divided by the confidence factor and on nominal strengths of the FRP. Mean values
of all materials, without confidence factors, are used in the values of My, θy entering
in the calculation of the effective stiffness for the analysis.

6.8.3.6 Cyclic Shear Resistance of FRP-Wrapped Members

Seismic strengthening of beams is easier in shear than in flexure, as it does not
require intervention into the joint region or in the top slab. Shear strengthening can
be implemented, instead, by side-bonding FRP straps or by U-jacketing with FRP
over the three exposed sides of the beam, provided that the individual straps or the
open ends of the U-jacket are sufficiently anchored at the beam sides or at their
connection with the slab. Normally shear strengthening may be limited to the end
regions of the beam where the shear due to the concurrent gravity loads, g+ψq,
(cf. 2nd term, Vg+ψq,o(x), in Eq. (6.3)) has large values. Moreover, if the shear force
due to gravity is large compared to the seismic shear (1st term in Eq. (6.3)), nearly
unidirectional FRP sheets or straps may be used at an angle α = 45◦ to the beam
axis. Such a shear strengthening is dimensioned as for gravity loads (fib 2003, 2006,
Triantafillou 1998, Monti and Liotta 2005). As a matter of fact, Annex A to CEN
(2005a) has adopted the general approach for shear strengthening for gravity loads
(Triantafillou 1998, Monti and Liotta 2005) for the dimensioning of FRP straps or
sheets that are wrapped around or U-jacket the beam, or are side-bonded to it at any
angle to the member axis.

In gravity or seismic load strengthening alike, the contribution of FRP straps or
sheets to the member resistance against diagonal tension is taken similar to that of
shear reinforcement, except that the FRP cannot be taken to work with its full tensile
strength. First, by not being ductile like steel but linear up to failure, the FRP cannot
develop its full strength under the variable tensile strains along the diagonal crack.
Second, it may exhibit its maximum contribution to shear resistance before the strut
inclination rotates sufficiently to maximise that of transverse reinforcement. Third,
the variable strut inclination model described in Section 3.2.4.2 under The Variable
Strut Inclination Truss of the CEB/FIP Model Code 90 and Eurocode 2 does not
fully apply in this case, as the FRP bridging a diagonal crack may also exhibit a
“dowel” type of resistance, instead of mere uniaxial tension. So, when a component
due to the FRP is introduced in the variable strut inclination model according to
the following generalisation of Eq. (3.94) (fib 2003, Triantafillou 1998, Triantafillou
and Antonopoulos 2000):

VR, f = ρ f bwz(ε f,e E f )(cot δ + cotα) sinα (6.16)

it should employ an “effective strain”, εf,e, less than the fracture strain of the FRP.
In Eq. (6.16) δ and α denote the inclination of the strut and of the main direction
of the FRP, respectively, with respect to the member axis, ρf is the geometric ratio
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of the FRP in its main direction and Ef its Modulus. The value of the “effective
strain” εf,e depends on whether debonding (especially of side-bonded or U-wrapped
FRP) may pre-empt fracture of the FRP in tension. In addition, for a given mode
of FRP bonding (U-jacketing, side-bonding or full wrapping), εf,e seems to increase
with the ratio of the tensile strength of concrete, fct, that governs debonding, to the
extensional stiffness of the FRP, ρfEf, which controls the force demands placed on
the FRP anchorage (fib 2003, Triantafillou 1998, Triantafillou and Antonopoulos
2000). In Triantafillou and Antonopoulos (2000) empirical expressions have been
proposed for εf,e as a function of fct/ρfEf, of the mode of FRP bonding and of the
fracture strain of the FRP. Such an approach has been adopted in ACI (2003) and
JSCE (2001) as well.

It is prudent to cap εf,e, to allow the rest of the shear resisting components to
develop their contribution before that of the (brittle) FRP is exhausted. To this end,
the following upper limits have been proposed for the design value of εf,e:

– εf,e ≤ 0.007 in JBDPA (1999);
– εf,e ≤ 0.006 in fib (2003).

This also caps the inelastic tensile strain that the transverse reinforcement is
allowed to develop and sets a lower limit on the strut inclination δ at exhaustion
of the diagonal compression strength of the web. Note that the resistance for diag-
onal compression (web crushing) does not appreciably increase thanks to enhance-
ment of the diagonal compression strength of concrete by FRP wrapping over the
full lateral surface of the member (let alone of just the end regions or of part of
the perimeter). Therefore, regardless of any FRP strengthening, the corresponding
shear resistance, VRmax, still has the value given in Section 3.2.4.2 under The Vari-
able Strut Inclination Truss of the CEB/FIP Model Code 90 and Eurocode 2 for
slender members under monotonic or cyclic loading. Then, by setting the value of
VRmax from Eq. (3.97) equal to the sum of VR,s from Eq. (3.94) and VR,f from Eq.
(6.16), we obtain the lower limit of δ in slender members with the main direction of
the FRP at right angles to their axis, α=90◦ (cf. Eq. (3.98)):

tan δ ≥

√√√√√√√
ρw fw + ρ f E f ε f

n fc

1 − ρw fw + ρ f E f ε f

n fc

(6.17)

At this value of δ the shear resistance is (cf. Eq. (3.99)):

VR =
√(
ρw fw + ρ f E f ε f

) (
n fc − ρw fw − ρ f E f ε f

)
bwz fc (6.18)

Equation (6.18) shows that the gain in shear resistance is less than proportional
to the amount of FRP added for shear strengthening, especially as we approach the
point of diminishing returns:
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ρ f E f ε f = 0.5n fc − ρw fw (6.19)

where the upper limit of shear resistance is reached:

VR = 0.5nbwz fc (6.20)

A similar approach may be followed if the main direction of the FRP is not at
right angles to the member axis, α < 90◦. The value of VRmax from Eq. (3.97) is set
equal to the sum of VR,s from Eq. (3.94) and VR,f from Eq. (6.16), to solve (numer-
ically) for the limit value of δ. Then, the shear resistance of the FRP-retrofitted
member is obtained from Eq. (3.97).

The discussion above has mainly beams in mind. As pointed out in Section 6.7.3,
the emphasis of Section 6.8 on modification of existing components for seismic
retrofitting, is on vertical elements, mainly columns. Unlike beams, columns and
walls are subjected to a constant shear force within each storey. So, if indeed shear
strengthening is needed, it should be uniform throughout the height of the vertical
element in a storey. Moreover, as the shear demand alternates between opposite val-
ues, the main direction of the FRP should be horizontal. The end result is a vertical
element fully wrapped in (nearly) unidirectional FRP sheets essentially all along
its length (see Fig. 6.12(b) for an example). If wrapping all around the element is
neither essential (as, e.g., in rectangular walls) nor feasible (e.g., when not all sides
are accessible), proper attention should be paid to the anchorage of the FRP near
or around the edges of the section (see Section 6.10.2 for such examples). At any
rate, the dimensioning of this FRP in shear may be carried out according to the
general approach above, or to the more elaborate one in Triantafillou (1998) and
Monti and Liotta (2005) adopted in Annex A of CEN (2005a). The focus of the
rest of the present section is on the contribution of any FRP wrapping of the plastic
hinge region to its resistance against diagonal tension failure (“ductile shear”, see
Section 3.2.4.3).

FRP-wrapping of a member’s end region increases appreciably its cyclic defor-
mation capacity, but does not delay yielding. So, the ductility ratio demand, μθ

pl,
may increase during inelastic cycling sufficiently for the FRP-wrapped plastic hinge
to become critical in shear. Note that FRP-wrapping does not appreciably increase
the cyclic shear resistance for diagonal compression failure after flexural yielding,
given by Eq. (3.115) for squat walls (with Ls/h < 2.5) or Eq. (3.127) for squat
columns (with Ls/h ≤ 2.0). The very few available cyclic tests on FRP-wrapped
squat columns failing by diagonal compression after flexural yielding show that
Eq. (3.127) is indeed safe-sided. The question is then by how much FRP-wrapping
increases the cyclic shear resistance after flexural yielding, over the value given for
diagonal tension by Eqs. (3.114).

There are very few (about 10) cyclic tests of concrete members with FRP-
wrapped ends that led to diagonal tension failure after flexural yielding. Their results
suggest that the resistance to diagonal tension may still be obtained from Eqs.
(3.114), provided that a term is added for the FRP contribution. One option is to
base this term on the effective, average strength of the FRP all around the column
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according to the (Lam and Teng 2003a,b): ffu,L&T = Efεfu, with εfu about equal to
60% of the failure strain of tensile coupons (see Sections 3.1.2.4 and Members with
Continuous Bars):

VR,FRP = h − x

2Ls
min (N ; 0.55Ac fc) +

(
1 − 0.05 min(5;μpl

θ )
)

[
0.16 max(0.5; 100ρtot )

(
1 − 0.16 min

(
5;

Ls

h

))√
fc Ac + Vw + ρ f bwz f f u,L&T

]
(6.21)

This proposal gives a test-to-prediction ratio in the 10 columns tested to ductile
shear failure with an average of 0.99 and a coefficient of variation of 14.1%.

A simpler option, proposed in Biskinis (2007) and adopted in Annex A of CEN
(2005a), is to add to the right-hand-side of Eqs. (3.114) a term Vf = 0.5ρfbwz(Efεu,f)
that does not degrade with inelastic cyclic displacements. In this case εu,f is the
failure strain of the FRP from tension coupons and the factor of 0.5 reflects the
linear reduction of the FRP stress over the section depth, from the failure strain at
the extreme tension fibre to zero at the neutral axis. This simpler alternative gives as
good a prediction as Eq. (6.21). The average of the test-to-prediction ratio in the 10
columns is 1.01 and the coefficient of variation is 12.9%.

6.8.4 Steel Jacketing

6.8.4.1 Scope and Construction Aspects

Steel jackets are more expensive than concrete ones. However, their technology
is simple, familiar to the construction industry and readily available almost every-
where. So, it is the technique of choice for non-engineered emergency strengthen-
ing even hours after a damaging earthquake, to prevent collapse of heavily damaged
buildings or give back to use moderately damaged ones during the aftershock period.
Detailed assessment and retrofit design may take place afterwards. The steel jack-
ets may be removed when retrofitting is implemented, or incorporated in a concrete
jacket (as in Fig. 6.4(a)). Despite this advantage and the long history of surface-
bonded steel plates in strengthening of RC members, they are being replaced fast
by surface-bonded FRPs, which, although more costly, are much lighter, easier to
apply and mechanically more effective.

Thin-walled steel jackets are most efficient and easier to apply around circular
columns. There they usually come in two semi-circular halves fitting closely around
the column and field-welded along two vertical seems. The gap between the jacket
and the column is grouted with non-shrink mortar. Such jackets are considered so
efficient, that they have even been proposed for retrofitting square or rectangular
columns, using a large quantity of concrete (rather than mortar grout) to fill the
gap between the jacket and the column. However, circular or elliptical steel jackets
around square or rectangular building columns are neither practical nor aesthetically



662 6 Seismic Assessment and Retrofitting of Existing Concrete Buildings

(a) (b)

Fig. 6.4 Steel jackets built-up in situ with corner angles and horizontal straps

appealing. For such columns steel jackets are built up of four corner angles, usually
epoxy-bonded to the concrete or just in gapless contact to it along the full length.
Continuous thin steel plates or thicker horizontal steel straps or batten plates are
welded to the corner angles (Fig. 6.4). Within the limitations imposed by the heavy
weight of steel segments, continuous thin plates may be shop-welded to the cor-
ner angles into larger L-shaped pieces, fitting half the perimeter of the column and
fillet-welded in the field. The 10–20 mm gap between the plate and the surface of
the column is grouted with non-shrink mortar. Before been welded, straps or batten
plates may be pre-heated in the field to 200–400◦C, to exert some “active” confine-
ment on the column after they cool down. Most of the benefit is gradually lost owing
to concrete creep. So, it is neglected in design. Depending on the intended role of the
jacket, the gap between the column and the straps or batten plates may be grouted
with non-shrink mortar or left unfilled.

Steel jackets around columns enhance ductility through confinement (see Section
6.8.4.2), increase shear strength (Section 6.8.4.3) and improve deficient lap splices
(Section 6.8.4.4). All these effects have to do with the action of the jacket in the
transverse direction of the member. But as steel is isotropic, if the jacket consists
of a continuous thin plate, it presents significant stiffness and strength in the longi-
tudinal direction as well, which unavoidably affects flexural stiffness and moment
resistance. The extent of this influence depends on how the steel jacket is connected
to the concrete member and to the ones framing into it. However, steel jackets are
normally not intended for flexural strength enhancement. Their continuation beyond
the member end, although not so difficult as for FRP jackets, is not easy. Moreover,
even though they can transfer forces beyond the member end by bolting or welding
to other steel elements through the slab and by bearing against the concrete surface,
they are not so effective in resisting cyclic flexure in composite action with the con-
crete member inside, as their thin walls may buckle. As a result, they are applied
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on the concrete surface so that they develop stresses mainly in the circumferential
direction, with their effect on member flexural strength and stiffness minimised.

6.8.4.2 Confinement by Steel Jackets

The confinement of a rectangular section by the steel jacket may be calculated from
Eqs. (3.23) and (3.25), as if the jacket (continuous or in straps) were internal hoops
and ties, using as geometric steel ratio ρx or ρy in each transverse direction the
cross-sectional ratio of the jacket in a vertical section of the column. Unless tied
back into the column, thin steel plates or straps welded to the corner angles do
not confine the sides of a rectangular section, because, being flexible, they bulge
outwards. So, the confinement effectiveness factor within the section, an, may be
calculated from Eq. (3.28) in Section 3.1.2.4, with the corner radius R replaced by
the width, b, of the steel angle (where there is full contact of the angle and the
column concrete). If continuous steel plates are welded to the corner angles, the
confinement effectiveness factor along the member, as, may be taken equal to 1.0.
If steel straps or batten plates are welded instead, as may be calculated from Eq.
(3.20c), using there as bxo, byo the external dimension of the section and as s the
clear spacing, scl, of straps or batten plates, reduced by twice the corner angle width,
b, according to a postulated 45◦ dispersion of confining action from the strap into
the corner angle: s = scl-2b (Dritsos and Pilakoutas 1992).

Friction between the corner angles and the column, owing to the confining forces
developed there when the concrete column is approaching ultimate conditions,
enhances the composite action of the column with the steel jacket and mobilises
the jacket in the longitudinal direction, even when it is not continued into the joint
beyond the member end. The resulting increase in stiffness and strength of the jack-
eted column is uncertain, but forms a second line of defense against loss of axial-
load-capacity of the column in the post-ultimate range. Note that an enhancement
of the column moment resistance may adversely affect the shear force demand on
the column and the joint and the moment and shear input in the foundation. So, a
few-mm gap should be provided between the end of the jacket and the end section
of the column to prevent the jacket from bearing against the face of the element to
which the column is connected and developing compressive forces that enhance the
column moment resistance.

The confinement effectiveness of thin-walled steel jackets is further reduced
by their Poisson expansion due to any longitudinal compressive stresses that may
develop in the jacket through its partial or full composite action with the concrete
column inside (see last paragraph). If there is full composite action in the longitudi-
nal direction, the large Poisson ratio of steel will delay confinement until concrete
approaches ultimate strength and its Poisson ratio exceeds that of steel. Cages of
angles at the corners and welded transverse straps or butten plates do not suffer
from reduction of confinement effectiveness due to Poisson effects. Such effects
can be minimised also if the continuous thin-walled steel plate is replaced by sheets
corrugated in the transverse direction of the member and welded along the corners
of the section. Thanks to the very low stiffness of the corrugated sheet for axial
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compression in the member, confinement is not reduced by Poisson effects. More-
over, the large out-of-plane rigidity of the corrugated sheet almost eliminates out-
ward bulging of the jacket and enhances confinement. Corrugated steel jacketing
has been found to be very effective for the flexural deformation capacity of columns
(Ghobarah et al. 1997).

6.8.4.3 Shear Strengthening Through Steel Jackets – Dimensioning
According to Eurocode 8

When they aim at enhancement of the column deformation capacity or of deficient
lap splices, steel jackets are normally applied only over the plastic hinge or the lap
splice region. By contrast, those intended for shear strengthening extend over the
full length of the member. The jacket is inactive in shear until a major diagonal
crack develops in the concrete member. Relative displacement of the two pieces
on either side of such a crack causes the member to bear against the jacket and
activate it. From that point on the jacket resists all the additional shear force and
controls the width of the original diagonal crack, as well as development of new
ones or disintegration of the concrete core due to cyclic shear. To play this role the
steel jacket should remain elastic (Aboutaha et al. 1999). The contribution of the
jacket to the resistance in diagonal tension is added to that of internal ties and of the
concrete.

The analysis of the limited available experimental information on shear critical
steel-jacketed columns suggests that the jacket contributes to the resistance in diag-
onal tension of the jacketed part of the member with the following shear force:

VR, j = η
2 tj b

s
h fyj cot δ (6.22)

where:

η is a jacket efficiency factor, with values between 0.4 and 1.0; η seems to
have values close to 0.4 for continuous thin plates or corrugated sheets
and higher than 0.5 for straps or batten plates welded to corner bars.

tj is the thickness of steel straps at right angles to the member axis,
b is the width of the steel straps,
s is the centreline spacing of steel straps (with b/s = 1 for a continuous steel

plate),
h is the depth of the concrete section in the direction of the shear force,
δ is the inclination of the compression strut to the member axis,
fyj is the yield strength of the steel of the jacket.

Annex A of CEN (2005a) adopted Eq. (6.22) with η = 0.5 (as recommended
in Aboutaha et al. 1999) and with the design yield strength of the jacket steel, fyj,d

(nominal strength divided by the partial factor for structural steel).
Equation (6.22) applies throughout the length of the member and its outcome

should be added to the value of VR,s from Eq. (3.94). In the plastic hinge the value
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of VR,j for δ = 45◦ from Eq. (6.22) should be added to the right-hand-side of Eqs.
(3.114). By remaining elastic the jacket prevents cyclic degradation of the resistance
in diagonal tension within the plastic hinge. So, any reduction of VR with cyclic
ductility demand, μθ, in Eqs. (3.114) may be neglected.

The steel jacket does not increase markedly the resistance of the member in diag-
onal compression (against web crushing). Like for FRP-wrapping the corresponding
shear resistance, VRmax, is still as given in Section 3.2.4.2 under The Variable Strut
Inclination Truss of the CEB/FIP Model Code 90 and Eurocode 2 for slender mem-
bers under monotonic or cyclic loading, or by Eq. (3.127) for squat columns (with
Ls/h≤2.0) in cyclic loading after flexural yielding.

6.8.4.4 Members with Short Lap Splices and Steel Jackets

A steel jacket consisting of a continuous thin plate or corrugated sheet can clamp
deficient lap splices in rectangular columns. Its thickness, tj, may be derived from a
friction-based model for the clamping action. The model (Aboutaha et al. 1996a,b)
is based on:

1. A postulated shear transfer area along the lap splice, consisting of strips with
length equal to the lapping, lo, and width not more than 1.5 bar-diameters
(1.5dbL) on either side of each spliced bar. The surface-area of the shear trans-
fer area for one spliced bar is: Asf = lomin (3dbL, sb), where sb is the spacing
between lapped bars.

2. A friction coefficient over the shear transfer area equal to μf = 1.4 for clamping
by anchor bolts, or μf = 1.0 otherwise.

3. Bond stress along the embedment length, lab, of anchor bolts equal to vb =
0.042

√
fc (units MN, m).

4. Clamping by tie legs which are at right angles to the potential splitting plane and
enclose the lap splices, based on the yield force of the tie legs per unit length of
the member, ΣAstfyt/st.

5. Clamping by the (two) sides of the steel jacket which are parallel to the tie-legs
in point 4 and the anchor bolts of point 3 above, based on the yield stress fyj of
the steel jacket.
The model gives (Aboutaha et al. 1996a,b):

2t j fy j ≥ vs f b −
∑ Ast fyt

st
− vbπdblabnab

lo
(6.23)

where:

b is the column width parallel to the potential splitting plane, at right angles
to the tie legs and the anchor bolts;

Ast, st are the cross-sectional area and spacing of tie-legs along the member
axis;

db, nab are the diameter and the total number of anchor bolts over the entire
area of lap splicing, blo;
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vsf is the shear stress demand over the shear transfer area along the splice
length of a single bar:

vs f = γRd AsL fyL

μ f As f
(6.24)

with AsL and fyL denoting the cross-sectional area and the yield stress of a single lap-
spliced bar and γ Rd a model uncertainty factor, accounting for strain hardening in
the spliced bars and having a suggested value: γ Rd = 1.25 (Aboutaha et al. 1996a,b).

According to Aboutaha et al. (1996a,b), unless fc exceeds 30 MPa, the steel jacket
should be back-anchored into the column just above the end of the lap splice and
at about one-third of the lap length from the base section where the lapping starts,
with two bolts at third-points of the column side at each level. Intermediate (rows
of) bolts between these two heights are not necessary for effective clamping of the
lap splices.

Test results in Aboutaha et al. (1996a,b) have shown that very high cyclic defor-
mation capacity of retrofitted columns (to drift ratios above 5%) can be achieved
with the above rules.

Annex A in CEN (2005a) recognises clamping of deficient lap splices by steel
jackets consisting of continuous steel plates, but provides no model for it. It only
gives prescriptive guidance, based on the test results and recommendations in
(Aboutaha et al. 1996a,b):

– The steel jacket should extend beyond the end of the lapping not less than 50% of
the lap length (as extension by just 20% was found insufficient in Aboutaha et al.
(1996a,b)).

– The jacket should be anchored to the faces of the column by at least two rows of
bolts on column sides at right angles to the direction of loading. If the splicing is
at the base of the column, one of these rows of bolts should be near the bottom
end of the lapping and another at one-third of its length from the column base.

Note that discrete collars built-up of channel sections fitted around the column
and bolted at its corners do not provide as effective a clamping of lap splices as
jackets consisting of corner angles and continuous steel plates welded on them.

6.8.4.5 Resistance and Deformations of Steel-Jacketed Members at Yielding
and Ultimate

Cyclic test results on steel-jacketed concrete members are limited in the interna-
tional literature. Their analysis in fib (2003) leads to the following conclusions:

– With a 25–50 mm gap between the end of the jacket and the member end, the
yield moment and the moment resistance of the jacketed member are equal to
those of the end section of the original one.
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– The secant-to-yield stiffness of the retrofitted member may be taken equal to
that of the original column from Eq. (3.68), neglecting the effect of deficient lap
splices that have been remedied according to Section 6.8.4.4.

– The flexure-controlled deformation capacity of the retrofitted member may be
taken equal to that of the original one, again neglecting the effect of deficient
lap splices corrected by retrofitting according to Section 6.8.4.4. The effect of
confinement on the ultimate strain concrete and on the ultimate curvature of the
end section may be taken into account according to Section 6.8.4.2, but may also
be neglected in view of the limited experimental confirmation. Note, though, that
empirical expressions for the plastic hinge length, Lpl, fitted to members without
retrofitting should be used with caution for steel-jacketed members.

6.9 Stiffening and Strengthening of the Structure as a Whole

6.9.1 Introduction

Interventions at the structure’s level to increase global stiffness and reduce seis-
mic deformation demands throughout the system may be more cost-effective than
universal upgrading of the capacities of the existing components, if disruption of
occupancy and demolition and replacement of partitions, architectural finishes and
other interior non-structural components are considered. This is particularly true for
flexible buildings. However, they may be less convenient for the future functionality
of the building, if they require reducing openings or take up valuable floor area.

6.9.2 Addition of New Concrete Walls

6.9.2.1 Construction of the New Walls and Connection to Existing Members

Adding concrete walls is perhaps the most common technique for seismic
retrofitting of buildings. It is very effective for the control of global lateral drifts
and the reduction of damage in frames and non-structural elements.

If the system of new walls takes the full seismic action according to Section 6.5.8,
with the existing elements verified like “secondary” ones in a new building (see
point 1 in Section 6.7.2), then the new walls are designed on the basis of forces and
detailed as in new buildings. When retrofitting follows point 2 in Section 6.7.2 and
the walls are verified in flexure on the basis of deformations, it is still good practice
to detail them as in a new building, i.e. for flexural plastic hinging at the base. To this
end, the plastic hinge zone at the base is provided with boundary elements near the
edges of the section, well-confined and detailed for flexural ductility. The walls are
also capacity-designed in shear throughout the height according to Section 6.5.5.2.

Full continuity of the wall across storeys increases its strength. Good anchorage
of the new reinforcement is essential for strength and deformation capacity.
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New walls may be conveniently introduced by infilling strategic bays of the exist-
ing frame, especially at the perimeter. If the wall takes up the full bay, it can incorpo-
rate the beams and also both columns as boundary elements. Then only the web of
the wall is totally new. Sometimes it is shotcreted against a partition wall, which is
then encapsulated within the core of the web. The new web should be fastened to the
existing beams and columns all around the infilled panel through special connectors.
The fastening of these connectors to the existing members and their embedment into
the new concrete should be capable of fully transferring the web shear and the tensile
capacity of the web reinforcement to the frame members. Poor detailing and lack of
a proper load-path between the old members and the newly constructed parts of the
wall may lead to reduced global ductility or brittle failure of web panels. Moreover,
if there is no integral connection between the existing and the new, the behaviour
is uncertain and the reliability of modelling and verification of the wall as a single,
integral element is in doubt.

For integral behaviour, the new wall should be thick enough to encapsulate the
existing beams and columns. In that case holes and slots should be drilled through
the slab, for the vertical bars to pass from one storey to the next and for concrete to be
cast from the top. The concrete that fills the slots plays the role of shear keys between
the new wall and the slab. For fully integral behaviour epoxy-grouted dowels may
be placed throughout the interface of the old concrete and the new, at about 0.5 m
centres. Even when it does not encapsulate the existing beams, the new wall may
have to do so for the columns, to provide the lacking confinement reinforcement,
especially if the columns have short lap splices (see Fig. 6.5(a) for an example).

It is essential to ensure the transfer of inertia forces from the floors to the new
walls. A wall created by infilling a bay of a frame may be considered as adequately
connected to the floor diaphragms if it encapsulates the beams, or if its web panels
are well fastened to the surrounding frame members and the floor slab is integral
with the beams. Often “collector” elements may need to be added and designed for
the transfer of floor inertia loads to the new walls. If the new wall is at the perimeter,
a steel tie can be fastened to the side of perimeter beams to collect the floor loads and
transfer them to the new wall, where the end of the tie is embedded for anchorage. In
the example of Fig. 6.6 the steel tie is fastened by welding on steel plates anchored to
the side of the perimeter beam. The collectors and their anchorage to the perimeter
beams may be covered with shotcrete for protection. They should be dimensioned
for seismic action effects based on capacity-design considerations, accounting also
for higher-mode effects. Nonlinear response-history analyses of wall-frame systems
show that such effects on peak floor forces are much larger than on storey shears
(which are the cumulative effect of floor forces). Equations (1.16) in Section 1.3.6.4
and (6.7) in Section 6.5.5.2 are a good guide for the magnification factor to be
applied on the seismic loads transferred from the floor to the new wall according to
the analysis for the seismic action.

If it is not feasible to encapsulate the beams and columns of the frame bay, the
new wall may be created by fully infilling with RC the space between them. The
connection of the new web with the beams and the columns is more critical than
when these members are fully encapsulated. Even with very good shear connection,
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(a)

(b)

(c)

Fig. 6.5 3-storey building strengthened in long direction with two new walls: (a) cross-section of
added wall; (b) plan of framing, before (top) and after retrofitting (bottom); (c) foundation plan,
before (top) and after retrofitting (bottom)

integral behaviour of the old and the new cannot be presumed and the force and
moment resistance or the deformation capacity of the system cannot be quantified
with any certainty. Very instructive in this respect are the ultimate strength and
deformation results of several one-bay, one-storey RC frames converted to walls
by infilling them with RC of thickness (about) half the column width at right angles
to the plane of the frame (JCI 2007). The infilled frames were invariably predicted
to be shear-critical, with the connection of the new web to the surrounding mem-
bers being the weak link. The force resistance derived from their predicted flex-
ural capacity was always about double the predicted shear resistance. Companion
monolithic wall specimens were tested for comparison. Their resistance was also
governed by shear, although the margin between the predicted flexure or shear force
resistances was narrower, as the connection was not anymore the weak link. In all
types of specimens the experimental ultimate strength was always much higher than
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Fig. 6.6 Collector element of the wall in Fig. 6.5, fastened to the side of the perimeter beam (See
also Colour Plate 16 on page 729)

the predicted shear resistance and closer to (but less than) the flexure-controlled pre-
diction. The specimens resulting from conversion of a frame to a wall had on average
an experimental ultimate strength equal to 92% of that of their monolithic counter-
parts for dowels connected to the old concrete through adhesive (14 specimens), or
87% for mechanical connection (3 specimens). Two wall specimens resulting from
doubling the thickness of a thin web monolithic with the frame had experimental
ultimate strength and ultimate deformation 97 and 105%, respectively, of those of
their fully monolithic companions. In that case the new thickness of the wall was
connected to the frame through dowels with adhesive. In a specimen of the same
type but without shear connection other than what was provided by the original
monolithic half of the wall thickness, the experimental ultimate strength and ulti-
mate deformation were 83 and 50%, respectively, of those of the fully monolithic
ones. Interesting and very important is the experimental ultimate deformation of the
specimens resulting from conversion of a frame to a wall. On average it was 175%
of that of their monolithic counterparts for shear connection through dowels with
adhesive (14 specimens), or 270% for mechanical connection (3 specimens). The
deformability of the shear connection seems to increase, therefore, very much the
ultimate deformation at little expense of the ultimate strength.
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As all the walls in JCI (2007) were shear critical owing to their thin webs and
low slenderness (height-to-length ratio), they are not representative of multi-storey
frames converted to walls by full-thickness RC-infilling. Their results are more of
qualitative value, showing the general trends, the importance of the connection and
the uncertainty of the behaviour.

It is not good practice to stop the new wall at a lower storey. For example, a three-
storey building with walls added only to the first storey after the 1968 Tokachi-oki
earthquake suffered heavy damage at the second storey in another earthquake in
1994 (Nakano 1995).

6.9.2.2 Foundation of New Walls and Impact of its Fixity on Wall
Effectiveness

New walls should have proper foundation. As it typically has large cross-section,
a new wall is expected to develop high seismic moments at the base. By contrast,
its gravity load is low. Unless its foundation element incorporates existing footings
(e.g., when the new wall is created by infilling a bay of a frame), its vertical load
is not much larger that the self weight of the wall and the foundation element. At
any rate, the most serious problem and drawback of the technique is the difficulty
to transfer the wall base moment to the ground and the need of a major, costly and
disruptive intervention to the foundation.

As emphasised in Section 2.2.2.3, isolated footings of large walls uplift and rock
during the earthquake. Uplifting reduces the wall base moment well below the value
obtained from constant foundation impedance. Although the rocking wall still acts
as a stiff vertical spine and prevents storey mechanisms, rocking increases consid-
erably the lateral drifts at floor levels and the chord rotation demands in beams,
especially in those directly framing into the wall within its plane (those chord rota-
tions will be about equal to the rotation of the wall base at the ground). If they are
not retrofitted too, these beams may fail under such demands.

If we want the new wall to play its traditional role as a major element of lateral
stiffness and strength fixed at the base, we should greatly reduce or even prevent
uplifting and rocking. This can be achieved by one or more of the following:

a. by increasing the size of the new footing in plan, to increase its weight and the
impedance of the underlying soil and/or to incorporate the footings of adjacent
columns and mobilise their vertical load against the uplift (as, e.g., in Fig. 6.5(c));

b. by connecting the new foundation element to neighbouring ones through stiff
and strong grade- or tie-beams (see Fig. 6.7 for an example); or

c. by tie-downs of the new foundation element (e.g., micropiles with large tensile
strength).

Implementation of these solutions is so disruptive and costly that may discour-
age adding new walls to buildings not having already a stiff and strong (almost
storey-high) foundation beam around the perimeter, to which a new wall could be
conveniently anchored.
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Fig. 6.7 New wall founded on foundation beam encapsulating footings of nearby columns

A system used by Tsiknias and Pittas (1992) to transfer the base moment of new
walls to the soil without large uplifts and base rotations was to construct the new
wall over half the bay width L of the frame with its base at the lowermost floor
above the foundation and to connect that base to the existing spread footings of the

(a)

(b)

(c)

Fig. 6.8 Foundation of new wall through diagonal concrete bracing: (a) transfer of wall forces to
the ground; (b) shotcreting of braces and of column jackets; (c) retrofitting completed
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two columns of the bay through Chevron (inverted-V) bracing (Fig. 6.8(a)). The
moment M at the base of the new wall just above the Chevron bracing is converted
into a couple of vertical forces, ±2M/L. One of them is applied to the joint of the
Chevron bracing at beam mid-span and transferred to the two footings by tension
and compression in the two bracings. The other force goes directly to the footing
underneath, through the column. The end result is a couple of concentric vertical
forces on the existing footings, ±M/L. The axial load N in the existing footing pre-
vents uplift, up to a value of the moment M=NL at the base of the wall, much higher
than the uplift resistance of an alternative footing large enough to accommodate the
new wall and the existing column. The base rotation is equal to the differential
settlement of the two footings divided by L and is low. So, the new wall is very
effective in limiting lateral drifts. Implementation of this scheme requires jacketing
the ground storey beam and the two columns to connect the Chevron bracing and
accommodate the internal forces arising from it, possibly enlarging the footings for
the connection to the bracings and the new tie-beam, if one is constructed (Fig. 6.8).
The role of the tie beam is just to transfer to the adjacent footing the seismic shear
in the event a footing uplifts.

Unless rocking of the base of the new wall is effectively prevented as highlighted
above, it should be appropriately modelled in the analysis, to realistically capture its
effects on the seismic deformation demands in the superstructure. As emphasised in
Section 4.10.3, conventional rotational springs under a footing with constant stiff-
ness, corresponding to full contact of the footing to the ground, are not sufficient.
They account neither for the softening of the rotational spring due to uplifting nor
for the accompanying vertical displacement of the centre of the footing. Such effects
may be captured in nonlinear analysis (static or dynamic) by using a pair of nonlin-
ear vertical springs at opposite ends of the footing that account for uplifting accord-
ing to Eqs. (4.100), (4.101), (4.102), (4.103) and (4.104) in Section 4.10.3.

To help appreciate the effect of uplifting of the footing of a large wall, the
results of a parametric study are presented here (Panagiotakos and Fardis 2001b). A
5-storey frame with five 5 m bays is assumed to be retrofitted by converting its cen-
tral bay to a wall, incorporating the corresponding beams and columns. Nonlinear
static analyses in 2D have been carried out. The one-component point-hinge model
of Section 4.10.1.4 has been used and the assumptions in Section 4.10.5.1 relevant
to the present case (no. 1–5 and no. 8) are employed for all beams and columns.
Unlike the wall, all columns are fixed at the base. Two types of nonlinear models
are used for the new wall:

1. A “conventional” one-component point-hinge model according to Section
4.10.1.4 and the relevant assumptions (no. 1–5) in Section 4.10.5.1. Bend-
ing takes place about the centroid of the wall section, without axial-flexure
interaction.

2. A “new” model which differs from the “conventional” one only in that bending
takes place about the current neutral axis. So, flexure induces axial deformations
and vertical displacements of the centroid of the section.
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For the wall footing, the model of Section 4.10.3, Eqs. (4.100), (4.101), (4.102),
(4.103) and (4.104), is used.

Figure 6.9 shows a typical pattern of frame deformation, plastic hinging, etc.,
at an instant of the response when beam failures take place, using Model no. 2 for

(a)

(b)

(c)

Fig. 6.9 Deformation and plastic hinging in retrofitted frame from nonlinear static analysis: (a)
wall fixed at the base; (b) wall footing connected to tie-beams and uplifting; (c) detail of (b) at the
base of the wall and the footing (light-coloured circles: plastic hinges; larger dark circles: flexural
failure) (See also Colour Plate 17 on page 730)
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the wall. When the wall is considered fixed at the foundation (Fig. 6.9(a)) there is
a large upward displacement of the ends of beams framing into the “windward”
side of the wall owing to the rotation of the wall section about its neutral axis.
When the model includes uplifting (Fig. 6.9(b)) these upwards displacements are
due to the rotation of the wall footing. In both cases these displacements drive
these beam ends (including that of the tie-beam in Fig. 6.9(b)) to ultimate flexural
deformation.

Figure 6.10(top), referring to a wall footing without tie-beams, compares:

Fig. 6.10 Pushover response of retrofitted frame: (top) without tie-beams, using as parameters
the model and the size of the footing; (bottom) with 1 m deep, 7.5 m-by-3 m footing, using as –
parameter the size of the tie-beam (See also Colour Plate 18 on page 731)
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– the four “pushover curves” obtained from wall Model no. 2 above and the model
of Section 4.10.3, Eqs. (4.100), (4.101), (4.102), (4.103) and (4.104) for the
footing, to

– the uppermost “pushover curve” given by Model no. 1 above with the wall fixed
at the base, and the lowermost one for the unretrofitted frame.

The “new” wall model by itself produces overall a more flexible response, delay-
ing wall yielding and preventing wall flexure failure (within the range of response
considered here). A 1.5 m deep, 8 m-by-4 m footing uplifts shortly after wall yield-
ing, but gives essentially the same overall response as full fixity at the base. Uplifting
of the two smaller-size footings considered in Fig. 6.10(top) prevents wall yielding,
but causes beam failure(s) a bit earlier.

Figure 6.10(bottom) uses as baseline the moderately-sized 1 m deep, 7 m-by-3
m footing and connects it to those of the adjacent columns via tie-beams of various
sizes. A quite small tie-beam (0.5 m-by-0.25 m) is remarkably effective. It delays
uplifting but allows yielding at the base of the wall later on (after the first flexural
failure of a beam, however). Increasing further the size of the tie-beam delays almost
indefinitely yielding at the wall base, but does not affect uplifting very much. Inter-
estingly, in all cases the tie-beam yields right after the footing uplifts. A tie-beam
as large as a deep foundation beam (2.0 m-by-0.25 m) provides almost full fixity of
the wall, preventing uplift but accelerating yielding at the base of the wall.

The conclusions of this parametric study may be summarised as follows:

– A new wall is very effective for retrofitting a frame building.
– The effectiveness of the wall is grossly overestimated if its sections are assumed

to rotate about its centroid in lieu of its neutral axis and/or if uplifting of the
footing is neglected.

– A footing heavy enough, or a tie-beam sufficiently stiff, to prevent uplifting until
the wall yields, are equivalent to wall fixity at the base.

– A normal-size footing without tie-beams is moderately effective.
– A normal-size footing with tie-beams of moderate or even small size has almost

the same overall result as full fixity of the wall at the base.
– The sequence of events (yielding or failure of members, uplifting, etc.) is influ-

enced markedly by the size of key foundation elements. Its prediction is affected
very much by how we model the wall and the interaction of its footing with the
ground.

6.9.3 Addition of a New Bracing System in Steel

6.9.3.1 Introduction

Adding diagonal bracings to selected bays in all storeys of a frame structure, or to
just one or few weak storeys (e.g., to an open storey, see Fig. 6.11(c)), is effec-
tive for global strengthening and normally not as disruptive as adding walls. For
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convenience and minimal disruption the bracing is usually – but not exclusively –
placed at the façades. Architectural constraints and openings may condition the lay-
out of the bracings.

Normally the intervention to the foundation is minimal (see discussion in Section
6.9.2.2 about the concept in Fig. 6.8). The prime challenge in this technique is the
connection of the bracings to the existing concrete elements.

Bracings are normally made of structural steel. Steel bracing increases markedly
the lateral force resistance of a concrete frame, but not so much its lateral stiffness.
Therefore it is not so effective for stiff buildings, such as wall or dual systems and
masonry-infilled frames. The overall deformation capacity of flexible, non-ductile
concrete frames may be considerably enhanced by steel bracing, provided that we
prevent early brittle failures of braces and their connections, or of shear-critical
concrete members.

Passive energy dissipation devices may be introduced in the bracing for supple-
mental damping. These devices normally require large response displacements. So,
they may not be cost-effective if the bracing system increases the lateral stiffness
considerably.

To design a seismic retrofitting with steel bracings, it is essential to have a good
command of seismic design of steel (and composite, steel-concrete) buildings. This
subject is outside the scope of this book. So, the following sections focus on aspects
specific to seismic retrofitting with steel bracings, without venturing a comprehen-
sive coverage of the subject.

6.9.3.2 Layout and Conceptual Design of Concentric Bracing Systems

Normally, steel bracing systems applied for retrofitting are concentric (see Fig. 6.11
for examples), contributing to lateral-load resistance and stiffness and to energy dis-
sipation through the axial forces in their inclined braces. Their dissipative elements
are only the tension braces.

Appropriate (concentric) bracing systems are those with:

1. X-diagonal (“cross-diagonal”) bracings, along both diagonals of the braced bays.
This is overall the preferable arrangement.

(a) (b) (c)

Fig. 6.11 Examples of retrofitting with steel bracings (University of Tokyo buildings)
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2. Diagonal bracings, with a single diagonal per braced bay. The arrangement of
bracings in different bays (or groups of adjacent bays) should give similar lateral
resistance and stiffness for the two senses of the seismic action in the plane of
bracing. For new braced steel frames, Part 1 of Eurocode 8 (CEN 2004a) restricts
the difference of the total horizontal projections of the cross-sectional area of all
tension diagonals for the two senses of action to less than 10% of their average
value.

3. V-bracings (Fig. 6.11(a)) or inverted-V ones (“Chevron” in US), where a pair
of inclined braces is connected to a single point near or at mid-span of a
beam. Their advantages include the reduced unbraced length of the braces and
the earlier mobilisation of their strength and dissipation capacity.11 Chevron
bracings in particular are most convenient for openings and passage through
the braced bay. The horizontal member to which the two braces connect
should (be strengthened to) resist a transverse force equal to the difference
in the vertical force components of the tension and compression braces. For
this purpose, the post-buckling force of the compression brace is normally
conservatively taken as 30% of the yield force or one-third of the buckling
load.

K-bracings, where the inclined braces are connected to columns at about their
mid-height, should be avoided, because the unbalanced force after buckling of the
compression brace mentioned above for V-bracings is applied to the columns and
may cause them to fail.

If the sense of V-bracings is reversed in adjacent storeys (with an inverted-V
in one storey and a V-bracing in the storey above, see Fig. 6.11(b)), the braces in
consecutive storeys are almost continuous and there is no unbalanced transverse
force on the beam. If the braces are connected to the top and bottom of a beam but,
unlike in Fig. 6.11(b), their centrelines do not pass through the same (nodal) point,
a concentrated moment is applied on the beam, equal to the sum of the horizontal
projections of the tension and compression forces in the braces above or below,
times the beam depth.

Composite action with the existing concrete frame and transfer of forces to the
bracing are facilitated if the bracings are added within the plane of the frame, with
as little eccentricity as possible to the centrelines of the existing beams and columns
(Fig. 6.11(a) and (c)). Bracings placed outside the existing frame at the façade (Fig.
6.11(b)) intrude the least with the use of the building and may allow normal opera-
tion during retrofitting. However, their connection with the existing frame – usually
through (a combination of) post-installed fasteners, grout mortar or even transverse
post-tensioning through the concrete beams – is critical and tricky. When the exte-
rior concrete columns are not flush with the beams but protrude from them, it is
better to install the bracing between (the protruding parts of) adjacent columns,

11Braces yield at an interstorey drift ratio of 2εy/sin 2θ , where εy is the yield strain of the brace
and θ its inclination to the horizontal. So, the closer to 45◦ a brace is, the sooner the storey will
mobilise its yield force and dissipation capacity.
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bearing on them. Attaching in this case the braces to the column through a vertical
steel member along its protruding part, helps the connection through interface shear.

Diagonal braces installed fully inside the bays of the existing frame should be
supplemented with a frame (“rim”) of horizontal and vertical steel members firmly
attached to the surrounding concrete members. The rim helps the concrete frame
resist the load effects (moments and shears) from any frame action that accompa-
nies the truss action, as well as from the truss action itself (axial forces in the hor-
izontal chords of the truss). Besides, its horizontal members may act as collectors,
transferring the inertia forces from the floors to the bracing system. To this end they
should be continuously fastened to the corresponding horizontal concrete members.
The vertical members of the rim serve as a backup system for gravity loads, in case
(some) concrete columns cannot sustain the imposed storey drifts and fail. For this,
these members should be made continuous from storey to storey, via threaded rods
or other elements passing through the slab.

For convenience of fabrication, the braces may have the same cross-section in
several storeys. If their common size is dimensioned on the basis of the upper
storeys, the lower storeys will develop the additional lateral force resistance needed
through flexural action in the existing frame, possibly with some of its members
acting compositely with new horizontal and vertical steel members surrounding the
braces. If the braces are dimensioned on the basis of the lower storeys, inelastic-
ity and energy dissipation demands will be concentrated there, owing to the over-
strength of the upper storeys. To prevent such situations in new braced steel frames,
Part 1 of Eurocode 8 (CEN 2004a) limits the maximum value of the brace over-
strength ratio (: ratio of brace force resistance to demand from the analysis) to 1.25
times its minimum value anywhere in the structure.

6.9.3.3 Recommendations for the Design and Detailing of Braces

Experience from past earthquakes shows that steel frames with concentric brac-
ing may fail prematurely by cracking and fracture of the braces and their connec-
tions after buckling. The key to good performance of such a system is its ability to
withstand post-buckling cyclic deformations without premature fractures, through
proper design and detailing of the braces to control the buckling and post-buckling
behaviour and the associated adverse effects, like distortion and local buckling, early
failure of welds, etc. Such phenomena may jeopardise the full tensile capacity of a
brace, after it is straightened back during the next half-cycle of the response. The
post-buckling response of braces, particularly of double-channel or double-angle
ones, can be improved by welding closely spaced batten plates.

Local buckling in compression bracings precipitates fracture, owing to concen-
trations of strains or strain accumulation with cycling. To avoid local buckling,
“compact” sections should be used, with low width-to-thickness ratios. For braces
used in seismic design or retrofitting, the upper limit to this ratio should be consid-
erably lower (e.g. by 50%) than for monotonic loads. For new steel buildings, Part
1 of Eurocode 8 (CEN 2004a) requires using:
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– “class” 1 steel sections, if the q-factor 4 or more,
– “class” 1 or 2 sections, for q between 2 and 4, or
– “class” 1, 2 or 3 sections, with q between 1.5 and 2.

These “classes” are defined in EN-Eurocode 3, Part 1, depending on the shape of
the section and its width-to-thickness ratio. For bracings in seismic retrofitting it is
strongly recommended to avoid “class” 3 sections. If possible, “class” 1 should be
used.

No matter whether compression braces are taken into account in the analysis for
the retrofit design (as in V-bracings), or neglected (as may be the case in diagonal or
X-braced systems, see Section 6.9.3.4), their slenderness should be capped. A sensi-
ble upper limit is the value of 2.0 imposed by CEN (2004a) to the non-dimensional
slenderness λ̄ (defined as the square root of the ratio of the member’s yield force, fyA,
to its critical buckling load, Ncr) in new steel structures. CEN (2004a) sets a lower
limit of 1.3 on λ̄ for compression braces which are neglected in a linear analysis for
the seismic action. This is to reduce the axial force that will inevitably develop in the
(neglected) compression braces during the pre-buckling stage and prevent columns
and beams from being overloaded with seismic action effects (much) higher than
given by the linear analysis and damaged before the tension diagonals yield. If com-
pression braces are included in a nonlinear analysis, there is little sense in observing
a lower limit on λ̄.

Realistic end restraint assumptions should be made for the effective unbraced
length of braces. For X-braces welded to a common gusset plate at their midpoint(s)
(ASCE 2007) recommends taking the effective unbraced length equal to half the
total (diagonal) length of the brace, including the gusset plates. For other types of
braces welded to gusset plates, an effective unbraced length equal to the total length
of the brace is recommended for out-of-plane buckling, or 80% (90% for bolted
connections) of that length for in-plane buckling.

A gusset plate connected to a brace susceptible to out-of-plane buckling should
have clear length at least equal to twice its thickness, to limit restraint of brace
plastic rotations in the post-buckling stage (ATC 1997).

6.9.3.4 Seismic Analysis and Design of the Retrofitting

The existing structure is already loaded by the quasi-permanent gravity loads before
any steel bracing is added. It continues to support these loads fully, even when
the earthquake comes.12 If the analysis for the seismic action of interest is linear,
one analysis should be carried out for the concrete frame alone under the quasi-
permanent gravity loads and another for the retrofitted structure under the seismic
action. The results are superimposed. If the analysis is nonlinear, quasi-permanent

12The seismic action will not cause serious axial distress to the existing vertical members (unless
they fail). So, gravity loads will not be redistributed from the existing system to the steel bracing,
when the earthquake comes.
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gravity loads and the seismic action should be taken to act together. The quasi-
permanent gravity loads are applied first, to provide the initial conditions. In that
case an artificially high axial stiffness may be used from the outset for the existing
vertical members, so that they monopolise the support of gravity loads. Note that,
even though by the time the factored gravity loads may be applied the steel bracing
will be in place, these loads should be taken to be resisted by the existing con-
crete frame alone. It is standard (and codified) practice for new steel or composite
(steel-concrete) buildings with bracings to design the frame alone for the factored
gravity loads and rely on the bracings only for earthquake resistance. V- or inverted-
V braces are not taken to provide support to the beams at mid-span under gravity
loads.

The most cost-effective approach for the design of the retrofitting with steel brac-
ings is the standard one in Sections 6.5.4, 6.5.5 and 6.5.6, with deformation-based
verification of ductile mechanisms in all members, old or new (including the brac-
ing elements intended for energy dissipation) and force-based verification of brittle
mechanisms. In this approach all members (including the existing ones, as well
as the compression braces) are included in the model. If the analysis is nonlinear
(typically static), compression braces may be modelled using an elastic-perfectly
plastic force-deformation law in primary loading, with yield force equal to a small
fraction of their buckling load – 20% is recommended in ASCE (2007) and ATC
(1997). Notwithstanding this low limiting force in compression, the full buckling
load should be assumed to develop in these compression braces when checking ver-
tical members connected to these braces.

Table 6.1 still applies for the verification of the members of the concrete frame.
All beams and columns around a bay where bracing is added should be considered
as “primary elements”. Table 6.4 presents the verification criteria for steel braces at
the three Limit States (LS) given in Annex B of CEN (2005a) for diagonal braces in
existing steel or composite (steel-concrete) buildings. Except at the Damage Limita-
tion LS, the criteria for tension braces are more relaxed than for compression ones.

Table 6.4 Compliance criteria for steel braces in concentric bracing (CEN 2005a)

Section Damage limitation Significant damage Near collapse

Tension δE,t
1 ≤ 0.25δy,t

2 δE,t
1 ≤ 7δy,t

2 δE,t
1 ≤ 9δy,t

2

Compression Class 1 δE,c
1 ≤ 0.25δcrit

3 δE,c
1 ≤ 4δcrit

3 δE,c
1 ≤ 6δcrit

3

Class 2 δE,c
1 ≤ 0.25δcrit

3 δE,c
1 ≤ δcrit

3 δE,c
1 ≤ 2δcrit

3

0.5 Npl,Rd
4 ≤ Ncr

5 0.5 Npl,Rd
4 ≤ Ncr

5 –
NE,c

6 ≤ 0.8 Npl,Rd
4

1δE,t, δE,c denote the axial deformation of the brace in tension or compression, respectively, from
the analysis for the seismic action of interest without gravity loads.
2δy,t is the axial deformation of the brace at yielding in tension.
3δcrit is the axial deformation of the brace at the critical buckling load, Ncr.
4Npl,Rd is the plastic resistance of the cross-section to normal forces.
5Ncr the critical buckling load of the brace.
6NE,c is the compressive axial force of the brace from the analysis for the seismic action of interest
plus the concurrent gravity loads.
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So, the limiting deformations of the compression braces normally govern. In reality,
if the seismic action is likely to induce more than one half-cycle of large inelastic
excursions, we cannot rely too much on the large limiting deformations of tension
braces.

Braces yield at an interstorey drift ratio of 2εy/sin2θ , where εy is the yield strain
of the brace and θ its inclination to the horizontal. This gives interstorey drifts
between 0.4 and 0.6%, which is normally less than what causes storey yielding
in a flexible concrete frame. The limit values in Table 6.4 for tension braces at the
Significant Damage LS correspond to about 7-times these interstorey drift values,
normally beyond what the members of a poorly detailed, deficient concrete frame
can take, even when classified as “secondary” ones. By contrast, these members can
easily take the interstorey drifts corresponding to the limit values given in Table
6.4 for compression braces at the Significant Damage LS. Another point is that
the limit values in Table 6.4 for the Damage Limitation LS correspond to quite
low interstorey drifts, namely between 0.1 and 0.15%. All this said, the limits in
Table 6.4 derived from values in CEN (2005a) for steel or composite frames, may
have to be assessed by applying them to actual retrofitting cases and studying their
implications.

The alternative to the above standard approach for the design of the retrofitting
with steel bracings is the force-based approach of Section 6.5.8. In that case Part
1 of Eurocode 8 (CEN 2004a), including its Sections on steel buildings (or com-
posite, steel-concrete, wherever relevant), is applied according to Section 6.5.8.
Note that, according to CEN (2004a), compression braces should be neglected in
the (linear) analysis for the seismic action, except in V-braced systems. Note also
that existing beams and columns around a bay where bracing is added cannot be
considered as “secondary elements”. As a matter of fact, in order to concentrate
inelastic action and energy dissipation in the (tension) braces, CEN (2004a) wants
some overstrength against the results of the analysis in the frame members. To
this end, it requires frame members of new braced steel buildings be dimensioned
for the seismic action effects (axial load and bending moment) from the analy-
sis times 110% of the minimum value of the brace overstrength factor (ratio of
brace force resistance to demand from the analysis) in all diagonals of the sys-
tem, plus the action effects of the concurrent gravity loads. If the force-based
approach of Section 6.5.8 is adopted, this rule should be applied to the existing
members around bays where bracing is added, these members taken as “primary
seismic”.

6.9.3.5 Construction Issues

Normally there are more construction difficulties in retrofitting with steel bracings,
than in construction of new steel or composite buildings.

Prefabrication of large steel subassemblies, as in new construction, is not easy.
Most of the welding has to be done in situ and high quality full penetration welds are
difficult to achieve. Weldments may end up being the weak link in the retrofitting.
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The steel elements may be connected to the surrounding concrete frame through
epoxy-grouted fasteners post-installed into the concrete. Normally this is done in
phases:

– partial-depth holes are drilled in the concrete using the steel member’s annuli as
a template;

– the steel member is removed, to finish the drilling and clean the holes;
– the steel member is put back and fixed in place, after grouting the holes with

epoxy and inserting the fasteners.

Sometimes interference with reinforcement or with connections between steel
members may prevent drilling the holes for some fasteners to full depth. Another
location may have to be sought for these fasteners, with new annuli drilled through
the steel member’s in the field.

In Japan, where retrofitting with steel braces is popular, some of the construction
difficulties noted are by-passed using pre-fabricated bracing subassemblies, con-
sisting of a heavy rectangular rim with X-, V- or inverted-V bracings inside. To
accommodate variations in the dimensions of the existing bays where the subassem-
blies are placed, a tolerance of several centimeters is provided around the rim. The
subassemblies are connected to the surrounding frame members through a system
consisting of:

– closely-spaced headed studs, welded to the outside of the perimeter of the rim
and protruding into the gap;

– post-installed fasteners in-between the studs, epoxy-grouted into the interior face
of the surrounding frame;

– non-shrink mortar filling the gap between the rim and the frame.

Spiral reinforcement is often inserted along the mortar joint, between the fasten-
ers and the headed studs. Tests in Yamamoto (1993) have shown that one-storey,
one-bay frames retrofitted in this way can exhibit a lateral force resistance equal to
the sum of the shear capacity of the frame and of the braces (: horizontal projection
of the yield force of tension brace and of the buckling load of compression brace) at
storey drift ratios over 3%. However, the size and strength of the steel braces could
not increase indefinitely, without the horizontal mortar joint becoming the weak link
in sliding shear. The horizontal failure plane extends then into the “wind-ward” col-
umn, which is in tension and may precipitate a flexure-shear failure of the column
on the other side. The lateral force resistance is then the sum of: (a) the resistance of
the mortar joint and of the “wind-ward” column in sliding shear, and (b) the shear
resistance of the “lee-ward” column. The cyclic drift capacity of this failure mode
is smaller, but in the tests in Yamamoto (1993) it was still between 2 and 3%.

An expensive alternative is to fully fill the gap between the steel rim around the
bracing and the concrete members with epoxy resin (JCI 2007).
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6.10 Application Case Studies

6.10.1 Seismic Retrofitting of SPEAR Test-Structure with RC
or FRP Jackets

Section 4.10.5.2 has highlighted the two phases of retrofitting of the 3-storey
SPEAR building:

• In the 1st phase, any damage inflicted to the unretrofitted structure was repaired;
then:

– the ends of all 0.25 m columns in all storeys were wrapped with two layers of
uni-directional Glass FRP (GFRP) over 0.6 m from the face of the joint, for
confinement and clamping of short lap splices (Figs. 4.13(b) and 6.12(a));

– the full height of the large (0.25 m-by-0.75 m) column C8 was wrapped in
two layers of bi-directional GFRP, for confinement and lap splice clamping,
but mainly for shear strengthening (Fig. 6.12(b));

(a) (b)

Fig. 6.12 FRP-retrofitted SPEAR test structure: (a) column with FRP-wrapped ends during the
response; (b) large column retrofitted in shear (See also Colour Plate 19 on page 732)
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– the exterior faces of corner joints were strengthened in shear with two lay-
ers of bi-directional GFRP, without continuity with the FRP wrapping of the
columns (Figs. 4.13(b) and 6.12).

• In the 2nd phase:

– all FRPs were removed, and
– the central columns of the two “flexible” sides (C2 and C6 in Fig. 4.14(a))

were RC-jacketed from 0.25 to 0.4 m square (Fig. 4.14(b)); the jackets had
eight 16 mm-dia. vertical bars (three per side) and a 10 mm-dia. perimeter
tie at 100 mm centres; jacketing virtually eliminated the largest of the two
eccentricities between the (computed) centres of stiffness or resistance and
the centre of mass and reversed the other eccentricity (Fig. 4.14(c) and (d)).

Each retrofitted version of the structure went through a test under a 0.20 g PGA
bidirectional motion, for which predicted and measured displacements have been
compared in Fig. 4.15 and predicted damage ratios were presented in Fig. 4.16. It
was then subjected to a 2nd test with a PGA of 0.30 g. When the FRPs were removed
after that test there was no visible damage. This is consistent with the predictions
of the analysis in Section 4.10.5.2. The flexural damage ratios in the 0.30 g test are
about 1.5-times those at the middle row of Fig. 4.16 (left) and are well below 1.0.
The shear damage ratios are only slightly higher than the values at the middle row
of Fig. 4.16 (right) and again do not approach 1.0. As shown in Fig. 6.12(a), the
large storey drifts of the response took place mainly through fixed end rotations at
the column end sections, due to (harmless) slippage of the (smooth) vertical bars
from the joints. The performance demonstrates that even light FRP-wrapping of all
members improves their deformation capacity sufficiently to enable an originally
poorly designed and detailed, flexible and asymmetric structure withstand ground
motions with a PGA as high as 0.30 g.

The flexural damage pattern of the version of the structure with the two central
columns of the “flexible” sides RC-jacketed, was indeed as predicted in Fig. 4.16
(bottom, left). The jacketed columns went through the test unscathed, but the non-
jacketed ones suffered very severe damage; especially the heavily loaded central
column and those on the sides of the perimeter opposite to the two jacketed columns.
The central column (C5 in Fig. 4.14) failed in flexure at the 2nd storey – as predicted
at the bottom row of Fig. 4.16 (left) – as well as at the 1st storey. As a matter of fact,
this is the column of Fig. 3.27(c). In the 0.30 g test that followed this column and C4
(the immediately most critical one according to Fig. 4.16) disintegrated completely.
Nonetheless, their axial load was redistributed to other ones and the structure did
not collapse. Consistently with the shear damage pattern at the right-hand-side of
Fig. 4.16, there was no indication of shear effects in the damaged or failed members.

The conclusion of these tests is that in an asymmetric structure it is not sufficient
to selectively upgrade the stiffness, strength and deformation capacity of critical
columns. This may shift deformation demands to other elements and cause them to
fail, if they have not been retrofitted.
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The qualitative agreement of damage may be considered as validation of the
expressions in Sections 3.2.3.5 and 3.2.4.3 – adopted in Annex A of CEN (2005a) –
for the flexure-controlled ultimate cyclic chord rotation and the degradation of shear
resistance with cyclic loading.

6.10.2 Seismic Retrofitting of Theatre Building with RC and FRP
Jackets and New Walls

The theatre facility presented already in Figs. 4.18 and 4.19 has been retrofitted to
remedy the seismic deficiency pointed out in Section 4.10.5.3 as well as the exten-
sive corrosion of the reinforcement in vertical members of the perimeter (Fig. 6.13).
The design of the retrofitting (in mid-2005) was the first application of Part 3 of
Eurocode 8 to a real building. The performance objective was to fulfil the Significant
Damage Limit State (Life Safety performance level) for the 475 year earthquake,
with a peak ground acceleration (PGA) of 0.36 g specified for ordinary buildings at
the site in the current zonation map.

The seismic assessment of the building under a seismic action with a PGA of
0.10 g has been highlighted in Section 4.10.5.3. The design of the retrofitting and the
evaluation of the retrofitted building through nonlinear dynamic seismic response
analysis are presented here.

On the basis of the key features of the response of the unretrofitted building and
of its assessment under the 0.10 g PGA motions, the following retrofitting measures
were chosen (Fig. 6.14):

(a) (b) (c)

Fig. 6.13 Vertical cracks in perimeter members of theatre building (a), (b), due to reinforcement
corrosion (c) (See also Colour Plate 20 on page 732)
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Fig. 6.14 Schematic of RC jackets and new walls in theatre building

1. The two parts of the building across the (practically zero width) expansion joint
are connected into an integral structure with planwise balanced stiffness and
strength, to avoid twisting of the individual parts and pounding at the joint. This
is achieved as follows:

(i) Each one of the two perimeter walls at the corners of the right-hand-side
of the Stage part in Fig. 4.18 (left) is integrated with its counterpart across
the expansion joint at the corners of the left-hand-side of the Theatre part
in Fig. 4.18 (right), into a single rectangular wall straddling the expansion
joint. Pairs of such walls are shown in Fig. 4.18 within continuous-line
rectangles. One pair appears also at the right-hand-side of Fig. 6.1(g). The
connection is effected through a shotcrete overlay on the exterior face of the
two walls, with 18 mm-dia. horizontal bars at 100 mm centres continuous
across the joint. Shear connection across the joint is enhanced by batten
plates welded to the corner vertical bars of (the barbells of) the individual
walls next to the joint.

(ii) The roof diaphragms of the Stage and the Theatre parts are connected
across the expansion joint all along their common length at the roof (i.e.,
outside the elevated central part – penthouse – of the Stage). This is done
with a 0.3 m-deep and 0.8 m-wide RC belt, symmetrically cast over the
joint and fastened to the roof slab via epoxy-grouted dowels (Fig. 6.15(a)).
It has 14 mm-dia. closed ties across the joint at 100 mm centres and 16 mm
bars along it.

(iii) Each interior wall parallel to the joint at the right-hand-side of the Stage
part in Fig. 4.18 (left) is connected to its counterpart across the expansion
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(a) (b)

(c) (d)

Fig. 6.15 Features of the retrofitting of the theatre building: (a) RC belt straddling joint at roof
level; (b) steel rods connecting interior walls across the joint; (c) long side of the building with
finished wall jackets; (d) new bay-long walls at the back

joint at the left-hand-side of the Theatre part in Fig. 4.18 (right). Each pair
of such walls is shown in Fig. 4.18 within a dashed-line rectangle. For the
connection, two rows of 24 mm-dia. horizontal steel rods at 250 mm cen-
tres vertically (Fig. 6.15(b)) are placed in holes drilled through the short
direction of the two walls and secured by anchor plates at their accessible
vertical faces (i.e., opposite to the faces on the expansion joint). Although
the rods act also as dowels across the joint, their main role is to transfer
shear forces from one wall of the pair to the other. They have been dimen-
sioned to cover a shear strength shortfall in one of the walls by the surplus
in the other, both as obtained from the nonlinear seismic response analyses
described later on.

2. The ten exterior shear walls on each one of the two long sides of the integrated
building are strengthened and stiffened from the foundation to the roof with an
exterior 150 mm-thick shotcrete overlay (see Fig. 6.1(g)). Note that reinforce-
ment corrosion was limited to the perimeter walls or columns. Before applying
the overlay, corroded bars were exposed, cleaned from rust and epoxy-coated
against future corrosion. The original walls are 250 mm-wide. The ones at the
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corners incorporate a 400 mm square column at one end of the cross-section
(like a barbell, see Fig. 6.13(a)), while the intermediate ones have the 400 mm
square column at mid-length (Fig. 6.13(b)). With the overlay the perimeter walls
are converted into 400 mm-wide rectangular ones (compare Figs. 6.13(a) and
(b) with 6.15(c)). The overlay is connected to the old wall via epoxy-grouted
dowels. It contains one curtain of vertical and horizontal bars, with sufficient
cover for corrosion protection in the mid-term and in sufficient quantity for
the necessary flexural and shear resistance of the new, integral wall, even after
the – at certain points complete – loss of cross-sectional area in the existing
horizontal bars due to corrosion. The new vertical bars are epoxy-anchored at
the top of underground perimeter walls or of bulky foundation beams. This
is easy, as the top of these foundation elements is at about grade level and
their exterior face is flush with the added concrete overlay (Figs. 6.1(g) and
6.15(c)).

3. Two new 500 mm-wide concrete walls are added, by infilling the 2nd and the
4th bay of the frame on the left-hand-side of Fig. 4.18, encapsulating existing
columns and beams (see dashed-line ovals in Fig. 4.18). The main goal of these
walls is to counterbalance the two over-one-bay-long walls at the opposite side
of the integrated building. Another purpose is to strengthen the elevated central
part – penthouse – of the Stage, to the top of which they continue. The finished
walls are shown in Fig. 6.15(d).

Figure 6.16 depicts the average flexural damage ratio in the vertical members of
the so-retrofitted building from the analyses under 56 spectrum-compatible bidirec-
tional ground motions with a PGA of 0.36 g. The damage ratio is the maximum ratio
of chord rotation demand to the concurrent capacity (as affected by the fluctuating
axial load and shear span ratio) at the Near Collapse Limit State according to Part 3
of Eurocode 8. The demand-capacity ratios at the Significant Damage (Life Safety)
Limit State may be obtained by multiplying by 4/3 the values in Fig. 6.16. The com-
bination of the retrofitting measures highlighted above is sufficient for essentially
all elements at the Significant Damage Limit State. The alarming damage ratios in
four columns of the penthouse13 (especially after the values Fig. 6.16 are multiplied
by 4/3) are not a source of concern, because, unlike almost everywhere else in the
building, all bays around the penthouse are infilled with strong masonry walls with-
out openings (but a narrow door), which were omitted in the analysis model. The
contribution of these infills to the lateral stiffness and resistance of the penthouse is
more than enough to prevent the failure of the four columns predicted in Fig. 6.16.

As shown in Fig. 6.17, the measures described so far cannot prevent shear failure
of the two large walls of the façade (see Fig. 6.18, one of these walls featuring
also in Fig. 6.13(a) – left-hand side) or of the interior walls on either side of the
expansion joint (those connected together in the transverse direction through steel

13These four columns are all at the three sides of the penthouse which are not retrofitted. The two
new walls reaching the top of the penthouse are on the 4th side.
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Fig. 6.16 Mean chord rotation demand in vertical members of the retrofitted building from seismic
response analyses for 56 bidirectional ground motions at PGA = 0.36 g, divided by the correspond-
ing chord rotation capacity for the Near Collapse Limit State (Kosmopoulos et al. 2007) (See also
Colour Plate 21 on page 733)

Fig. 6.17 Mean damage ratio in shear in the vertical members of the retrofitted building without
the FRPs for 56 bidirectional ground motions at PGA = 0.36 g: shear force demand from the
analysis divided by the corresponding capacity for any Limit State (Kosmopoulos et al. 2007) (See
also Colour Plate 22 on page 734)
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Fig. 6.18 Façade of theatre
building with the two walls
chosen for strengthening in
shear with FRP

rods, see point 1(iii) above and Fig. 6.15(b)). It is not feasible to remedy these
shear deficiencies via RC jackets or overlays, like in strengthening measure 1 above,
because:

– Adding RC jackets or overlays to the façade is not architecturally acceptable.
– The owner does not welcome the inconvenience and debris produced by casting

or shotcreting jackets around the interior walls on either side of the expansion
joint.

– It is not feasible to access the foundation at these points in plan and at the façade,
in order to connect the RC jacket or overlay and transfer its seismic moments
and shears to the ground, without a prohibitively intrusive and costly operation
(imagine in Fig. 6.18 the disruption entailed by exposure of the foundation of the
walls of the façade);

The shear deficiency of the two large walls of the façade and of the two pairs of
interior walls on either side of the expansion joint has been remedied by bonding
horizontal Carbon FRP (CFRP) sheets:

– to the exterior face of the two large façade walls, see Fig. 6.19(a), and
– to the surface of the accessible long sides of the two pairs of interior walls (the

sides opposite to the ones on the expansion joint), as shown in Fig. 6.19(b).

The six CFRP-retrofitted walls are shown in Fig. 4.18 inside continuous-line
ovals.

The total thickness of CFRPs (equivalently, the number of CFRP plies of standard
thickness) is dimensioned from the mean deficit of shear strength in the correspond-
ing wall from the seismic response analyses for the 56 bidirectional ground motions
with a PGA of 0.36 g, i.e., so that the shear damage ratios in Fig. 6.17 are reduced
below 1.0.
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(a)

(b)

Fig. 6.19 One-sided shear strengthening with surface bonded horizontal CFRP sheets: (a) 3.5
m-long part of façade wall; (b) 1.6 m-long interior walls next to seismic joint (Kosmopoulos et al.
2007)

Numbers in circles in Fig. 6.19 show the sequence of operations for the applica-
tion of the FRPs.

Witness in Fig. 6.19(a) the anchorage of the edge of the one-sided FRP sheets
at the re-entrant corners of the web of the façade wall with the column-like barbell
protruding from it, through 200 mm-long spike FRP anchors placed in 100 mm-deep
holes filled with epoxy. The 100 mm-long part of the anchor outside the hole fans
out within the epoxy layer between two successive FRP plies, to collect the forces
of the FRP sheets and transfer them to the concrete.

Witness also in Fig. 6.19(b) the clamping of the edge of the FRP sheets applied
on one side of the four interior walls. The edge is clamped by 40 mm-wide, 10 mm-
thick stainless steel straps placed vertically next to the rounded corner of the section
and fastened to the short side of the wall via anchor bolts driven into the concrete at
the free space between adjacent horizontal FRP sheets.

Because the surface-bonded FRPs applied here for shear strengthening do not
affect the stiffness or moment resistance of members, we do not need repeating the
(nonlinear) analysis to evaluate their effect on performance. The FRPs can always
be dimensioned after the analysis, for the shear strength deficit identified from it.
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It is not considered worth remedying the shear deficiency shown in Fig. 6.17 at
the two central columns of the façade at the top storey. This could be accomplished
by wrapping the entire height of these columns with FRP, dimensioned to resist
the deficit in shear strength of the column. That would entail demolishing vertical
strips of the brick masonry wall on both sides of these columns (see Fig. 6.18) and
restoring these walls after FRP wrapping. The contribution of these masonry piers
to the in-plane stiffness and resistance of the façade is sufficient for the protection
of these columns from an overstress given by an analysis that neglects the positive
contribution of these wall piers.
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Epilogue: Some Ideas for Performance- and
Displacement-Based Seismic Design of New
Buildings

We thus have come to the end of a long development on current-generation seismic
design, assessment and retrofitting of concrete buildings. Its emphasis has been on
EN-Eurocode 8, scheduled to become the exclusive standard for earthquake resis-
tance in Europe after March 2010. To this point we have focused on the present
situation, with the aim to help designers apply the relevant parts of EN-Eurocode 8
correctly and cost-effectively and to familiarise them with their background.

Part 3 of Eurocode 8, and other international codes for seismic assessment and
retrofitting of existing buildings, do reflect the current State-of-the-Art and provide
a firm basis for codified practice in the foreseeable future. However, this cannot
be claimed with much confidence by seismic design standards for new concrete
buildings, including Part 1 of Eurocode 8. Indeed, Section 6.4 noted at its closing
that, once the new ideas for codified seismic assessment and retrofitting become
established through successful application in practice, they are expected to infil-
trate codes for seismic design of new buildings as well, marking a reversal of past
traditions.

Readers who have followed the long development in this book to its conclusion
are invited now to follow it one step further, namely to some ideas for a possible
future performance- and deformation-based seismic design of new concrete build-
ings. Far from being a revolution in the design of concrete buildings for earthquake
resistance, these ideas just aspire to introduce there the current State-of-the-Art, as
reflected already in codified seismic assessment and retrofitting of existing buildings
and in Part 3 of Eurocode 8 in particular. As a matter of fact, it is proposed to venture
this in the form of a few measured steps, which preserve or emulate to the largest
possible extent current codified design practice.

The ideas presented below have evolved from the early work of Fardis and Pana-
giotakos (1997c) and Panagiotakos and Fardis (1999, 2001c). According to the new
proposal buildings are designed to meet all three performance levels:

– Immediate Occupancy,
– Life Safety and
– Near Collapse

each at the appropriate seismic hazard level, defined through its own 5%-damped
elastic spectrum. The proposed compliance criteria for the three performance levels
are:
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1. Brittle (i.e., shear) failures of members, primary or secondary, and of their con-
nections, should be prevented at all three performance levels.

2. At the Immediate Occupancy level, nominal yielding at potential plastic hinges
may be exceeded by a factor with a value around 2, which reflects a presumed
overstrength factor of at least 1.5 in materials and members and certain tolerance
of flexural yielding at some sections.

3. At the Life Safety level, a safety margin against the ultimate chord rotation at
member ends should be provided.

4. At the Near Collapse performance level, member ends should stay below their
ultimate chord rotations; indeed primary ones should have a margin for model
uncertainty.

The similarity with the Eurocode 8-Part 3 criteria in Table 6.1 for the three Limit
States is clear. The safety elements for the checks in 1 above may be those in Table
6.1 for brittle members, primary or secondary. The safety margins in 3 and 4 against
ultimate conditions in flexure may also be chosen the same as those in Table 6.1
for primary or secondary ductile members at the Significant Damage and the Near
Collapse Limit State, respectively. According to the reasoning in the last paragraph
of Section 6.5.3, a constant ratio between the chord rotation limits for Life Safety
and Near Collapse (as in Table 6.1) implies that checking them at both these levels
is normally redundant. The Near Collapse level will govern, if the spectral values
of its own seismic action at the important natural periods of the elastic structure
(as determined in Step 5 below with the final effective stiffness values from Step
4) clearly exceed those of the Life Safety seismic action by more than the inverse
of the constant ratio of chord rotation limits at these levels. Conversely, if they are
clearly less. Besides, the shear verifications are carried out only once. So, in the end
the three-tier design normally reduces to single-tier design for shear and a two-tier
one for flexure.

The design procedure may comprise the following steps:

Step 1 – Conceptual design and sizing of members: Select the structural
layout following as closely as possible the guidance in Sections 2.1.3–2.1.13.
Make sure that there is sufficient torsional stiffness to meet Eq. (2.4) in Sec-
tion 2.1.6, and indeed with a margin. Size the members according to the
following, for fruition of Step 7:

– In each one of the two horizontal directions vertical members of the same
family (i.e., walls or columns) should have as uniform a cross-sectional
depth as possible. If the rotational restraint of members by others in the
considered horizontal direction varies among members of the same family,
those restrained more by others may be chosen with smaller depth than the
rest.

– The beam depth should be uniform all-along any plane frame, but may be
smaller in frames with shorter spans than in others with longer ones.
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– The beam depth should be gradually reduced from the base to the roof of
the building.

Column sections should accommodate the intended beam bar sizes according
to the relevant bond criteria, such as Eqs. (5.10) in Section 5.4.1.

Step 2 – Design for non-seismic actions: Dimension the reinforcement of all
members on the basis of the Ultimate and the Serviceability Limit States
for all pertinent non-seismic actions (gravity loads, wind, etc.), taking into
account the minimum reinforcement requirements for structures without
earthquake resistance. Redistribute beam ULS moments from supports to
mid-span(s) or vice-versa, as appropriate and optimal in design for non-
seismic actions.

Step 3 – Capacity Design against storey-sway mechanisms. Unless the walls
in a horizontal direction of the building are considered sufficient to preclude
a storey-sway mechanism, determine the vertical reinforcement of columns
to satisfy Eq. (1.4) in that direction, using there the beam moment resistances
resulting from earlier steps.1 Base this calculation on the axial force due to
gravity loads concurrent with the seismic action.

Step 4 – Member effective stiffness: Estimate the member effective stiffness
(secant to yield-point) for the seismic action, (EI)eff:

– If this is the first time this step is carried out (see Step 8 for the itera-
tions), use empirical expressions independent of the amount and layout
of longitudinal reinforcement (e.g., Eq. (3.69) in Section 3.2.3.3). Check
the result against the outcome of Eq. (3.68), averaged at the (two) end(s)
where a plastic hinge might form and for both directions of bending, using
the longitudinal reinforcement from Steps 2 and 3. Adopt the larger of the
two (EI)eff-values: from Eq. (3.68) or (3.69). In these calculations use a
value for the shear span at member ends according to the guidance in
Section 4.10.1.4 (summarised also at point 2 of Section 4.10.5.1 and in
Section 6.5.4.2). Use judgement to revise upwards the estimates from Eq.
(3.69) in those vertical members (especially walls) which are expected to
come out of Step 7 with heavy longitudinal reinforcement.

– If the present step is carried out after Step 7 in the context of iterations
towards convergence of the stiffness values, calculate (EI)eff only from Eq.
(3.68). To accelerate convergence, especially if different walls or columns
have different cross-sectional depth, use as shear span, Ls , in Eqs. (3.66),
(3.68) the value of the moment-to-shear ratio from the seismic analysis in
Step 5 at the end of the member where the moment is largest. Adopt the
beam effective flange width suggested in Section 4.10.5.1 and count its
bars into the beam top reinforcement.

1 This step may be revisited in the framework of iterations involving Steps 3–7 (see Step 8).
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Use throughout the step the axial force values due to the gravity loads con-
current with the seismic action, as well as mean values of material properties
estimated from nominal strengths.

Step 5 – Linear analysis for the Immediate Occupancy seismic action:
Carry out a modal response spectrum analysis for the seismic action for
which Immediate Occupancy performance is desired, using its 5%-damped
elastic spectrum and the estimates of effective stiffness from Step 4. Combine
modal contributions through the CQC rule (Eq. (4.11) in Section 4.4.3) and
the effects of individual seismic action components through Eq. (4.24) in
Section 4.7.1.

Step 6 - Demand-capacity ratios for the Immediate Occupancy seismic
action: Calculate the ratio of:

– the elastic moment demand, D, taken equal to the seismic moment from
Step 5 plus the one due to the concurrent gravity loads, to

– the corresponding design resistance, C,

at any section where a primary member is connected to another one having
stiffness in a plane of bending normal to the vector of the moment in question.
Use design values of material strengths (nominal ones divided by the partial
factor for the material) for the design value of moment resistance.

Step 7 - Tailoring of flexural capacities to demands for uniformly dis-
tributed inelasticity: Increase the longitudinal reinforcement at all locations
where plastic hinges are intended to develop, so that their D/C ratios are as
uniform as possible:

– within families of such locations, notably:

� the wall base sections in wall and dual systems,
� the column base sections in frame and dual systems,
� the end sections of primary beams connected to stronger columns (i.e.,

whose sum of moment resistances above and below a joint exceeds the
corresponding sum in the beams framing into the joint), and

� the end sections of primary columns connected to stronger beams (i.e.,
whose sum of moment resistances across the joint exceeds that of the
columns above and below the same joint), as well as

– between different families, as relevant.

According to the compliance criterion for the Immediate Occupancy per-
formance level (criterion no. 2 above), the target D/C-value in each family
is (around) 2. However, important plastic hinge locations may have come
out of Step 5 with D/C values markedly below this target. If the C-value at
such a location is governed by Step 2, it cannot be reduced to increase D/C
towards the target value of 2.0. Unless such low D/C values are sporadic and
do not cast doubt about the prevailing plastic mechanism, we may go ahead to
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achieve the target D/C-value at these locations by raising the seismic action
for Immediate Occupancy performance (and of course the capacities at all
other locations, so that D/C ≈ 2 there under the increased seismic hazard
level).

Step 8 – Iterations with updated stiffness values. Repeat Steps 3–7, using
everywhere the longitudinal reinforcement from Step 7. The change in stiff-
ness may change the demands and partly undo the harmonisation achieved
in Step 8. So iterations may be needed through Steps 3–7 until satisfactory
convergence. Depending on the progress towards convergence, we may have
to overshoot in Step 7 (i.e., increase the low C-values more than required for
the target D/C-value), in order to harmonise in the end the D/C values over
all potential plastic hinges.

Step 9 – Capacity Design of force-controlled mechanisms: Derive through
capacity design calculations (as in Section 6.5.5) the shear force demands
in all members or joints, the seismic internal forces in the foundation sys-
tem and the forces transferred to the ground, using the final longitudinal
reinforcement in all relevant members. Verify shear force demands against
capacities derived according to the pertinent parts of Chapter 5 (Sections
5.4.2, 5.5, 5.7.2.3, 5.7.3.4 and 5.7.4.2, as relevant), using design values of
material properties (nominal strengths divided by partial factor for the mate-
rial) for primary members and mean values for secondary ones (cf. Table
6.1). Verify the entire foundation system and the ground at the Ultimate
Limit State (ULS) for the forces derived in this step via capacity design.
Increase member dimensions that turn out to be insufficient (including plan
dimensions of foundation elements) and repeat Steps 2–9 as necessary.

Step 10 – Analysis for the Life Safety or/and the Near Collapse seismic
actions. Determine the chord rotation demands at all member ends due to
simultaneous horizontal components of the Life Safety or the Near Collapse
seismic action, whichever seems most critical according to the criteria in the
last paragraph before the description of Step 1 above. Thanks to Steps 3, 7
and 9, modal response spectrum analysis may well be used, with the 5%-
damped elastic spectrum of the seismic action in question. If this spectrum is
proportional to that of the Immediate Occupancy action over the range of nat-
ural periods considered, seismic action effects from Step 5 are scaled-up by
that proportionality constant and added to those due to the concurrent gravity
loads. Alternatively, nonlinear dynamic (response-history) analysis may be
carried out both for the Life Safety and the Near Collapse seismic actions,
following the guidance in Sections 4.6.2, 4.10.1 and 6.5.4.2, using in the
model mean values of material properties estimated from nominal strengths.

Step 11 – Member detailing for the required chord rotation capacities:
Upgrade the chord rotation capacities of members to meet the corresponding
criteria of Table 6.1. To this end, wherever these criteria are violated:

a. increase the bottom reinforcement, if the member is a beam (see term ω′

in Eqs. (3.78)); and/or
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b. increase the confining reinforcement ratio, ρsx , over an appropriate length
near the end in question (see exponent of the 2nd term before the last one
in Eqs. (3.78)); and/or

c. replace part of any “web“ reinforcement distributed between the tension
and the compression one with a smaller total amount of tension plus
compression reinforcement, to increase ω2 in Eqs. (3.78) and reduce ω1

(which is the sum of the tension and “web“ reinforcement) while keeping
the yield moment, My , and the stiffness to yield-point, (EI)eff, unchanged;
and/or

d. if the member is a column which is squat in a single plane of bending, or
a short beam, add diagonal reinforcement (preferably by replacing part of
the longitudinal one, to avoid increasing My and (EI)eff); and/or

e. increase the width of the web, bw, if it is small compared to the section
depth, h (see term involving h/bw in Eq. (3.78c)); in rectangular sections
this will also increase the width of the compression zone, b, and reduce
the axial load ratio, ν, which is based on normalisation by bh.

Measures (a) and (e) above unavoidably increase My and (EI)eff. Normally
the increase is minor and does not warrant re-visiting any previous steps, pro-
vided that Eq. (1.4) has been met in Step 3 with a margin. The same applies to
any other measure involving the longitudinal reinforcement, if care has been
taken not to increase My and (EI)eff. Anyway, such an increase is safe-sided,
thanks to co-lateral reductions of the seismic chord rotation demands from
Step 10.
Implementation of measures (a)–(e) can best be served by Eqs. (3.78), which
reflect in an uncoupled and multiplicative fashion each one of the design
parameters that may be changed (ω2, ω1, ρsx , ρd , h/bw), as well as any
parameter that varies during the response (notably, the shear span and the
axial load, Ls and N). Recall that a nonlinear dynamic analysis carried out
for the purposes of Step 10 gives the average and the maximum – across
the suite of time-histories – of the largest value of the ratio of chord rota-
tion demand to capacity, as both vary during each response-history at the
member end in question (flexural damage ratio).2 Note also that the terms
involving any design parameter to be changed in the framework of measures
(a)–(e) above appear separately and multiplicatively in the denominator of
the flexural damage ratios and have the same value at the considered member
end across the response-histories. By contrast, the terms involving N and Ls

have different values in each response-history, namely the ones they assumed
when the flexural damage ratio was at its largest. But as the flexural damage
ratio includes in the denominator these latter terms also separately and mul-
tiplicatively, its average and maximum value in the suite of time-histories

2 For convenience, demand and capacity may be expressed in terms of the plastic part of chord
rotation if Eqs. (3.78b) or (3.78c) are used, or in terms of total chord rotations if Eq. (3.78a) is
applied instead.
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can be reduced to the desired level by (a combination of) measures (a)–(e)
above, without affecting at all the variable terms (those involving N and Ls).
So, Step 11 may successfully conclude without re-doing any analysis.

Although it may produce very different designs, the procedure itself differs only
at few points from that of today’s force-based design with a behaviour factor, q:

1. In conceptual design it includes two explicit goals:

� The requirement to meet Eq. (2.4), as there is no q-factor anymore to penalise
the structural system for torsional sensitivity.

� The goal of uniform cross-sections among walls or columns and of smooth
reduction of beam depths with decreasing average span of the frame and from
the base to the roof. This is to promote the most important feature of the
design procedure, notably the effort to prevent overstrengths and promote
uniform inelastic deformation demands in potential plastic hinges (see point
3 below).

2. In order to realistically estimate seismic displacements and deformations, the
analysis uses a secant to yield-point stiffness (from Steps 5 and 8), which is
much more representative than the default value of current codified force-based
design.

3. Although Steps 5–7 may look like blind force-based design with a force-reduction
factor of 2 for the Immediate Occupancy seismic action (i.e. with a q-factor of
2 times the ratio of Life Safety to Immediate Occupancy seismic actions, or,
in Eurocode 8 terminology, times the ratio of the design seismic action to the
damage limitation one), in reality their goal is to prevent overstrength at potential
plastic hinges and ensure uniform distribution of inelastic deformation demands
there at all seismic action levels of interest. Steps 5–7 are repeated until this
goal is met to a satisfactory degree. Note also that what appears as an effective
q-factor of 2 on the Immediate Occupancy seismic action is applied on the sum
of its effects to those of the concurrent gravity loads, and not on the Immediate
Occupancy action alone.

4. In current force-based seismic design any member end section is dimensioned
at the ULS in bending once, for the most adverse effect between those produced
from the factored non-seismic actions or from the combination of the design seis-
mic action and the concurrent gravity loads.3 By contrast, in the above procedure
ULS dimensioning in bending is first carried out in Step 2 for the non-seismic
actions and then re-visited in Step 7 for the Immediate Occupancy seismic action.

5. Detailing of members for ductility is based not on opaque prescriptions, but on a
transparent explicit verification of inelastic deformation demands against capac-
ity limits.

3 Provided that the same partial factors for materials are used in ULS design for non-seismic and
for seismic actions.
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Colour Plates

(a) (b)

(c)

Plate 1 Open ground storey collapses: (a) Kalamata, Greece, 1986; (b) Aegio, Greece, 1995; (c)
Athens, 1999 (Left: collapsed unit; Right: spared similar unit, at right angles to that on the left).
(See also Figure 2.10 on page 78)

Plate 2 Examples of shear failure of weak columns interacting with strong infills. (See also
Figure 2.11 on page 79)

717



718 Colour Plates

Plate 3 Examples of captive column failures. (See also Figure 2.12 on page 81)
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(a) (b) (c)

Plate 4 (a) Stair flight failing in shear as an inclined wall element in its strong direction; (b)
corner stair in an open ground floor causes damage to the column it is connected to at mid-storey;
and (c) columns at the diagonally opposite corner of the building failed during torsional response
due to the stair in (b) – shown near bottom right at the back. (See also Figure 2.13 on page 82)

(a) (b) (c)

(d) (e) (f) 

Plate 5 Flat slab frame after pseudodynamic test at the ELSA laboratory of the JRC: (a) side
parallel to loading; (b) hinge in slab in positive (sagging) bending and plastic hinges at column
base; (c) side at right angles to loading, with slab damage around connections; (d) edge slab-
column connection, 1st floor; (e) edge slab-column connection, 2nd floor; (f) edge slab-column
connection, 3rd floor (pictures (d)–(f) courtesy F. Taucer, JRC). (See also Figure 2.17 on page
107)



720 Colour Plates

(a)

(b)

(c)

(d)

(e)

(f)

Plate 6 Bearing capacity failures at: (a) in Mexico City (1985) (b)–(f) Adapazari (TR) in the 1999
Kocaeli earthquake (courtesy G. Gazetas, NTUA). (See also Figure 2.18 on page 109)
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(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 

Plate 7 Examples of flexural damage or failure in the lab or in the field: (a), (b) horizontal crack
at column top, concrete spalling at the corners, buckling of corner bars; (c) complete loss of cover,
partial disintegration of concrete and buckling of bars in horizontal zone near the column top;
(d) full loss of cover, partial disintegration of concrete and buckling of bars in horizontal zone
just above column base; (e) loss of cover, partial disintegration of concrete core and bar buckling,
with tie opening-up on one side of a column above the base; (f) full disintegration of concrete and
buckling of bars in a lapping region at floor level; (g) through-depth cracking near the support of a
T-beam with extension of the cracks into the slab at the top flange; (h) local crushing of concrete
and bar buckling at the bottom of a T-beam; (i) disintegration of concrete and bar buckling at the
bottom of a T-beam, with through-depth flexural cracks extending into the slab at the top flange
(See also Figure 3.27 on page 204)



722 Colour Plates

Plate 8 Pull-out of beam bars from short anchorage in corner joint has produced fixed-end rotation
during the response and wide residual cracks (See also Figure 3.29 on page 208)



Colour Plates 723

Plate 9 Shear failures of columns or walls (See also Figure 3.35 on page 252)



724 Colour Plates

(a) (b) (c)

Plate 10 Shear failure of exterior joints. (a) reinforced joint; (b), (c): unreinforced joints (See also
Figure 3.47 on page 288)



Colour Plates 725

Plate 11 Translation and twist histories, 3rd (left) and 2nd (right) floor in PsD test or analysis: (top)
unretrofitted SPEAR building; (middle) with FRP-wraps; (bottom) with RC jackets (Kosmopoulos
and Fardis 2004) (See also Figure 4.15 on page 418)



726 Colour Plates

Plate 12 Column damage index in flexure (left) or shear (right): (top) unretrofitted SPEAR build-
ing, 0.15 g PGA; (middle) 0.2 g PGA with FRP-wraps; (bottom) ibid, with RC jackets (See also
Figure 4.16 on page 420)



Colour Plates 727

Plate 13 Column damage index (demand-capacity ratio) in flexure (top) or shear (bottom); mean
values from seismic response analyses of the 6-storey building subjected to the 30 “most likely”
bidirectional ground motions at the site in the Athens 1999 earthquake (Kosmopoulos and Fardis
2006) (See also Figure 4.17 on page 422)



728 Colour Plates

Plate 14 Shear force demand-capacity-ratio (damage index) in vertical members of stage (top)
and theatre (bottom) of as-built theatre facility (mean value over 56 bidirectional ground motions
at PGA 0.1 g) (Kosmopoulos et al. 2007) (See also Figure 4.20 on page 425)
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(a) (b) (c)

Plate 15 Hand lay-up of FRPs in situ: (a), (b) dry fabric impregnated in place (courtesy A. Ilki);
(c) impregnation of the fabric right before placing (See also Figure 6.3 on page 654)

Plate 16 Collector element of the wall in Fig. 6.5, fastened to the side of the perimeter beam (See
also Figure 6.6 on page 670)



730 Colour Plates

(a)

(b)

(c)

Plate 17 Deformation and plastic hinging in retrofitted frame from nonlinear static analysis: (a)
wall fixed at the base; (b) wall footing connected to tie-beams and uplifting; (c) detail of (b) at the
base of the wall and the footing (yellow circles: plastic hinges; larger red circles: flexural failure)
(See also Figure 6.9 on page 674)
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Plate 18 Pushover response of retrofitted frame: (top) without tie-beams, using as parameters
the model and the size of the footing; (bottom) with 1 m deep, 7.5 m-by-3 m footing, using as –
parameter the size of the tie-beam (See also Figure 6.10 on page 675)



732 Colour Plates

(a) (b)

Plate 19 FRP-retrofitted SPEAR test structure: (a) column with FRP-wrapped ends during the
response; (b) large column retrofitted in shear

(a) (b) (c)

Plate 20 Vertical cracks in perimeter members of theatre building (a), (b), due to reinforcement
corrosion (c) (See also Figure 6.13 on page 686)

(See also Figure 6.12 on page 684)
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Plate 21 Mean chord rotation demand in vertical members of the retrofitted building from seismic
response analyses for 56 bidirectional ground motions at PGA = 0.36 g, divided by the correspond-
ing chord rotation capacity for the Near Collapse Limit State (Kosmopoulos et al. 2007) (See also
Figure 6.16 on page 690)

Plate 22 Mean damage ratio in shear in the vertical members of the retrofitted building without
the FRPs for 56 bidirectional ground motions at PGA = 0.36 g: shear force demand from the
analysis divided by the corresponding capacity for any Limit State (Kosmopoulos et al. 2007) (See
also Figure 6.17 on page 690)
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Index

A
Accidental actions, 14
Accidental eccentricity, see Accidental torsion
Accidental torsion, 57, 75, 337, 347–351, 482,

515–518, 560, 582, 609, 624
ACI, xvi, 20, 21, 26, 30, 32, 41, 45, 106, 159,

160, 172, 220, 263, 442, 580, 655,
659

Added walls, 667–671, 673–676, 686–689
Aggregate interlock, 164–166
AIJ, 259, 262–264, 273, 315
Anchorage

by bend, 174, 284, 292, 466, 569, 570
of FRP, 654, 692
in joints, 89, 92, 208, 281–287, 443,

463–466, 522, 599, 697
of reinforcement, 90–92, 443, 463–466,

469–574
Axial deformations, 230, 231, 387
Axial force

calculation, 93, 94, 517, 519–521
in capacity design of columns in bending,

495–499, 520, 521, 525–528
effect on cyclic flexure, 205–207, 230, 231,

233, 236
effect on shear resistance, 259–263,

265–269, 271, 278, 293–296, 446
for verification of columns in shear,

496–499, 533–537
Axial stiffness, see Stiffness, axial

B
Base shear, 42, 43, 111, 301, 312–316, 319,

326, 557–560, 583, 587
Beams

capacity design in shear, 27–30, 481, 489,
529–531

coupling, 43, 280
deep, 280

dimensioning in bending, 481–484,
522–524

dimensioning in shear, 27–30, 444,
469–471, 481, 489, 528–531

effective flange width, 21, 22, 84, 85, 355,
413

moment redistribution, 483, 484–489, 697
retrofitting of, 633
sizing of, 89–92, 696

Behaviour factor q
basic value, 43, 44, 444, 446, 450, 452,

453, 460, 514, 559
dual systems, 43, 65, 103
for force-based assessment or retrofitting,

625–627, 680
frame systems, 43, 65, 103
heightwise irregular buildings, 44, 79
general, 9, 10, 18, 36, 39, 41–44, 65, 213,

219, 299, 301, 303, 310, 434, 437,
438, 451, 453, 516, 559, 560, 566

inverted pendulum systems, 43, 44
systems of large lightly reinforced walls,

473–475
torsionally flexible systems, 43, 44, 453
wall systems, 43, 44, 65, 100

Biaxial
bending, 86, 101, 232, 234–237, 339–345,

380, 381, 386, 387, 414, 445, 490,
492–494, 505, 525, 526, 620, 621,
623

failure, 232, 235, 237
loading, 75, 116, 232, 234–237, 414,

417–422
yielding, 232, 236, 237

Bond
in beam-column joints, 89, 92, 281–287,

291–294, 443, 463–466, 481, 522
in cyclic loading, 169–171, 175, 282

735
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general, 166–175, 177, 184, 208, 386, 395
strength, 167–171, 287

Boundary elements
in ductile walls, 447, 448, 450, 459–463,

482, 504, 565, 574–577, 640,
667–669

in Eurocode 2 walls, 447, 575, 577
in large lightly reinforced walls, 478, 479

Bracing system in steel, 476–478, 522–529
Brittle

materials, 26, 174
mode of behaviour, 11–13, 26–27, 275,

276, 396, 454, 612, 613, 618, 619,
681

shear, 27, 251–253, 258–265
Buckling of reinforcement, 131–136, 138, 634,

635, 640

C
Capacity curve, 425–429, 496, 497, 521
Capacity design

of columns in flexure, 20–24, 445,
493–495, 524–528, 696

of foundation, 20, 115–118, 497, 538–541,
547–552, 583, 591, 699

general, 15–20, 41, 45, 84, 88, 481, 699
Capacity design forces for linear analysis

in the foundation, 617, 618, 699
general, 613–615, 617, 618, 699
shears in beams, 27–30, 614, 699
shears in columns, 31, 32, 613, 699
shears in joints, 287–290, 615, 699
shears in walls, 33, 615, 699

Capacity design in shear
beams, 27–30, 444, 481, 489, 529–531,

699
columns, 31, 32, 446, 481, 496, 533, 535,

699
ductile walls, 33, 449, 482, 699
general, 26, 27, 481, 699
joints, 481, 489, 699

Centre of mass, 53, 56, 57, 59, 121, 122, 314,
315, 317, 326, 329, 346, 347, 360,
363, 364, 416, 417, 424, 426, 685

Centre of resistance, 53, 56, 121, 122, 416,
417, 424, 426, 685

Centre of rigidity, 53–56, 59, 121, 122, 346,
347, 416, 417, 424, 426, 685

Centre of stiffness, see Centre of rigidity
Centre of strength, see Centre of resistance
Centre of twist, 55, 121, 122, 416, 417,

424, 426

Chord rotation
calculation, 214, 317, 318, 383, 387, 392,

395, 429–432, 611, 612, 619, 620
definition, 16, 17
ductility factor, 16, 18, 383, 393, 433, 436,

439, 605
ultimate, 138, 139, 222–224, 227–230, 237,

240–247, 250, 393, 396, 397, 414,
610, 612, 620–622, 636, 645–649,
656–658, 697, 699

at yielding, 216–219, 221, 224, 228, 230,
236–242, 245, 249, 250, 267, 493,
494, 612, 636, 645–649, 657, 658

Collapse examples, 53, 60, 61, 67, 69, 78, 109,
119–128

Collapse prevention, see Near Collapse
Columns

capacity design in flexure, 20–24, 445,
493–495, 524–528, 697

capacity design in shear, 31, 32, 446, 481,
496, 533, 535, 699

circular, 150–152, 160, 161, 173, 255–268,
661

confining reinforcement, 150–157, 228,
229, 246, 445, 446, 456–460, 481,
532, 533, 644

detailing, 151–155, 445, 446
dimensioning in shear, 446, 481
retrofitting with concrete jackets, 558–560,

562, 637–649, 685
with lap-spliced bars, 238–241, 244–247
retrofitting with FRP, 557, 559, 560, 562,

649, 654–661, 655, 684, 685
retrofitting with steel jackets, 661–667
sizing of, 92–94, 696

Combination
of actions, 13, 90, 482, 490, 510
of factored gravity loads, 90, 91, 482,

490, 510
CQC, 320, 321, 330, 331, 345, 698
of modal contributions, 319–321
of seismic action components, 332,

338–345, 350, 498, 519, 520, 525,
539, 698

SRSS, 320, 321, 332, 338, 342–345, 348,
415, 430, 431, 498, 520, 525, 539

Complete Quadratic Combination (CQC), 320,
321, 330, 331, 345, 698

Compression zone, 133–136, 143, 147–150,
156, 157, 162, 179–181, 186–198,
203, 228, 238, 240, 258, 273,
291, 455, 461, 462, 478, 575–577,
645, 648
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Conceptual design
of dual systems, 103–105
of foundation, 108–115
of frame systems, 83–94
general, xiv, 47–50, 696
of wall systems, 94–103

Concrete
confined, 143–163
cyclic stress-strain behaviour, 142, 143
minumum requirements in Eurocode 8,

163, 164
ultimate strain, 147–149

Concrete jackets
confinement, 644
detailing, 639–643
moment resistance, 644–648
shear strengthening, 646, 649
stiffness, 644–648
ultimate deformation, 644–648

Confidence factor, 607, 608, 610, 613–617,
620–623, 626, 649, 658

Confinement
effectiveness factor, 145, 150–153,

155–157, 161–163, 243, 405, 450,
532, 533, 575–577, 663

by FRP wrapping, 157–163, 174, 242–247,
656, 657

of lap splices, 167, 172–174, 238–241,
244–247

models, 144–150
of circular sections, 150–152, 160, 161
of rectangular sections, 151, 153–157, 162,

457, 459
by steel jackets, 663, 664
by transverse reinforcement, 150–157,

175, 228, 229, 246, 294, 445–447,
456–473, 481, 482, 532, 533,
575–577, 644, 700

of wall boundary elements, 459–463,
574–577

Coupled walls, see Walls coupled
Coupling axial-flexural, 99, 100, 205–207,

230, 231, 233, 234, 386–388
Critical regions, 139, 140, 441–449, 452,

453, 455–463, 469–472, 481, 482,
528–538, 566–567, 575–577

Curvature
definition, 178
ductility factor, 213, 223, 443–461, 515,

523, 533, 575–577
at yielding, 139, 179–183, 185, 213,

216–218, 222–224, 238–241, 389,
390, 455, 461, 610, 621, 644

ultimate, 139, 148, 149, 185–195, 210–213,
222–224, 240, 242, 244, 247, 389,
396, 397, 455, 457, 461, 610, 621,
622, 656

D
Damage

examples, 79, 81, 82, 107, 168, 204, 208,
252, 288

limitation, 6–8, 19, 305, 439, 626, 627
Damage limitation (LS), 7, 603, 604, 612, 618,

624–626, 681
Damping

hysteretic, 235, 401–403, 406, 409, 410
Rayleigh, 333, 334, 414
viscous, 304, 305, 307, 320, 333, 334,

414, 431
Demand-to-capacity ratio D/C, 428, 429, 431,

609, 698, 699
Design seismic action, 1, 2, 6–9, 13–15, 37,

42, 305, 331, 332, 366, 432, 434,
437, 439, 626, 627, 701

Design situation
persistent and transient, 14, 64, 86, 90, 508,

697
seismic, 13, 14, 64, 88

Detailing
of beam-column joints, 463–466, 468,

469
of beams, 443, 444, 454–456, 529–531
of columns, 445, 446, 459, 460, 532–538
of ductile walls, 447–450, 459–463, 565,

574–577
for ductility, 11, 13, 20, 174, 175
in Eurocode 8, 442–450, 454–466, 468,

469, 478–480, 529–538, 565,
574–577

of large lightly reinforced walls, 478–480
Diagonal strut

in infill panels, 366, 367, 404, 408, 409,
499, 540, 624

in shear resistance, 261–264, 273, 274,
282, 290–292

Diaphragms
flexible, 57, 67–70, 120–123, 125–128,

349, 355, 360–362, 414, 421,
483

general, 57, 67–71, 103, 104, 113,
120–123, 125–128, 444, 478, 480

modelling, 359–362, 414, 421, 483
rigid, 70, 103, 104, 314, 317, 349, 355,

359, 360, 364
verification, 577–582
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Displacement-based
assessment and retrofitting, 220, 221,

302–304, 427, 608
design, 220, 694–701

Displacement calculation, 58, 302, 303, 329,
330, 363, 418, 419, 426–432,
434, 437

Dissipative zones, 13, 14, 19, 20, 442
Dowel

action, 164–166, 202, 251, 254, 263, 265
epoxy grouted, 641, 648, 668, 683,

687, 689
Dual systems

definition, 43
frame-equivalent, 43
wall-equivalent, 43

Ductile shear, 251, 253–257, 265–269
Ductile walls

design in flexure, 25, 26, 449, 482,
502–506, 564, 565, 567, 569–574

detailing, 447–450, 459–463, 465, 574–577
dimensioning in shear, 33–36, 449, 471,

472, 482, 506, 507, 566–568
Ductility

definition, 11
design for, 9–11, 36–38, 117, 118, 451–453
detailing for, 11, 13, 20, 174, 175,

442–450, 454–466, 468, 469,
478–480, 529–538, 565, 574–577

global, 9–11, 19–20
local, 19–20, 138, 175, 451–463
of materials, 137–141, 454, 455

Ductility Class (DC)
H (high), 29, 31, 34–36, 39, 40, 43, 68, 74,

78, 79, 106, 118, 140, 141, 153,
164, 209, 269, 271, 442–450

L (low), 39, 41, 74, 78, 106, 140, 141, 248,
436, 443–450, 454

M (medium), 29, 31, 35, 36, 39, 40, 42–44,
68, 74, 78, 79, 106, 140, 141, 153,
164, 269, 442–450, 453

Ductility Classes (DCs) in Eurocode 8, 38–40
Ductility factor

of chord rotation, 16, 18, 213, 223, 263,
266, 269, 451

of curvature, 213, 223, 443–461, 515, 523,
533, 575–577

of displacement, 10, 11, 18, 36, 213, 451

E
Effective footing area, 540–542, 548, 549,

585, 586
Effective stiffness, see Stiffness

Epoxy resins, 652, 653
Equal displacement rule, 10, 37, 302, 328, 363,

427, 429, 434, 437
Equivalent SDOF system, 9, 10, 426–430
Eurocode 2, 14, 39, 140, 146, 147, 167, 168,

172, 187, 212, 218, 220, 226, 258,
261, 263, 269, 271, 355, 412, 436,
441, 444, 451–453, 455–457, 459,
462, 464, 466, 469–472, 474–478,
480, 486, 495, 506, 511, 528–532,
534, 542, 544, 552, 562–564,
566, 567, 569, 570, 575–577, 580,
581, 591

Eurocode 6, 366, 367
Eurocode 7, 108, 540, 584
Eurocode 8

Part 1, xvi, 1, 2, 6, 7, 10, 13, 14, 19–23, 27,
29–36, 39–44, 52, 53, 56–58, 60,
61, 65, 68, 74–76, 78, 79, 81, 90,
103, 108, 117, 118, 163, 167, 209,
247, 248, 271, 280, 281, 294–296,
300–303, 305, 312–313, 318, 320,
324–329, 331, 332, 337, 339, 347,
353, 354, 359, 363–366, 368, 412,
413, 427, 430, 432–436, 441–455,
458–470, 472–479, 486, 488,
492–494, 499–506, 526, 528, 529,
532, 555, 556, 558, 560, 575–578,
583, 584, 586

Part 3, xvi, 7, 144, 146, 149, 162, 212, 218,
219, 221, 226, 229, 230, 238–240,
243, 245–247, 267, 271, 279, 303,
306, 324, 325, 328, 330, 366, 396,
413, 421, 426, 430–434, 436, 439,
451, 452, 602–626, 648, 649, 656,
681, 686, 689

Part 5, 306, 374, 376

F
Failure

in brittle shear, 252, 253
in ductile shear, 256, 257
examples, 53, 60, 61, 67, 69, 78, 109,

119–128, 204, 208, 252, 288
in flexure, 12, 82, 204, 253
in shear, 79, 81, 82, 252, 288

Fibre models, 380–387, 395, 404
Fibre Reinforced Polymers, see FRPs
Fixed-end rotation

general, 184, 185, 282–284, 385,
386, 390, 393, 395, 401, 414,
616

at ultimate, 208–211, 224
at yielding, 185, 217–219
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Flat-slab frames
behaviour, 105–108
in Eurocode 8, 106, 435, 555, 558
modelling, 555, 558
verification, 561–564

Flexure-shear interaction, 272–278
Floor diaphragms, see Diaphragms
Footings

capacity design, 115–118, 480–482, 497,
538–541, 547–552

modelling, 374–376, 410–412, 673–675
rigid, 374, 376
verification of bearing capacity, 497,

540–542, 548, 584–587
verification in bending, 545–547, 553
verification in shear, 543–545, 551, 552

Force-based
assessment and retrofitting, 600, 601,

625–627, 630, 682
seismic design, 9, 19, 20, 65, 219, 299,

310, 426, 427, 701
Force path

continuity, 67, 68, 633, 634, 668
redundancy, 65, 85, 97, 102

Force-reduction factor R, 45, 299
Foundation beams

design in flexure, 493, 494
design in shear, 492, 493
general, 97, 108, 112, 113, 117, 118, 426,

616, 618, 672, 689
modelling, 370–373, 410
verification of bearing capacity, 584–587

Foundation system
box-type, 97, 113, 114, 554, 582–593
selection, 113–115
shallow, 108

Foundation of walls, 97–99, 671–676
Frames, 83–92, 103, 104, 480, 481, 507–538
Frame systems definition, 43
FRP anchorage, 654, 692
FRP materials, 650–654
FRPs, 157–163, 174, 241–247, 557, 559,

560, 562, 565, 650, 651, 684, 685,
690–693

FRP-wrapped members
confinement, 157–163, 174, 242–247, 656,

657, 684, 685
moment resistance, 241, 245, 656, 657
shear strengthening, 658–661, 690–693
stiffness, 242, 245, 656, 657
ultimate deformations, 242–247, 656, 657
yielding, 241, 242, 245, 656, 657

Fundamental period, see Period, fundamental

H
Horizontal components

combination of, 332, 338–345, 349, 350,
498, 519, 520, 525, 539, 698

design spectrum, 310
directions, 316, 338
elastic response spectrum, 306, 307

Hysteresis rules, 334, 397–401, 413, 439

I
Immediate Occupancy, 3, 4, 7, 8, 366, 695,

696, 698, 699, 701
Importance Class, 2, 508, 516, 554, 560
Importance factor, 2, 8, 39, 305, 508, 554
Inelastic spectrum, 9–11, 36, 37, 328, 427,

451, 452
Infilling of frames with RC, 666–671, 688, 689
Infills, see Masonry infills
Input motions

artificial, 331
conformity with spectrum, 331, 332
minimum number, 333
recorded, 331, 332
simulated, 331, 332

Interface
of concrete jacket to old member, 639,

641–643, 646–648, 668, 669
of steel bracing to old frame, 683

Interstorey drift
calculation, 513, 516, 560, 561
contributions to, 215
limit (or verification), 6, 87, 88, 513, 516,

560, 561
sensitivity coefficient, 363, 364, 516, 561

Inverted pendulum systems, 43, 44
Irregularity in elevation

effects of, 60, 61, 76–78, 120–124
of infills, 64, 76–78, 124

Irregularity in plan
effects of, 52, 53, 75, 120–128
of infills, 74, 75

J
Joint(s)

beam-column, 280–297, 463–469
bond and anchorage in, 89, 92, 281–283,

291–294, 443, 463–466, 481,
522

shear force, 281–283, 287–290, 466, 481
shear verification, 466–468, 699
seismic, 57, 58, 629, 630, 687

L
Lap length, 72, 239, 240, 245, 246
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Lap-splices
and concrete jackets, 645, 646
effect on stiffness, 238, 244, 245
effect on ultimate deformation, 239–241,

245–247
effect on yield moment, 238, 244, 245
and FRP wrapping, 244–247, 649, 657
of smooth bars, 241
and steel jacket, 665, 666

Large lightly reinforced walls
in bending, 474, 475
definition, 473
in shear, 475–478
system of, 472–474

Large walls
behaviour, 99–101
in Eurocode 8, 472–480

Lateral force pattern
in linear static analysis, 314, 315, 508,

566
in nonlinear static analysis, 324, 325

Liability in retrofitting, 627, 628
Life Safety, 3, 4, 7, 8, 366, 367, 426, 604, 686,

689, 695, 696, 699, 701
Limit States (LS), 5–8, 603, 604, 618, 619,

623, 624, 626, 628, 681, 686, 689,
696

Linear analysis applicability conditions, 428,
429, 609

Linear modelling
beams and columns, 354–356
floor diaphragms, 359–362, 414, 421
footings, 474–476
foundation beams, 370–373
foundation elements, 369–376
infill panels, 365–369
soil compliance, 369–376
staircases, 362
walls (U-shaped), 357–359

Linear static analysis
applicability conditions, 311, 312
force pattern, 314, 315, 508, 566

Load-path, see Force path
Low seismicity, 39, 106
Lumped inelasticity models, 390–395,

404, 413

M
Masonry infills

adverse local effects, 79–81, 499–502
effects of, 72–81
in existing buildings, 599, 602, 605–608,

624, 625, 627, 631

general, 6, 36
irregularity in elevation, 74, 76–78, 124
irregularity in plan, 74, 75
modelling, 365–369, 404–410
shear resistance, 408, 409, 500

Mean return period, 1, 2, 4, 7, 8, 14, 405,
406, 604

Modal response spectrum analysis, 300, 301,
303, 315–321, 329, 338, 341–345,
347, 350, 367, 430, 431, 498, 608,
698, 699

Model Code 90, 146, 147, 169, 258, 259,
261–263, 270

Modelling
in assessment and retrofitting, 609–612
for linear analysis, 352–379
for nonlinear analysis, 379–412

Modes, normal, see Normal modes
Moment-curvature, 183–203, 256, 257, 389,

390, 397–401
Moment frames

intermediate, 30, 41, 45
ordinary, 41, 45
special, 23, 24, 30, 32, 41, 45

N
Near Collapse, 3, 4, 7, 8, 306, 366, 426, 603,

604, 612, 619, 623, 624, 681, 689,
690, 695, 696, 699

NEHRP, xvi, 8, 20, 26, 30, 40, 45, 46, 63,
65, 66, 115, 130, 142–145, 147,
161, 162, 168, 177, 183, 193, 257,
263, 442

Neutral axis depth, 138, 149, 157, 177–181,
184, 186–194, 196–198, 230–232,
248, 261, 265, 266, 268, 273,
291, 455, 458, 461–463, 484, 495,
504, 648

Nonlinear dynamic analysis
application examples, 415–426, 685,

689, 690
input motions, 331–333
modelling, 380–412
numerical integration, 334, 335

Nonlinear modelling
in Eurocode 8, 412
of foundation uplift, 410–412, 673–675
of infill panels, 404–410

Nonlinear response-history analysis, see
Nonlinear dynamic analysis

Nonlinear static analysis
adaptive schemes, 325
in Eurocode 8, 324–329
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higher mode effects, 330
torsional effects, 329

Non-structural elements (infills, etc.), 4, 6, 36,
630, 667

Normal modes
combination, 319–321
minimum number, 318, 319
in pushover analysis, 330

Numerical integration, 334, 335

O
Overstrength

factor, 20, 28–34, 41–46, 116, 451, 453,
455, 459, 464, 467, 475, 476, 478

of materials, 20, 28–34, 39–41, 44–46, 116,
451, 453, 455, 459, 464, 467, 475,
476, 506, 578

of system, 42–46, 451
Overturning moment, 83, 86, 93, 105, 111,

115, 315, 370, 378, 509, 519,
582, 583

P
P-Δ effects, see Second-order effects
Peak ground acceleration (PGA), 10, 40, 305,

306, 332, 374, 431, 623
Performance

levels, 3–8, 305, 306, 366, 603, 604, 626,
628, 695, 696

requirements, 1–8, 48, 306, 336, 596, 601,
603, 604

Performance-based
assessment and retrofitting, 2–5, 7, 306,

336, 601, 630
design, 2–5, 8, 695

Period
corner (or transition), 10, 34, 304, 305, 307,

311–313, 326, 328, 429, 450, 615
fundamental

horizontal, 9, 10, 34, 58, 59, 71, 111,
301, 305, 311–314, 326–328, 332,
370, 377, 378, 414, 427, 429, 450,
473, 514, 559, 615

vertical, 321, 322, 332, 379
natural (or modal), 306, 307, 309, 310, 316,

317, 319, 320
Pile foundations, 108, 371, 376, 377
Pinching, 184, 201–203, 206, 386, 398–403
Plastic hinge

general, 11, 13, 16–18, 20, 23, 25–31,
33, 34, 42, 51, 52, 78, 86, 88, 95,
116, 138, 139, 222–224, 233, 241,
242, 248, 254, 264, 393, 394, 442,

451–453, 455–463, 494, 501, 636,
649, 656, 660, 674

length, 224–227, 240, 241, 247, 250, 621,
622, 645–647

Plastic mechanism
beam-sway, 16–20, 64, 95, 324
general, 16–18, 42, 65, 301, 324, 326, 327
soft-storey, 16–20, 23–26, 64, 76–78, 86,

102, 103, 325
Point-hinge models, see Lumped inelasticity

models
Polyesters, 652, 653
Pounding, 57, 58, 75, 629, 630, 686
Prestressed members

ultimate deformation, 250
yielding, 249, 250

Prestressing in Eurocode 8, 247, 248, 321, 435
Primary members

in assessment and retrofitting, 433, 434,
436, 437, 606, 609, 610, 618,
624–627, 631, 633, 649, 681, 682

definition, 432
in design of new buildings, 433–436,

442–556, 559–561, 564–593, 699
Pseudodynamic test, 415, 417, 418, 685
Pushover analysis, see Nonlinear static analysis

Q
q-factor, see Behaviour factor q

R
Radius of gyration, 58, 59, 511, 512, 556, 557
Raft foundations, 108, 109, 111, 113, 115, 117,

371, 373, 410, 618
Rapid screening, 597
Rayleigh damping, see Damping, Rayleigh
Rayleigh quotient, 313, 514
Redundancy, 42–44, 46, 52, 59, 64–66, 84, 85,

102, 103, 473
Regularity in elevation criteria, 61–63
Regularity in plan criteria, 53, 56–59
Reinforcement

compression, 177, 179–181, 190–194,
196–198, 201, 228, 229, 238, 240,
275, 277, 279, 455, 503–505, 644,
657, 700

confining, 150–157, 175, 228, 229, 246,
294, 445–447, 456–463, 481, 482,
532, 533, 575–577, 644, 700

inclined, 229, 279–281, 443, 444, 470, 471,
481, 482, 700

slippage of, 184, 185, 208–211, 217–219,
224, 281–287, 385, 386, 390, 393,
395, 401, 414, 616
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tension, 138, 177, 179–181, 184, 186,
190–194, 196–198, 199, 210–212,
216–218, 228, 229, 249, 259, 260,
275, 455, 503–505, 700

web (longitudinal), 179–181, 190–194,
196–198, 228, 229, 472, 478,
503–505, 700

Reinforcement ratio
maximum, 443–450, 455, 456
mechanical, 156, 187, 190–194, 196–198,

228, 229, 260, 275, 277, 458–460,
503–505

minimum, 443–450, 454
volumetric, 146, 151, 154–156, 458, 459,

461
Reinforcing bars

anchorage, 90–92, 443, 463–466, 569–574
bending diameter, 569, 570
bond, 166–175, 177, 184, 208
buckling, 131–136, 138, 157, 174, 175,

203–205, 280, 382, 395, 634,
635, 640

curtailment, 569–574
dowel action, 164–166, 202, 251, 254,

263, 265
lap-spliced, 238–241, 244–247, 645, 646,

649, 657, 665, 666
ribbed (deformed), 166–174, 182, 219,

221, 228–230, 238–241, 244–247
smooth (plain), 648, 685, 687, 696, 707

Reinforcing steel
class, 140, 212, 453–455, 484
cyclic stress-strain behaviour, 129–133
requirements in Eurocode 8, 137–141
strain at ultimate strength, 130, 135, 137,

139, 140, 147, 148, 186, 210–212
time effects, 136, 137
ultimate strain in cyclic loading, 210, 241
ultimate strain in monotonic loading, 210,

211, 241
ultimate strength, 130, 138–141
yield stress, 129, 130, 140, 141

Repaired members
stiffness, 242, 636, 637
ultimate deformation, 243, 244, 636, 637
yielding, 242, 636, 637

Repair techniques, 634–636
Response-history analysis, see Time-history

analysis
Response spectrum

design, 310
elastic, 306, 307, 309
horizontal, 306, 307, 310

inelastic, 9–11, 36, 37, 328, 427, 451, 452
vertical, 309, 310

Retrofitting strategies, 628–634

S
Safety factor

partial for actions, 91, 482, 490, 510
partial for materials, 14, 21, 456, 464, 469,

543, 584, 622, 623, 655, 656, 664
SEAOC, xvi, 2, 8, 20, 26, 30, 40, 45, 46,

63, 65, 66, 115, 130, 131, 138,
142–145, 148, 149, 161, 162, 168,
177, 183, 193, 199, 257, 263, 442

Secondary members
in assessment or retrofitting, 433, 434, 436,

437, 439, 602, 606, 609, 612, 618,
626, 627, 630, 682

definition, 432
modelling, 437–439, 609, 610, 612
in new buildings, 433–436, 437–439, 443,

445, 501, 556–558, 561–564, 699
Second-order effects, 87, 96, 220, 349, 363,

364, 474, 516, 561
Seismic hazard, 2–5, 7, 8, 14, 305, 306, 601,

603, 604, 626, 695, 699
Seismic joint, see Joint(s), seismic
Shear

in joints, 281–283, 287–290
sliding, 280, 449, 450, 470, 471, 477,

482, 578
Shear resistance

cyclic loading, 253–257, 265–269
in diagonal compression, 270, 271
in diagonal tension, 265–269
of joints, 290–297
monotonic loading, 258–264
of short (squat) columns, 278, 279
of walls, 270, 271, 448–450

Shear span, 80, 94, 96, 138, 176, 177, 184,
214–216, 221, 223, 224, 393, 394,
396, 413, 414, 472, 502, 611, 619,
623, 700

Shear span ratio, 11, 12, 44, 84, 89, 91, 94, 96,
100, 176, 225, 228, 229, 264–268,
270–279, 403

Shift rule, 216, 217, 448, 483, 564, 593
Short columns

design, 24, 272–280
vulnerability, 79–81, 112, 598

Significant Damage (LS), 7, 603, 604, 612,
619, 623, 624, 626, 681, 682,
686, 689

Soil bearing capacity, 540–542, 548, 584–587
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Soil compliance, 370–376
SPEAR test-building, 415–421, 429, 684, 685
Spectral displacement, 304, 305, 317, 326, 328
Spectral pseudoacceleration, 8, 10, 34, 40,

304–307, 309, 615
Spectral pseudovelocity, 10, 98, 304, 305,

311–313
Spread inelasticity models, 387–390
Square Root of the Sum of Squares (SRSS),

see Combination, SRSS
Squat columns, see Short columns
Staircases

effects of, 82, 83
modelling, 362, 414
stiffness, 362, 598

Steel jacketed members
confinement, 663
lap splices, 665, 666
moment resistance, 666, 667
shear strengthening, 664, 665
stiffness, 666, 667
ultimate deformations, 666, 667
yielding, 666, 667

Stiffness
axial, 354, 390, 394
in biaxial loading, 237
cracked, 19, 220, 456, 460
of floor diaphragms, 359–362
secant to yield point, 219–222, 237–239,

242–245, 250, 393, 395–397, 413,
417, 610, 611, 636, 645, 648,
656, 657, 697, 699, 700

torsional, 354, 357, 359
Stiffness degradation, 201, 233, 391, 399,

439, 613
Strength degradation, 186, 203, 234, 251, 254,

255, 270, 271, 278, 401, 405, 409,
419, 439, 613

Strong column-weak beam design, 16–20, 445,
493–495, 524–528, 697

Strut-and-Tie models, 279, 476, 477, 578–582

T
Target displacement, 326, 328–330, 396
Tension shift, see Shift rule
Tension stiffening, 216
Tie-beams, 7, 97, 108, 111–112, 116–118, 480,

617, 671–676

Time-history analysis, 301, 330–335, 337, 397,
398, 417–419, 429, 430

T-, L-, U-compression zone, 181–183, 218,
222, 225–227, 228, 229

Torsional effects
in linear analysis, 348, 349, 351
in pushover analysis, 329

Torsionally flexible systems, 12, 13, 43, 44
Torsional radius, 53–56, 58, 59, 511, 512,

556, 557

U
Ultimate chord rotation, see Chord rotation,

ultimate
Ultimate curvature, see Curvature, ultimate
Ultimate deformation definition, 135, 203, 205
Uplift

of footings, 98, 99, 374–376, 410–412,
475, 673–676

of walls, 99, 100
US standards, xvi, 8, 20, 23, 26, 30, 33, 40, 45,

46, 63, 65, 66, 115, 130, 142–145,
148, 161, 162, 168, 177, 183, 193,
257, 263, 442

V
Vertical component

combination of components, 321, 332,
338–345, 350

design for, 321–323
design spectrum, 310
elastic response spectrum, 309
linear static analysis, 322, 323

W
Wall definition, 94
Walls

coupled, 35, 43, 503, 504, 507
design in flexure, 25, 26, 449, 482,

502–506, 564, 565, 567, 569–574
design in shear, 33–36, 449, 471, 472, 482,

506, 507, 566–568
foundation of, 97, 99, 671–676
redistribution of design internal forces,

482, 502, 503, 507
Wall systems

behaviour factor, 43, 44, 65, 100
definition, 43
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